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Abstract

Research on how information is encoded by the brain is largely based on studies of feature 

detector properties of single neurons, but considerable new data shows that single neurons in many 

brain areas have mixed selectivity for multiple features and change their tuning properties across 

realistic information processing situations. Here I consider new approaches that explore cell 

assemblies as the units of information processing and how these approaches are revealing the 

structure and organization of neural representations in perception and cognition.

Introduction

Two major themes have guided research on how neuronal activity encodes experience. One 

theme, originating with Horace Barlow (1,2), proposes that each neuron detects a specific 

feature of an event, typically characterized by selective tuning within a single dimension of a 

particular perceptual, behavioral, or cognitive domain. The other theme, begun by Donald 

Hebb (3), proposes that the unit of perceptual, behavioral, and cognitive representation is the 

cell assembly, an interconnected network of neurons whose collective activity codes for all 

elements of a particular meaningful event.

These views differ on fundamental properties of neural representation. The feature detector 

view focuses on single neurons, whereas the cell assembly view focuses on population 

activity patterns. The feature detector view focuses on tuning within a single stimulus 

dimension whereas the cell assembly view characterizes the combination of all dimensions 

of an experience. And the feature detector view assumes the response properties of a neuron 

are stable across all situations whereas the cell assembly view allows that population activity 

can vary depending on context and be dynamic across an experience.

Here I will discuss how these themes involve different experimental approaches and lead to 

distinct visions about how brain circuits and systems represent events. These considerations 

will support the notion that, at least for higher order brain areas, neuronal activity patterns 

are inconsistent with the feature detector view, and conversely, analyses of neural 
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populations reveal information about the organization of information by cell assemblies that 

go beyond what can be demonstrated by single cell analyses.

Feature detector neurons as the functional unit of information processing

A guiding principle for understanding the brain is the neuron doctrine, which states that the 

unit of anatomy and function of the nervous system is the single neuron (4, 5). Our 

conception of the neuron as a functional unit grew with early descriptions of receptive fields 

of sensory neurons and was solidified by Barlow’s characterization of frog retinal ganglion 

cells as “fly detectors” (for reviews, see 2,6). The idea that single neurons are tuned to a 

particular point within a single perceptual dimension gained ground as various feature 

detector properties were identified for neurons in the frog tectum (7) and in other sensory 

systems, and this progress reached maturity in Hubel & Wiesel’s (8) studies on neurons in 

the mammalian lateral geniculate nucleus and visual cortex that are tuned to specific 

location and form of a visual stimulus within the visual fields. While there are different 

views on the response properties of visual neurons (e.g., that they are filters for different 

spatial and temporal frequencies; 9), the idea of neurons as detectors of specific features of 

sensory and behavioral events remains prominent.

Furthermore, the additional findings of Hubel & Wiesel on more complex response 

properties of neurons in the visual cortical areas reinforced the notion that the output of 

feature detectors in earlier stages converge at successive stages of information processing to 

build a hierarchy of feature coding, ultimately leading to what Konorski called “gnostic 

units” and Lettvin called “grandmother cells” (see 10).

Despite these successes, the feature detector approach has been met with two general 

challenges. First, feature coding encourages the experimenter to narrow the presented events 

to the simplest one that evokes a robust neural response, and to ignore how neurons might 

respond to the more complex stimuli that characterize the real world. However, the 

responses of these neurons to natural scenes is far more complex and an area of considerable 

uncertainty and current research (e.g., 12–14).

Second, identification of feature detector properties in higher cortical areas has had mixed 

success. Thus, neurons in the inferotemporal cortex (10), the prefrontal cortex (see 14), and 

the hippocampus (15, 16) have a breadth and flexibility of tuning that challenge the idea of 

feature detection by neurons in the very areas we most associate with the ultimate stages of 

perceptual, cognitive, and memory processing.

Cell assemblies as units of representation

The limitations of the feature detector hypothesis suggest that, under naturalistic conditions, 

neurons may not have a single target feature but may instead exhibit graded or nonlinear 

selectivity to multiple variations of a feature, multiple features within a domain, and even 

multiple domains of features. The theme that incorporates these qualities began with Hebb’s 

(3) notion of the cell assembly as a network of connected neurons that represent the 

composite features of a concept or event. Early on the cell assembly idea served primarily as 

a conceptual tool, but with the advent of techniques for simultaneous recording of a 
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population of neighboring neurons that might compose a subset of a cell assembly, has 

received greater attention in experimental studies that reveal multidimensional 

representations of events from a combination of distributed responses, co-dependencies, and 

dynamic interactions (17).

