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Quantum probability theory (QPT) has provided a
novel, rich mathematical framework for cognitive
modelling, especially for situations which appear
paradoxical from classical perspectives. This work
concerns the dynamical aspects of QPT, as relevant
to cognitive modelling. We aspire to shed light
on how the mind’s driving potentials (encoded
in Hamiltonian and Lindbladian operators) impact
the evolution of a mental state. Some existing
QPT cognitive models do employ dynamical aspects
when considering how a mental state changes
with time, but it is often the case that several
simplifying assumptions are introduced. What kind
of modelling flexibility does QPT dynamics offer
without any simplifying assumptions and is it likely
that such flexibility will be relevant in cognitive
modelling? We consider a series of nested QPT
dynamical models, constructed with a view to
accommodate results from a simple, hypothetical
experimental paradigm on decision-making. We
consider Hamiltonians more complex than the ones
which have traditionally been employed with a view
to explore the putative explanatory value of this
additional complexity. We then proceed to compare
simple models with extensions regarding both the
initial state (e.g. a mixed state with a specific
orthogonal decomposition; a general mixed state) and
the dynamics (by introducing Hamiltonians which
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destroy the separability of the initial structure and by considering an open-system extension).
We illustrate the relations between these models mathematically and numerically.

This article is part of the themed issue ‘Second quantum revolution: foundational questions’.

1. Introduction
Throughout the history of psychological research, a key objective has been to understand the
general principles which guide decision-making. Important advances have been made and today
most psychologists would agree that the principles of classical probability theory (CPT) can
characterize human decision-making in many cases [1–3]. The problem arises because, in some
cases, behaviour seems persistently at odds with the prescription of CPT. Tversky & Kahneman
are best known for initiating a highly influential empirical research programme identifying so-
called paradoxes, that is, decision results which appear paradoxical from the perspective of CPT,
but several other researchers have engaged with similar research ([4–6], see also [7–9]). Such
results have led to intense debate regarding the role of CPT in psychological theory, and also
more generally the extent to which we are justified in considering human decision-making as
rational. Tversky & Kahneman’s position has been that decision-making is best understood on
the basis of heuristics and biases (see the above references). However, an alternative approach is
to consider whether a description of behaviour with a formal probabilistic framework is possible,
but perhaps CPT is too limited to provide a comprehensive framework—either CPT needs to
be extended with additional probabilistic principles or a more general probabilistic framework
should be adopted.

Quantum probability theory (QPT) can provide such an extension. We call QPT the rules for
how to assign probabilities to events from quantum mechanics, without any of the physics. QPT
is, in principle, applicable in any situation where there is a need to quantify uncertainty. However,
whether QPT will provide a suitable descriptive framework clearly depends on whether the
structure of the situation that requires modelling is consistent with that of QPT. The paradigmatic
results that have been offered as challenging the descriptive adequacy of CPT in decision-
making (and cognition generally) involve violations of the law of total probability (Prob(X) �=
Prob(X ∧ A)+ Prob(X∧∼A)), conjunction or disjunction fallacies (e.g. Prob(A ∧ B)> Prob(A))
and order effects (e.g. Prob(A ∧ B) �= Prob(B ∧ A)). QPT is particularly suitable for accommodating
such results, because QPT is a framework for probabilistic assigning sensitive to context; changes
in context can lead to interference effects, which allow QPT to violate, for example, the law of
total probability or commutativity in conjunction. Indeed, a number of researchers have been
engaged with the exploration of QPT in psychological modelling for such situations that are
problematic for CPT [10–13]. Most of these researchers take the view that a complete picture
of decision-making requires us to invoke both CPT and QPT principles, possibly the former for
better practised, familiar situations.

QPT cognitive models have taken two forms. First, some models have involved static
representations. The modeller aims to provide a representation of the available information,
including an assumed mental state, such that the application of QPT rules leads to probabilities
consistent with the observed behaviour [10,14–19].

