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imaging, genotyped and imputed to 1000 Genomes. Stage 2 
used self-reported fibroid and GWAS data from 23andMe, 
Inc. and the Black Women’s Health Study. Associations 
with fibroid risk were modeled using logistic regression 
adjusted for principal components, followed by meta-
analysis of results. We observed a significant association 
among 3399 AA cases and 4764 AA controls at rs739187 
(risk-allele frequency = 0.27) in CYTH4 (OR (95% confi-
dence interval) = 1.23 (1.16–1.30), p value = 7.82 × 10−9). 
Evaluation of the genetic association results with MetaX-
can identified lower predicted gene expression of CYTH4 in 
thyroid tissue as significantly associated with fibroid risk 
(p value = 5.86 × 10−8). In this first multi-stage GWAS for 
fibroids among AA women, we identified a novel risk locus 

Abstract  Uterine fibroids are benign tumors of the uterus 
affecting up to 77% of women by menopause. They are the 
leading indication for hysterectomy, and account for $34 bil-
lion annually in the United States. Race/ethnicity and age are 
the strongest known risk factors. African American (AA) 
women have higher prevalence, earlier onset, and larger and 
more numerous fibroids than European American women. 
We conducted a multi-stage genome-wide association study 
(GWAS) of fibroid risk among AA women followed by in 
silico genetically predicted gene expression profiling of top 
hits. In Stage 1, cases and controls were confirmed by pelvic 
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for fibroids within CYTH4 that impacts gene expression in 
thyroid and has potential biological relevance for fibroids.

Introduction

Uterine fibroids or leiomyomata are common, benign tumors 
of the uterus with an estimated lifetime risk of 77% by 
menopause (Baird et al. 2003). African Americans (AA) 
are more likely to have fibroids than women of European 
ancestry (EA), with AA having greater than 80% incidence 
of fibroids by menopause compared to nearly 70% for EA 
(Baird et al. 2003). AA women also have larger and more 
numerous fibroids as well as a younger age-of-onset on aver-
age (Baird et al. 2003). In addition to race/ethnicity (Baird 
et al. 2003; Faerstein et al. 2001; Marshall et al. 1997), there 
are other well-characterized risk factors for fibroids, includ-
ing early age at menarche (Baird and Dunson 2003; Cha 
et al. 2011; Faerstein et al. 2001; Luoto et al. 2000; Moore 
et al. 2008), being overweight (BMI 25–29 kg/m2) (Baird 
et al. 2007; Moore et al. 2008; Terry et al. 2007; Wise et al. 
2005a), and older premenopausal age (Baird et al. 2003; 
Moore et al. 2008). In addition, higher parity is associated 
with reduced fibroid risk, likely due to pregnancy-related 
hormonal and uterine changes (Baird and Dunson 2003). 
Symptoms of uterine fibroids may include pelvic pain and 
abnormal or heavy menses, though many fibroids are asymp-
tomatic (Baird et al. 2003; Borah et al. 2013; Vollenhoven 
1998). The lack of overt symptoms makes imaging cru-
cial for classification of case/control status, as up to 51% 
of women may be misclassified by self-report (Baird et al. 
2003; Myers et al. 2012). We have developed and validated a 
phenotyping algorithm to classify fibroid case/control status 
using electronic health records (Feingold-Link et al. 2014). 
This algorithm requires pelvic imaging for identification of 
cases and controls, which reduces misclassification of both 
cases and controls.

Several lines of evidence suggest genetic risk factors 
influence fibroid development. Estimates of the heritability 
of fibroids from familial aggregation and twin studies range 
from 26 to 69% in European populations (Luoto et al. 2000). 
Racial disparities in age at onset, number, size, and lifetime 