It is important to note that a cell assembly is theoretical entity of a functionally 

interconnected network whereas population coding is derived from an analysis of conjoint 

activity of many neighboring neurons recorded in simultaneously or under identical 

conditions across recordings. A population code may well include neurons from different 

functional cell assemblies, potentially leading to confusing or misleading interpretations. 

Nevertheless, ensembles of neighboring neurons are largely interconnected and population 

analyses have yielded emergent characteristics that may be generated at the level of cell 

assemblies (6). Here I will focus on selected studies that have explored population coding in 

the three high order areas introduced above, the inferotemporal cortex, the prefrontal cortex, 

and the hippocampus in studies that monitor neural responses to a variety of events that 

include multiple dimensions and different cognitive demands.

Inferotemporal cortex

The inferior temporal (IT) cortex is well recognized as the final stage of purely visual 

processing where neurons are maximally driven by highly specific complex visual stimuli, 

including faces, and have become tempting exemplars of “grandmother cells” (e.g., 18,19). 

However, the same neurons typically also respond to diverse stimuli, suggesting that the 

high specificity with which we identify particular objects is derived only at the population 

level. Using a multidimensional scaling and principal components approaches, studies have 

shown that IT neuronal ensembles can identify individuals and relate them to one another 

(20), distinguish human identity and monkey facial expressions (21), and categorize objects 

(22).

A further study on categorization of natural object stimuli by IT populations revealed that IT 

cell assemblies distinguish intuitive object categories, including faces, hands, bodies, from 

inanimate objects, and an agglomerative hierarchical clustering analysis of response 

similarities revealed the higher order organization of these representations (23; Figure 1A). 

Furthermore, a direct comparison of these neural population responses with those from 

pseudo-population responses composed of high-resolution fMRI mutli-pixel patterns 

generated when humans viewed largely the same set of object stimuli revealed a highly 

similar pattern of organization of the representation of object categories (25), and further 

analysis of multivoxel patterns revealed a categorization of animals that paralleled the 

prototypical phylogenetic hierarchy (24). These observations show that cell assemblies can 

both identify specific events and organize knowledge about related events within a 

meaningful cognitive domain (see also 26,27).

Prefrontal cortex

The prefrontal cortex (PFC) is generally thought to play an essential role in “executive 

function” via the control over many aspects of cognition, including strategy selection, 
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working memory, decision making, and perception (28), and PFC performs its role via rapid 

formation of rule-based representations (14,29). This general function may be supported by 

adaptively mapping any task space onto a cell assembly that links current stimuli with 

specific goals to generate decisions and actions directed at specific outcomes and dynamics 

by which firing patterns change when rules and contingencies are altered (14, 30–40).

These properties of PFC neurons seem incompatible with the idea that they could be 

dedicated to coding single features of specific stimuli or behavioral events. Instead, new 

analyses reveal that these coding properties emerge primarily or exclusively in population 

coding (41). For example, one study focused on the activity patterns of PFC neurons in 

monkeys performing different tasks that demanded they remember their identity and order of 

presentation (42). Single neurons showed complex patterns of responses that typically 

reflected multiple dimensions of the tasks including stimulus identity, study or test phase of 

a trial, and recognition or recall memory demands. The firing patterns of single neurons did 

not reflect a simple linear summation of responses to specific dimensions but rather coded 

by mixed selectivity, and population analyses predicted accurate performance on the tasks 

much better than coding by single neurons.

Another study analyzed population activity of neurons in the orbitofrontal cortex (OFC) of 

rats performing a task where they learned opposite reward associations of the same objects 

depending on which of two spatial contexts in which the objects were presented (43). As 

observed in the dorsolateral PFC of monkeys, single neurons in the rodent OFC also showed 

nonlinear mixed selectivity that involved multiple task dimensions. Many of these OFC 

neurons distinguished combinations of objects and the context in which they were sampled 

that composed a common reward value of these events. Population analyses using the same 

similarity measures employed in the above described experiments on IT in monkeys and 

humans revealed distinct organizations that separated events differing in reward association 

and a systematic organization of the representations of objects in the contexts and positions 

where they occurred (Figure 1B). This hierarchical coding scheme is consistent with a 

mapping of contextual cues and specific stimuli to behavioral responses and associated 

reward values (30). Notably, the population code evolved during the course of a trial to 

sequentially represent the spatial context of the trial, then the position of an object to be 

sampled, then object identity and reward value. Combining the findings across these studies, 

despite major differences in the connections, architectures, and specific functions assigned to 

different PFC areas and species, there is remarkable convergence both in the generality of 

high dimensional coding and the adaptability of PFC networks revealed by population 

analyses.