Second, some models have allowed dynamical change, so that, for example, the mental state
changes as a result of the available information and the evolution of the mental state (and
corresponding probabilities) are set up in a way that matches the observed behaviour [11,20–22].
The difference between static and dynamical models partly relates to modelling objectives, with
dynamical models sometimes presented as having a greater process component, whereas static
models tend to be focused on the just representation and relevant computational principles (cf.
[23,24]). The denomination ‘dynamical’ here does not intend to model any physical processes in
the brain substrate itself. Quantum-like modelling in cognition is essentially a phenomenological
approach that not only provides the kinematical evolution of states in a person’s belief space,
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but also can detail the various transfers of these probability amplitudes. The denomination
‘dynamical’ captures the fact that, in the model, the cognitive evolution is driven by parameters in
the Hamiltonian and Lindbladian operators, which should be psychologically interpretable and
of which the relative parameter amplitudes can be used to assess the importance of constituent
transfer processes.

The focus of the present work is cognitive QPT dynamical models. Notwithstanding their
descriptive success, it is typically the case that many simplifying assumptions are made when
specifying the relevant dynamical processes. How important are such simplifications and what
kind of modelling assumptions do they entail? If one is to allow QPT dynamics in their
full complexity, what is the ensuing modelling flexibility and is it likely that this flexibility
will be relevant in cognitive modelling? It is worth bearing in mind that QPT is one of the
most technically sophisticated theories developed by the human mind. As we shall see in
this work, even for simple situations, QPT dynamical systems can provide an extremely rich
structure.

2. Overview of some dynamical quantum probability theory cognitive models
In this section, we will provide a brief overview of the kind of dynamical QPT models that have
been proposed in cognitive theories. The overview is not meant to be comprehensive; rather,
it is meant to illustrate the kind of simplifications which are characteristic of all QPT cognitive
applications involving dynamics. This overview will also serve to briefly introduce the main QPT
concepts, so that some of the main ideas of the paper can remain reasonably accessible to non-
specialists, though we will not attempt a systematic introduction to all the technical concepts in
the paper (for recent tutorials, see [25,26]).

We start with the dynamical model of Pothos & Busemeyer [13] concerning the so-called
disjunction effect in the Prisoner’s Dilemma (PD) [27]. Participants were given a PD game, with
the twist that in some trials (labelled as bonus trials), the opponent’s action was communicated
prior to the participant’s action. When participants were told that the opponent was going to
cooperate (C), the probability to defect (D) was high, because that was how the payoff matrix
was arranged. Participants were also likely to D when told the opponent was going to D.
Interestingly, when participants were not given any information about the opponent’s action, the
probability to D, Prob(D), dropped. This result shows a violation of the law of total probability,
because Prob(D and unknown) �= Prob(D and C)+ Prob(D and D), where in the conjunctions the
first premise is for the participant’s action and the second is for the opponent’s (note that, for all
so-called violations of CPT principles, it is always possible to create a CPT model consistent with
any finding, as long as post hoc conditionalizations are allowed, but we are not considering such
approaches presently).

The QPT model for this disjunction effect is based on the idea that participants have some
initial representation of the probabilities of defecting or cooperating, assuming knowledge of the
opponent cooperating or defecting. This mental representation corresponds to the state vector
in QPT. Then, the information relevant to the decision (notably the different payoffs, but also a
process of cognitive dissonance) is taken into account through an assumed thought process, which
changed the mental state with time. Eventually, this dynamical evolution was stopped and the
mental state would be examined regarding the relative probabilities of defecting or cooperating.