incidence of fibroids by menopause (Baird et al. 2003) also 
strongly support a role for genetic factors. There has been 
one published genome-wide association study (GWAS) of 
uterine fibroids, which was performed among Japanese sub-
jects (Cha et al. 2011). Genome-wide linkage and follow-up 
association studies in a meta-analysis of EA women impli-
cated an additional locus for risk of fibroid diagnosis (Egg-
ert et al. 2012). The loci implicated in these previous stud-
ies (SLK, BET1, TNRC6B, and FASN/CCDC57) have been 
replicated among EAs (Aissani et al. 2015a; Edwards et al. 
2013b), which have been evaluated but failed to replicate in 
AAs (Aissani et al. 2015b; Wise et al. 2012). The predomi-
nant studies conducted among AA subjects have involved 
admixture mapping, which has shown significant regions of 
increased African ancestry in cases, particularly at 1q42.2 
(Zhang et al. 2015), 4p16, and 10q26 (Wise et al. 2012). 
The aim of this work was to perform the first GWAS for 
fibroids risk among AA women using image-verified fibroids 
for discovery, with replication in cohorts that collected data 
on self-reported fibroids.

Methods

Study populations

Individuals with imaging-confirmed uterine fibroids and 
genome-wide genotype data were included from the follow-
ing studies in Stage 1: Vanderbilt University BioVU, Mt 
Sinai, BioME and the Coronary Artery Risk Development 
in Young Adults (CARDIA) Women’s Study (CARDIA-
WS) for a total of 1273 cases and 1379 controls. All studies 
received Institutional Review Board approval at their respec-
tive institutions and written informed consent was obtained 
for all participants.

BioVU is an electronic health record (EHR) bioreposi-
tory at Vanderbilt University Medical Center, Nashville, 
TN and was designed to link clinical data available from 
de-identified EHRs to DNA specimens. Methods have been 
previously described (Pulley et al. 2010). BioME is the 
ongoing, consented EHR-linked biobank at the Institute for 
Personalized Medicine at the Icahn School of Medicine at 
Mt. Sinai. A subset of the available BioME samples were 
genotyped as part of the Electronic Medical Records and 
Genetics (eMERGE) Network and are referred to in this 
instance as Mt. Sinai, while genotyped samples acquired 
through other means were analyzed separately and will be 
henceforth referred to as BioME. The phenotyping algo-
rithms used to identify cases and controls in BioVU, Mt. 
Sinai, and BioME have been previously published (Fein-
gold-Link et al. 2014). Briefly, the phenotyping algorithm 
required at least one instance of pelvic imaging with a diag-
nosis code for fibroids to define cases among women aged 
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18 and over. For controls, at least two instances of pelvic 
imaging were required, on different dates, with no diagnosis 
or procedure codes indicating a fibroid, fibroid treatment, or 
hysterectomy. The CARDIA study is a prospective multi-
center study with 5115 adult European ancestry and AA 
participants of the age group 18 to 30 years, recruited from 
four centers. Details of the CARDIA study design have been 
previously published (Friedman et al. 1988). The CARDIA 
Women’s Study performed standardized study ultrasounds 
on women from CARDIA to detect the presence or absence 
of fibroids, as previously described (Wellons et al. 2008).

Stage 2 data were provided by the direct-to-consumer 
genetic testing company 23andMe, which used a survey for 
determining case or control status. Specifically, cases were 
defined as females responding positively to either of the 
following questions: “Has a doctor ever told you that you 
have uterine fibroids?”, or “Have you ever been diagnosed 
with uterine fibroids?”. Controls were defined as females 
responding with a ‘no’ to either of the questions above. Age 
at enrollment with 23andMe was also collected (mean ages 
of 56 in cases and 47 in controls).

In addition, in Stage 2, GWAS samples were provided 
by the Black Women’s Health Study (BWHS), a U.S. pro-
spective cohort study of premenopausal women (aged 
22–50 years) in which uterine fibroid diagnoses were ascer-
tained by self-report, with medical record validation among 
a subset of cases (Wise et al. 2004, 2005b). BWHS par-
ticipants reported whether they had been diagnosed with 

fibroids on the follow-up questionnaires every 2 years 
(1997–2009). The women reported the calendar year of their 
first diagnosis, and whether the diagnosis was confirmed by 
ultrasound or surgery. Controls were premenopausal women 
who reported no diagnosis of fibroids through 2009. Among 
those who released their medical records, 96% of self-
reported fibroid cases were confirmed (Wise et al. 2005b). 
The study workflow is diagrammed in Fig. 1.