Hippocampus

Many studies have reported that the firing patterns of neurons in the hippocampus and 

adjacent areas encode the location of an animal in allocentric space and other spatial 

features, including head direction, borders, and speed (15,44,45). Many view these cell types 

as the building blocks of spatial cognition, much as the visual feature detectors are viewed as 

building blocks for visual perception (15,45).

Eichenbaum Page 4

Neurosci Lett. Author manuscript; available in PMC 2019 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



On the other hand, in more complex behavioral tasks, hippocampal neurons adapt to diverse 

dimensions of experience. For example, when environmental features are changed, 

hippocampal place cell populations partially “remap”, thus are mixed in selectivity for some 

features of the original environment combined with coding of new features (reviewed in 16). 

In a classical eye-blink conditioning paradigm where animals are restrained, hippocampal 

neurons are tuned to the profile of the conditioned response (46). In other studies where 

space is held constant and specific task demands are applied, hippocampal neurons can map 

a perceptual “space” (47) or a sequence of moments in a fixed temporal period (48,49,50). 

These findings indicate that hippocampal neurons adapt to represent relevant dimensions of 

a broad range of experiences.

Furthermore, in many situations hippocampal neurons show mixed selectivity for multiple 

dimensions of experience in addition to spatial position. For example, when animals run in 

opposite directions on a track, hippocampal neuronal activity is strongly modulated by 

direction of movement (51,52). In several complex behavioral tasks, hippocampal neuronal 

responses can be strongly dependent on categorical dimensions including specific objects 

and various associative and reward contingencies (53,54). Thus, as observed in PFC 

neurons, hippocampal neurons exhibit strong nonlinear high-dimensional coding.

An early approach to describing the population activity of hippocampal neurons focused on 

recordings hippocampal neuronal ensembles as rats performed a spatial delayed non-match 

to sample task (55). Individual neurons fired associated with combinations of spatial 

location, sample or test epoch, and match and non-match responses, and different nonlinear 

responses were observed to various combinations of these dimensions. A discriminant 

analysis revealed significant canonical roots for each of the critical task events (see also 

56,57).

More recently, Mckenzie et al. (58) recorded CA1 and CA3 neuronal ensembles in rats 

performing the context-guided memory task introduced above with regard to OFC neuronal 

population coding, and the firing patterns of hippocampal neuronal populations were 

analyzed using the same similarity analysis as described above for OFC. By contrast to the 

findings on OFC, in the hippocampus, events that occurred in different contexts are widely 

separated in representational space by anti-correlated population activities (Figure 1C). 

Within each context-based network representation, hippocampal populations separated 

events by the positions where they occurred in each context, then events were separated 

according to the associated reward outcome, and finally events were separated by object 

identity. Also, the hippocampal population representation evolved during the course of each 

trial, such that, initially the code represented the spatial context of the trial, then the position 

of the object to be sampled, then the object identity, and finally the reward association (see 

also 59,60).

Additional studies on the closely associated areas of the lateral entorhinal cortex (LEC) and 

medial entorhinal cortex (MEC) offer further insights into the nature of population coding 

within the hippocampal system (61). It is generally accepted that the LEC is specialized for 

processing information about objects and events and the MEC is specialized for processing 

spatial information. However, contrary to this view, in animals performing a task that 
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associates objects with the places they are rewarded, single neurons in LEC and MEC 

(including grid and border cells of MEC), demonstrate strong nonlinear high-dimensional 

selectivity for object and spatial dimensions of the task. Nevertheless, population analyses 

revealed a key distinction in the organization of information in these areas. As in the 

hippocampus, at the top of the hierarchy population representations of events that occur in 

different contexts are anti-correlated in both LEC and MEC. However, within each context-

based network, LEC populations next distinguish events by the object involved, and within 

each object category, the positions where the objects occur are separated. In striking 

contrast, MEC populations next distinguish positions within each context, and separate 

object representations within each position category. Thus, although LEC and MEC exhibit 

similarity in mixed selectivity at the single neuron level, the population analysis reveals that 

information is organized in distinct but complementary ways in each area. Given that these 

hippocampal and entorhinal areas are highly interconnected, it is reasonable to expect that 

neural activity in all of these areas incorporate the same set of dimensions. These findings 

suggest that the key distinction between the areas is how cell assemblies organize the 

information more so than which dimensions are included.