The key ingredient in this QPT model was the Hamiltonian operator. In QPT, evolution of
a system is specified through Schrödinger’s equation, according to which ih̄(∂/∂t)|ψt〉 =H|ψt〉,
where H denotes the Hamiltonian operator and |ψt〉 is the state vector, a vector in
multidimensional complex vector space (with some additional convergence properties) called
Hilbert space, which embodies all the information that is possible to learn about the state
vector. More precisely, C

n provided with a dot product is a finite-dimensional Hilbert space.
The Hamiltonian operator is a Hermitian operator (an operator is Hermitian if it is equal to the
complex conjugate of its transpose). The constant h̄ is a scaling constant (in QPT it has a specific
meaning; in psychological applications it is often just set to 1). The solution of Schrödinger’s
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equation is |ψt2 〉 = e−(i/h̄)H(t2−t1)|ψt1 〉, where e−(i/h̄)H(t2−t1) =Ut2−t1 is a unitary operator; unitary
operators have the property that their conjugate transpose is equal to their inverse.

In this model, the overall Hamiltonian was specified in C
4, but the structure of this

space was such that a part was separable, in C
2 ⊕ C

2, and a part was not separable (note
that, in physics, it is typically the case that separability concerns C

2 ⊗ C
2, but the structure

of the problem we consider lends itself better to C
2 ⊕ C

2). In fact, most QPT dynamical
cognitive models are specified so that they have a part which is separable, that is, it can be
written as C

2 ⊕ C
2, and a part which is not separable, so that it can only be specified in

C
4. There is a reason why this is the case: most of the current, interesting empirical findings

which are driving the application of QPT in cognition involve a binary decision. It makes
sense to model binary decisions in a two-dimensional space (such as C

2). Also, modelling
in such a separable way retains consistency with the law of total probability, when (binary)
decisions under two conditions are involved. Using the PD example, suppose that there is
one Hamiltonian which corresponds to the dynamical evolution of the mental state, given
knowledge that the opponent is cooperating, HC, and another one, given knowledge that
the opponent is defecting, HD. Suppose also that PD denotes the projector operator for the
measurement of whether the opponent intends to D or not; in QPT, a projector applied onto
a mental state is like a query corresponding to the particular question represented by the
projector. Then, Prob(D; known D)= |PD · e−iHDt · |ψD〉|2 and Prob(D; known C)= |PD · e−iHCt ·
|ψC〉|2, where |ψC〉 and |ψD〉 encode the mental states depending on whether the participant
knows the opponent will C or D. Crucially, in the unknown case, we could assume |ψ〉 = |ψC〉 ⊕
|ψD〉 and H=HC⊕HD, where now |ψ〉 and H are defined in C

4. Then, Prob(D; unknown)=
|PD ⊕ PD · e−iHC⊕HDt · |ψC〉 ⊕ |ψD〉|2. But, e−iHC⊕HDt = e−iHCt ⊕ e−iHDt, an identity which can be
fairly easily reproduced using the Taylor expansions for each exponential. We can write
e−iHCt ⊕ e−iHDt =UC(t)⊕UD(t), where UC and UD are the relevant unitary operators (which
are functions of time). Then, Prob(D; unknown)= |PD ⊕ PD ·UC(t)⊕UD(t) · |ψC〉 ⊕ |ψD〉|2 =
|PD ·UC(t) · |ψC〉|2 + |PD ·UD(t) · |ψD〉|2 = Prob(D; known C)+ Prob(D; known D). In other
words, if the structure of the Hamiltonian is separable, then the law of total probability has
to be obeyed by QPT, in the same way as it holds for CPT. To allow for violations of the law
of total probability to develop, we would need a Hamiltonian along the lines eA⊕B+Mixer �=
esomething ⊕ esomething, where each of A and B are defined in a C

2 space and the Mixer in C
4.

The modelling approach of Pothos & Busemeyer [13] was exactly to specify the dynamics in a
way that a part was separable and another part (the mixing element) was not separable. The role
of the mixing element is primarily to transfer amplitude from one C

2 space to another, so that
interference effects arise which allow violations of the law of total probability. Although we will
consider options for mixing elements in this work, our initial focus are the building blocks of the
dynamics, in this case HC and HD. These are just 2× 2 Hermitian matrices. What are the options
for their structure and how do they affect the state’s evolution?