Genotyping

BioVU samples were genotyped using both the Affymetrix 
BioBank array and the Axiom World array 2 (Affymetrix 
Inc., Santa Clara, CA, USA) to attain better coverage for 
African-derived variants. BioME and the Mt. Sinai eMERGE 
site used the Illumina 1 M (Illumina Inc., San Diego, CA, 
USA) platform, with an exome chip backbone included for 
BioME samples. CARDIA-WS was genotyped on the Affy-
metrix 6.0 array (Affymetrix Inc., Santa Clara, CA, USA) 
as part of the Candidate-gene Association Resource which 
has been previously described in detail (Lettre et al. 2011).

The Stage 2 23andMe samples (1744 cases and 2906 
controls) were genotyped on a custom GWAS panel across 
four versions. Stage 2 participants from BWHS (382 cases 
and 392 controls) were genotyped on the Illumina Infinium 
Expanded Multi-Ethnic Genotyping Array (MEGA; Illu-
mina, Inc., San Diego, CA, USA) at Vanderbilt University 
VANTAGE Core Genotyping facility.

Fig. 1   Study workflow diagram
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Quality control

Genotype quality control was performed within each study 
population, and a uniform protocol was implemented for all 
Stage 1 studies using PLINK (Purcell et al. 2007), includ-
ing a 95% SNP and individual call rate threshold, removal 
of first-degree related individuals, sex checks, alignment of 
alleles to the genomic ‘+’ strand, and visualization of ances-
try by principal components analysis using the Eigenstrat 
software (Price et al. 2006). No samples were excluded from 
analyses based on principal components.

For 23andMe in Stage 2, SNPs with Hardy–Weinberg 
equilibrium p value <10−20 were excluded, as were those 
with call rate <95%, or with large allele frequency discrep-
ancies compared to European 1000 Genomes reference 
data. For BWHS in Stage 2, genotype quality control was 
also performed in PLINK and consisted of 95% SNP and 
90% individual call rate thresholds, removal of first-degree 
related individuals, sex checks, alignment of alleles to the 
genomic ‘+’ strand, and visualization of ancestry by princi-
pal components analysis using the Eigenstrat software (Price 
et al. 2006). No samples were excluded from analyses based 
on principal components.

Statistical analysis

All demographic data were summarized and evaluated with 
Stata 14.0 (College Station, TX, USA).

The Stage 1 data were imputed to the 1000 Genomes 
phase 3 reference panel using SHAPEIT2 (Delaneau et al. 
2012) for haplotype phasing and IMPUTE2 (Duan et al. 
2013) for genotype imputation, with phasing and imputa-
tion performed separately for each data set. SNPTEST2 
(Marchini et al. 2007) was used to perform single-variant 
association analyses for each cohort independently. Analyses 
were adjusted for the first five principal components in each 
sample to account for population substructure (Supplemental 
Fig. 1). Additional analysis adjusting for age was also per-
formed, as was an analysis to avoid misclassification errors 
by restricting controls to peri-menopausal women (age ≥45) 
to remove women who were at increased risk of developing 
fibroids.

The Stage 2 data from 23andMe were imputed to the 
March 2012 “v3” release of 1000 Genomes reference hap-
lotypes. Phasing and imputation were performed for each 
genotyping platform version separately, using Beagle4 (ver-
sion 3.3.1) to phase batches of 8000–9000 individuals across 
chromosomal segments of no more than 10,000 genotyped 
single nucleotide polymorphisms (SNPs), with overlaps of 
200 SNPs, and a high-performance version of Minimac5 
for imputation of each phased segment against all-ethnicity 
1000 Genomes haplotypes, using five rounds and 200 states 
for parameter estimation. Logistic regression was modeled 

using an additive genetic model adjusting for age and five 
principal components, reporting likelihood ratio test p values 
for association with genotypes.

Stage 2 also utilized 776 samples from BWHS which 
were imputed to the 1000 Genomes phase 3 reference panel 
using SHAPEIT2 (Delaneau et al. 2012) for haplotype phas-
ing and IMPUTE2 (Duan et al. 2013) for genotype impu-
tation, with phasing and imputation performed separately 
for each data set. SNPTEST2 (Marchini et al. 2007) was 
used to perform single-variant association analyses. Asso-
ciation analysis was performed using logistic regression of 
the imputed genotype data. Analyses were adjusted for ten 
principal components.

