Skip to main content
. 2017 Aug 23;136(10):1363–1373. doi: 10.1007/s00439-017-1836-1

Table 3.

Genetically predicted gene expression results from GWAS summary statistics

Tissue Gene Chr Z score P value R 2a Varianceb N SNPsc Model Nd
Thyroid CYTH4* 22 −5.42 5.86E−08 0.030 0.0003 1 17
Breast ZNF391 6 4.40 1.07E−05 0.157 0.008 6 17
Thyroid AGT 1 −4.22 2.49E−05 0.010 0.005 6 50
Whole blood SLC26A8 6 4.08 4.43E−05 0.046 0.001 4 14
Fibroblasts ZNF391 6 4.04 5.34E−05 0.519 0.123 34 77
Ovary ZNF391 6 3.97 7.17E−05 0.315 0.110 14 26
Whole blood ALDH2 12 3.97 7.30E−05 0.008 0.002 8 42
Breast LY6D* 8 −3.79 1.52E−04 0.046 0.001 6 35
Fibroblasts MOB3A 19 3.77 1.62E−04 0.008 0.0002 2 11
Subcutaneous adipose GLIS1 1 −3.75 1.75E−04 0.034 0.0002 2 6
Whole blood ZNF391 6 3.70 2.13E−04 0.103 0.001 12 32
Subcutaneous adipose ZNF391 6 3.69 2.20E−04 0.225 0.038 6 33
Fibroblasts FAM174A 5 −3.66 2.51E−04 0.040 0.004 8 48
Vagina ZNF391 6 3.65 2.63E−04 0.193 0.037 23 39
Breast OAZ1 19 3.61 3.11E−04 0.019 0.013 11 42
Thyroid ZNF391 6 3.57 3.60E−04 0.317 0.023 26 57
Thyroid RAB30 11 3.53 4.21E−04 0.062 0.047 33 89
Vagina UCKL1 20 3.53 4.22E−04 0.100 0.123 24 113
Whole blood TMEM91 19 3.52 4.28E−04 0.180 0.0009 2 10

Boldface highlights suggestive predicted ZNF391 expression across multiple tissues

* represents genes which localize to top GWAS signals (Table 2)

aPerformance prediction R 2

bVariance of the gene’s predicted expression, calculated as W′ × G × W (where W is the vector of SNP weights in a gene’s model, W′ is its transpose, and G is the covariance matrix)

cNumber of SNPs included in the prediction model for that gene available in the summary statistics

dNumber of SNPs used to construct the prediction model for the gene in the tissue of interest using the GTEx data