Finally, it is important to acknowledge that the analyses described here assume that the task 

dimensions are hierarchically organized, and other approaches based on different 

assumptions could yield alternative organizational patterns. Nevertheless, the observations 

described here illustrate the potential for population analyses in discovery of al properties of 

population coding that go beyond the properties identified in single neuron analyses.

When are feature detectors sufficient, and when should we turn to cell 

assemblies?

This brief and selective survey of research on population coding suggests three basic 

properties of cell assembly representations that emerge only at the population level. First, 

individual neurons in cell assemblies exhibit graded or nonlinear responses to multiple 

closely related events. Second, individual elements of cell assemblies exhibit mixed 

selectivity for distinct dimensions within and across domains of information and are 

adaptable in their representations to task structure and cognitive demands. Third, population 

analyses reveal the organization of information in cell assemblies, both with respect to the 

structure of knowledge within the cell assembly and with respect to the temporal sequence 

of the dimensions represented.

Population analyses on IT networks have revealed that object identification is accomplished 

by large cell assemblies composed of graded tuning curves of individual neurons. The cell 

assembly perspective becomes essential to revealing how large neural populations can sort 

object stimuli into meaningful categories and knowledge organizations, the very stuff of 

visual cognition we seek to understand.

In many studies on primates and rodents, prefrontal neurons are activated during cognitive 

performance, but no specific consistent features of cognition have been assigned to the 

response profiles of single prefrontal neurons. Rather, the response patterns of single PFC 

neurons are characterized as bound to multiple task features by nonlinear mixed selectivity 
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that is adapted to a very broad range of cognitive demands in virtually any ongoing task, and 

analyses of prefrontal neural populations offer insights into the nature and organization of 

task features by cell assemblies in this area.

Finally, when animals are performing complex learning tasks that are viewed as supported 

by the hippocampal system, hippocampal neurons take on characteristics of elements within 

cell assemblies. They exhibit nonlinear tuning to multiple task dimensions and the most 

comprehensive understanding of the contribution of hippocampal networks comes from 

population analyses that highlight both the adaptability of hippocampal networks and their 

capacity to link distinct events into an organization by task dimensions.

What is the take home message from these observations? In the 1950s when the primary tool 

of neurophysiologists was the single sharp electrode and experiments focused on early 

sensory processing, the field was dominated by search for unidimensional features that could 

be coded in single neurons. This work still proceeds and is, of course, a model for studying 

circuit properties that underlie sensory driven responses. However, as the stimuli become 

complex (e.g., visual scenes), the explanatory power of feature detection diminishes, even at 

early stages of sensory processing.

Early approaches to cell assemblies involved theoretical analyses using artificial neural 

networks to examine distributed codes and complex, non-linear “hidden” representations 

(e.g., 61,62). With the advent of methods for recording large numbers of neurons 

simultaneously, the ability to explore neural network activity became a reality and, as the 

experimental focus turned to behavior and cognition, the notion of the cell assembly is 

reaching maturity. This perspective forces us to re-think not only how neural networks 

within brain areas represent information and to think about how anatomically separated but 

interconnected networks interact within functional systems. Given the high interconnectivity 

of high order brain areas, it may have been simplistic to expect individual neurons to code 

just one feature of experience, and to be fixed to one domain of information. The new 

directions in cell assembly analyses are pointing to how multiple dimensions and domains of 

information can be incorporated and organized in areas that support behavior and cognition.
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Highlights

In higher order areas and complex tasks, neurons exhibit mixed selectivity and 

dependence on cognitive demands

• These properties are observed in inferotemporal cortex, prefrontal cortex, and 

the hippocampus

• New population analyses reveal how cell assemblies in these brain areas 

organize task relevant knowledge
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Figure 1. 
Hierarchical organization of knowledge in different brain areas: A. for visual object 

catagories in the inferotemporal cortex of monkeys (23), B. for reward outcomes, objects, 

their positions, and even versus odd numbered trials in orbitofrontal cortex in rats (43), and 

C. for contexts, positions, reward outcomes, and object identities in the dorsal hippocampus 

(56).
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