All association results for Stage 1 and across Stages 1–2 
were meta-analyzed using fixed effects inverse-variance 
weighted meta-analysis in METAL (Willer et al. 2010). 
The final meta-analysis of all variants including all stages 
consisted of 3399 cases and 4764 controls.

To further evaluate the genetic association results in the 
context of gene expression, we employed the novel method 
MetaXcan (Barbeira et al. 2016), an extension of the Pre-
diXcan method (Gamazon et al. 2015). PrediXcan conducts 
a test of association between phenotypes and gene expres-
sion levels predicted by genetic variants in a library of tis-
sues from the Genotype-Tissue Expression (GTEx) project 
(2015; Carithers et al. 2015; Mele et al. 2015). MetaXcan is 
a meta-analysis approach that conducts the PrediXcan test 
using genotype association summary statistics, rather than 
performing the tests in individual-level data. For the pur-
poses of this study, we utilized covariance matrices built for 
nine relevant tissues from GTEx (i.e., uterus, ovary, breast, 
vagina, subcutaneous adipose, visceral omentum adipose, 
thyroid, whole blood, and transformed fibroblasts) to anno-
tate SNP association signals as well as to provide informa-
tion about likely tissue expression patterns and relevant 
biological information.

Results

We used our previously validated EHR algorithm to define 
999 image-confirmed cases and 1233 image-confirmed 
controls for fibroids from BioVU and Mt. Sinai (including 
the Mt. Sinai eMERGE subset as well as other cases and 
controls from the remainder of the BioME resource) sites. 
We also included additional samples from the CARDIA 
Women’s Study, which incorporated a standardized research 
ultrasound, for a total of 1273 case and 1379 control samples 
for analysis in Stage 1 discovery analyses (Fig. 1). Descrip-
tive characteristics of each study are presented in Table 1. 
Briefly, cases and controls were of similar ages within each 
individual study in Stage 1 (no more than 4 year difference 
in means), though the Mt. Sinai sample was substantially 
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older on average than the other three studies. However, com-
paring ages across studies is challenging due to the differing 
study designs (case–control vs. cohort) and incident periods.

All data sets were genotyped on study-specific genome-
wide genotyping arrays, imputed to the 1000 Genomes ref-
erence panel, and analyzed for association with fibroids, 
adjusting for principal components of ancestry (Supple-
mental Table 1). Meta-analysis of both Stages (3399 cases 
and 4764 controls) revealed a single genome-wide signifi-
cant locus near CYTH4 (cytohesin 4) on chromosome 22 
(Table 2; bottom panel of Fig. 2). The lead SNP at this locus, 
rs739187 [p value = 7.82 × 10−9, OR [95% confidence 

interval (CI)] = 1.23 (1.16–1.30)] had low heterogeneity 
across cohorts. 

To further evaluate the genetic association results in the 
context of gene expression, we employed the novel method 
MetaXcan which conducts a test of association between 
phenotypes and gene expression levels predicted by genetic 
variants in a library of tissues from the GTEx project (GTEx 
Consortium et al. 2015; Carithers et al. 2015; Mele et al. 
2015). Analysis with MetaXcan to evaluate association 
with genetically predicted gene expression (GPGE) levels 
resulted in 1542 results across 9 GTEx tissues with p value 
<0.05, from a total of 44,577 comparisons (Table 3; upper 

Table 1   Demographic 
characteristics of study 
populations

a Age at diagnosis unless otherwise specified
b Age at enrollment
c Age at CARDIA-WS standardized study ultrasound

Study Cases (N) Controls (N) Genotyping platform Agea 
Mean (SD)
Cases

Ageb 
Mean (SD)
Controls

BioVU AA 578 804 Affymetrix Biobank 
Array and World 
Array 3

40 (11) 41 (15)