In general, for the space of 2× 2 complex Hermitian matrices, a basis consists of the identity
matrix and the three Pauli matrices, I= ( 1 0

0 1
)
, σx =

( 0 1
1 0
)
, σy =

( 0 −i
i 0

)
, σz =

( 1 0
0 −1

)
. That is, any 2× 2

complex Hermitian matrix can be generated as a linear combination of these four matrices. Note
that a common notation is H= I+n · σ , where the dot now indicates a dot product and n and σ
are vectors with three components; n= (nx, ny, nz) needs to be normalized. It is a minor loss in
generality to restrict ourselves to traceless H=n · σ , and we shall do so in this work (see also §3).
In practice, as noted, the Hamiltonians proposed in current QPT cognitive models have a much
simpler form.

Ignoring any mixing elements for now, Pothos & Busemeyer [13] proposed for both HC

and HD a Hamiltonian of the form H=
(

1/
√

1+ μ2
i

)[
μi 1
1 −μi

]
, which can be written as H=(

1/
√

1+ μ2
i

)
σx +

(
μi/

√
1+ μ2

i

)
σz. Note that the parameter µi was interpreted as the gain for

different actions (D or C). In Trueblood & Busemeyer’s [28] work on order effects in inference, the
building block of the dynamics was a Hamiltonian of the form H= (1/

√
2)
[ 1 1

1 −1
]= (1/

√
2)σx +
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(1/
√

2)σz. Yearsley & Pothos [29] follow this trend (of not considering σ y) and argued that, in
specifying a general Hamiltonian for a two-state system (any binary decision) in psychological
modelling, a reasonable choice is just H=ωσ x, ignoring both I and two out of the three Pauli
spin matrices. Atmanspacher & Filk [30] developed a QPT model for bistable perception, that is,
the shifts in interpretation that can occur when an ambiguous figure (such as the Necker cube) is
presented. The dynamics in Atmanspacher & Filk’s [30] work concerned the time development of
the perception process and the Hamiltonian they employed was just H= σ x.

In closing this section, we review the two key points so far. First, for many of the models,
the structure A⊕B+Mixer, with A and B Hamiltonians in C

2, makes sense, because the model
can show how the classical result (law of total probability) can be recovered and what exactly is
the role of the quantum contribution (the Mixer), which allows interference effects (interference
effects and violations of the law of total probability are exactly the effects which motivate a QPT
approach in the first place). In all cases we reviewed above, the building block of the dynamics
was a simple binary decision (and so a representation in C

2). Second, all QPT dynamical models
have been descriptively successful, so it does not appear that any further complexity in the
Hamiltonian is needed. Indeed, these simple Hamiltonians enable analytical solutions for the
relevant unitary operators and the probabilities for the relevant actions. However, there is a
question of how (if at all) any additional complexity in the Hamiltonian can serve any explanatory
objectives. The purpose of the next section is to introduce a generic binary decision situation and
illustrate the contribution to the dynamics from each component of the Hamiltonian. To clarify,
we do not seek to provide a specific model for a specific empirical situation; but rather we seek to
present the possible framework for dynamical modelling in QPT, for a simple, generic situation.
We hope that our presentation will help inform choices regarding the development of specific
dynamical models in ways that appear less ad hoc, as is arguably the case with some of the
current dynamical approaches.