Mt Sinai (eMERGE) 74 78 Illumina Omni 1M 59 (10) 63 (12)
BioME 347 351 Illumina Omni 1M 48 (10) 45 (16)
CARDIA-WS 274 146 Affymetrix 6.0 40 (4)c 39 (4)
Total Stage 1 1273 1379
23andMe 1744 2903 Custom Array 56 (12)b 47 (15)
BWHS 382 392 Illumina MEGA 36 (6) 32 (6)
Total Stage 2 2126 3295
Total Stage 1 + 2 3399 4764

Table 2   Summary of genome-wide significant and suggestive (<5 × 10−7) associations in GWAS meta-analysis

Boldface indicates genome-wide significant p values
a Chromosome
b Effect allele/reference allele
c Effect allele frequency
d Odds ratio per additional effect allele (95% confidence interval)

Chr.a Position Nearest gene SNP EA/RAb EAFc Stage 1 + 2 (N = 3399/4764)

OR (95% CI)d P value Direction Phet I2

22 37,728,254 CYTH4 rs739187 T/C 0.27 1.23 (1.16–1.30) 7.83E−09 ++++++ 0.24 26.0
22 37,722,301 CYTH4 rs4821628 A/G 0.75 0.81 (0.74–0.88) 8.86E−09 −−−−−− 0.22 29.0
22 37,726,660 CYTH4 rs713939 T/C 0.28 1.22 (1.15–1.29) 1.37E−08 ++++++ 0.30 17.8
22 37,719,004 CYTH4 rs5995416 T/C 0.29 1.21 (1.14–1.28) 3.44E−08 ++++++ 0.40 1.3
22 37,717,946 CYTH4 rs4821627 T/C 0.29 1.21 (1.14–1.27) 5.86E−08 ++++++ 0.33 13.1
3 5,348,595 EDEM1 rs55768811 A/T 0.91 0.76 (0.66–0.87) 2.62E−07 −−−−−− 0.72 0
8 75,119,342 JPH1 rs6472827 T/C 0.07 0.76 (0.65–0.86) 3.89E−07 −−−−−− 0.99 0
3 5,346,825 EDEM1 rs6804817 T/G 0.09 1.31 (1.20–1.41) 4.18E−07 ++++++ 0.64 0
3 5,348,095 EDEM1 rs62255982 T/C 0.09 1.31 (1.21–1.42) 4.39E−07 ++++++ 0.70 0
22 37,736,406 CYTH4 rs34377599 G/GC 0.70 0.78 (0.69–0.88) 4.62E−07 −−−?−− 0.54 0
8 4,441,780 CSMD1 rs11987640 C/G 0.20 0.81 (0.73–0.89) 4.85E−07 ?−−−++ 0.01 68.8
8 4,441,757 CSMD1 rs11987636 A/G 0.20 0.81 (0.73–0.89) 4.94E−07 ?−−−++ 0.01 68.8
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panel of Fig. 2). Examination of the locus implicated by the 
most significant genetic result, CYTH4, revealed a signifi-
cant association with reduced GPGE at that gene in thyroid 
tissue (p value = 5.86 × 10−8). A striking result from this 
analysis was association between zinc finger protein 391 
(ZNF391) GPGE in eight of the nine tissues and uterine 
fibroid risk (smallest p value = 5.05 × 10−5 in breast tissue).

Discussion

In this first multi-stage GWAS of uterine fibroids among 
AA women, we found a genome-wide significant result with 
linkage disequilibrium support on chromosome 22 near the 
CYTH4 gene (Fig. 3). Not a great deal is known about this 
gene, although variants near this locus have been previously 
suggestively associated with methotrexate response in juve-
nile idiopathic arthritis (Cobb et al. 2014), and a primate-
specific repeat in the promoter of CYTH4 has been linked 
to bipolar disorder (Rezazadeh et al. 2015). CYTH4 is most 
highly expressed in whole blood and spleen based on obser-
vations in GTEx and only expressed at low levels in all other 
measured tissues. CYTH4 expression has also been observed 
to be low in myometrial tissue postpartum (Kanamarlapudi 
et al. 2012). The top signal from the GPGE analysis also 
identified predicted reduced CYTH4 in thyroid tissue as 
associated with fibroid risk, supporting a potential biological 
role for this gene. Women with fibroids have previously been 

shown to often have concurrent thyroid conditions, includ-
ing overt hypothyroidism (Ott et al. 2014), thyroid nodules 
(Kim et al. 2010; Spinos et al. 2007), and thyroid cancer 
(Braganza et al. 2014; Makaridze and Mardaleishvili 2011). 
In addition, expression of genes related to fibroids (HMGA2 
and PLAG1) was found to be correlated between fibroid and 
thyroid tumors (Klemke et al. 2014), which may provide an 
explanation for the observations in this study.

We also observed suggestive evidence of association 
(p ≤ 5 × 10−7) at a variant between LY6D (lymphocyte 
antigen 6 family member D) and JPH1 (junctophilin 1). 
The lead SNP in this region, rs6472827, is located 25 kb 
upstream of the coding region for JPH1 on chromosome 8, 
and is a cis-eQTL in both sun exposed and non-sun exposed 
skin tissue from GTEx. However, the GPGE results impli-
cated decreased LY6D expression in breast tissue as associ-
ated with fibroid risk in the region (p value = 1.52 × 10−4). 
Increased expression of this gene has been observed in a 
variety of cancer types, including breast, compared to nor-
mal non-cancerous counterpart tissues (Luo et al. 2016).

Evaluation of the genetic association results in the con-
text of GPGE across a variety of tissues provided support-
ive evidence for the biological mechanism underlying the 
genetic data. Perhaps most striking among GPGE results 
was ZNF391, which encodes zinc finger protein 391, which 
was suggestive in eight of the nine tissues (and nominal 
in uterus, p value = 0.03). This gene has previously been 
implicated in rheumatoid arthritis (Orozco et al. 2011), 

Fig. 2   Top panel presents (as a mirror of the association results) the 
association with predicted gene expression levels from relevant tis-
sues from GTEx, also arranged by chromosome and position; bot-

tom panel presents SNP association results from meta-analysis across 
both stages in an inverted Manhattan plot format, arranged by chro-
mosome and position



1369Hum Genet (2017) 136:1363–1373	

1 3

and more interestingly, is expressed in several reproduc-
tive-related tissues in GTEx. The highest expression of 
ZNF391 is in testis and ovary, with uterine expression fall-
ing in the top third of tissues. Furthermore, a SNP in this 
gene (rs4713108) is suggestively associated with expres-
sion of ZNF391 in uterine tissue (p value = 1.1 × 10−7). 
This particular SNP was not associated with fibroid risk in 
our meta-analysis (p value = 0.08); however, there was a 
broad base of suggestive SNPs in the region with p values 
as low as 2.01 × 10−6 (Supplemental Fig. 2).

Another gene target identified through GPGE, ALDH2 
(p value = 7.30 × 10−5), encodes a mitochondrial isoform 
of alcohol dehydrogenase, which is involved in alcohol 
metabolism. Five studies have shown a consistent relation-
ship between increased alcohol consumption and fibroid 
risk (OR = 1.25–2.78) (D’Aloisio and Baird 2004; Mar-
shall et al. 1997; Nagata et al. 2009; Templeman et al. 
2009; Wise et al. 2004). Predicted decreased levels of AGT 
in thyroid tissue were also implicated as being associated 
with fibroid risk (p value = 2.49 × 10−5). AGT encodes 
angiotensinogen, which is involved in renal homeostasis, 
and given the observed link between hypertension and 

fibroids, may support a plausible biological connection 
between the two.

Previous GWAS for fibroids in Japanese subjects 
has implicated variants near the BET1L, TNRC6B, and 
OBFC1–SLK genes (Cha et al. 2011). We did not observe 
suggestive associations in our AA subjects at the prior 
GWAS-associated SNPs near BET1L and OBFC1-SLK 
which were reported by Cha et al. (Supplemental Figs. 3–8). 
The best result at these loci was near TNRC6B (rs59426214; 
p value = 2.42 × 10−5; Supplemental Fig. 3), although this 
variant was not in LD with the index SNP (rs12484776) 
detected by Cha et al. This lack of strong association is 
largely consistent with prior published studies that have 
attempted to replicate the associations within cohorts of 
African ancestry.

A potential consideration of this study was that the 
Stage 2 studies relied upon self-reported fibroids informa-
tion, which is known to be subject to misclassification bias. 
However, the top result at CYTH4 was suggestive in the 
imaged Stage 1 analysis with a p value of 6.46 × 10−7, and 
effect sizes were consistent between Stages 1 and 2. Addi-
tional points to consider are that the control group was not 

Table 3   Genetically predicted 
gene expression results from 
GWAS summary statistics

Boldface highlights suggestive predicted ZNF391 expression across multiple tissues
*  represents genes which localize to top GWAS signals (Table 2)
a Performance prediction R2

b Variance of the gene’s predicted expression, calculated as W′ × G × W (where W is the vector of SNP 
weights in a gene’s model, W′ is its transpose, and G is the covariance matrix)
c Number of SNPs included in the prediction model for that gene available in the summary statistics
d Number of SNPs used to construct the prediction model for the gene in the tissue of interest using the 
GTEx data

Tissue Gene Chr Z score P value R2a Varianceb N SNPsc Model Nd

Thyroid CYTH4* 22 −5.42 5.86E−08 0.030 0.0003 1 17
Breast ZNF391 6 4.40 1.07E−05 0.157 0.008 6 17
Thyroid AGT 1 −4.22 2.49E−05 0.010 0.005 6 50
Whole blood SLC26A8 6 4.08 4.43E−05 0.046 0.001 4 14
Fibroblasts ZNF391 6 4.04 5.34E−05 0.519 0.123 34 77
Ovary ZNF391 6 3.97 7.17E−05 0.315 0.110 14 26
Whole blood ALDH2 12 3.97 7.30E−05 0.008 0.002 8 42
Breast LY6D* 8 −3.79 1.52E−04 0.046 0.001 6 35
Fibroblasts MOB3A 19 3.77 1.62E−04 0.008 0.0002 2 11
Subcutaneous adipose GLIS1 1 −3.75 1.75E−04 0.034 0.0002 2 6
Whole blood ZNF391 6 3.70 2.13E−04 0.103 0.001 12 32
Subcutaneous adipose ZNF391 6 3.69 2.20E−04 0.225 0.038 6 33
Fibroblasts FAM174A 5 −3.66 2.51E−04 0.040 0.004 8 48
Vagina ZNF391 6 3.65 2.63E−04 0.193 0.037 23 39
Breast OAZ1 19 3.61 3.11E−04 0.019 0.013 11 42
Thyroid ZNF391 6 3.57 3.60E−04 0.317 0.023 26 57
Thyroid RAB30 11 3.53 4.21E−04 0.062 0.047 33 89
Vagina UCKL1 20 3.53 4.22E−04 0.100 0.123 24 113
Whole blood TMEM91 19 3.52 4.28E−04 0.180 0.0009 2 10
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restricted to women beyond menopause, when they would 
have a negligible likelihood of developing new fibroids. We 
did explore this as a secondary analysis in the studies from 
Stage 1, albeit with reduced power due to the smaller sample 
size (data not shown). Restricting the controls to women 
peri-menopausal and younger (age <45) did not change 
the overall associations, as many of the upper tier signals 
were of similar effect size (r2 = 0.87) despite the lack of 
significance due to reduced power. In addition, adjustment 
for age in Stage 1 did not markedly alter the results seen in 
the primary analysis, with several of the top overall signals 
remaining suggestively significant (6/12 variants with p 
value <1e−4) and having consistent effect sizes (r2 = 0.96). 
Further considerations are the small numbers and heteroge-
neity among tissues included in the GTEx models. Uterus 
in particular had a very small number of tissue samples 
(N = 70), and is known to be a heterogeneous mix of spe-
cific cell/tissue types.

In conclusion, in this first multi-stage GWAS of uterine 
fibroids among AA women, we identified a novel genome-
wide significant result in CYTH4 with biological support 
from the significant GPGE showing reduced CYTH4 expres-
sion in thyroid tissue. Further studies are needed to confirm 
the SNP and target loci and elucidate the biological role of 

this gene and others identified through GWAS and GPGE 
in relation with fibroid development (Edwards et al. 2013a). 
Overall, we have identified novel genetic signals, highlight-
ing the importance of this work for understanding fibroids 
in AA women.
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