3. The impact of different Hamiltonian components: Bloch representation
Attempting to understand the impact of different Hamiltonian choices on the dynamics by direct
inspection of analytical solutions is often fruitless; in a subsequent section, we will explore some of
these analytical solutions and it will become clear that the algebraic complexity quickly obscures
any intuition (we will pursue though illustrations based on numerical analysis). A useful tool
in this context is the Bloch sphere, which is a geometrical representation for the dynamics of
a two-state quantum system. Pure states (the contrast with mixed states will be explored later)
correspond to points on the Bloch sphere given by the following identification:

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 ←→ ψ =

⎛
⎜⎝cosϕ sin θ

sinϕ sin θ
cos θ

⎞
⎟⎠ ,

where |0〉 = ( 1
0
)

and |1〉 = ( 0
1

)
are a fixed computational basis. Importantly, the unitary operators

e−iσxθ/2, e−iσyθ/2 and e−iσzθ/2 correspond to rotations of the state vector by angle θ , around rotation
axes which correspond to each of the x, y, z axes. That is, in the Bloch sphere representation, each
of the Pauli matrices corresponds to a rotation of the state vector about a particular axis, but
rotations about an arbitrary axis n= axnx+ ayny+ aznz can also be specified, which correspond to
a unitary operator U= e−in·σθ/2 (figure 1a; note that n must be normalized).

Suppose we are modelling a binary decision, such that the two relevant options are A=( 1
0
)

and B= ( 0
1

)
, and suppose we are interested in ProbA(t) (it is not necessary to explore

ProbB(t) separately because, using CPT or QPT rules, the probabilities for mutually exclusive
and exhaustive probabilities have to sum to 1). In the Bloch sphere representation, the north
z-direction corresponds to A= ( 1

0
)

and the south z-direction to B= ( 0
1

)
. Note also that operator

σ z corresponds precisely to this observable σz = |A〉〈A| − |B〉〈B| (albeit with the eigenvalues
1 and −1 instead of 0 and 1 as used in the above notation for ket vectors). With some
algebra, one can show that Prob(A)= 1

2 (1+ψ ·nz). This has a nice graphical interpretation,
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z z

y D
 =

 2
r

x

r

an q

nz

u

yy y

(a) (b)

Figure 1. (a) The Bloch sphere representation, illustrating the dynamical evolution (rotation) of a stateψ , around a rotation
axis n. (b) The length that corresponds to ProbA(t), A=

(
1
0

)
, in the Bloch sphere representation (with r= 1). (Online version

in colour.)

Prob(A)= cos2(θ/2)= 1
2 (1+ cos θ )= (r+ a)/D= (r+ r · cos θ )/2r, which in words is the proportion

of the projection on the vertical diameter of the vector u from the south pole to the point on the
sphere corresponding to the state |ψ〉 (figure 1b). As a technical note of interest, the state can be
represented as |ψ〉〈ψ | = 1

2 (I + ψ · σ ) (note that ψ and |ψ〉 both indicate a particular state, but ψ
emphasizes the vector form of the state; note also that |ψ〉〈ψ | is the representation of a state as a
density matrix and we will consider this later).

For a fixed state vector A, there are Hamiltonians which generate the same dynamical
evolution of ProbA(t). It is useful to briefly illustrate this, because it motivates the discussion
of the more general case. Let us consider the situation when |ψ〉 =A= ( 1

0
)
. Then, ProbA(t)=

|〈ψ(t)|A〉|2, where |ψ(t)〉 = e−itn·σ |A〉, and n · σ is a general Hamiltonian. Since |ψ(t)〉 = e−itn·σ |A〉,
then ProbA(t)= |〈A|e−itn·σ |A〉|2. Now consider an alternative Hamiltonian, produced by rotating
n by an angle a about the z-axis; the new Hamiltonian would be given by n′ · σ . The
corresponding unitary operator is given by n′ · σ = e−iaσz/2n · σeiaσz/2. Noting that CeBC−1 =
eCBC−1

(this identity is independent of whether B and C commute and can be easily verified
with a Taylor expansion), we have |ψ ′(t)〉 = e−itn′ ·σ |A〉 = e−ite−iaσz/2n·σeiaσz/2 |A〉. So, Prob′A(t)=
|〈ψ(t)|A〉|2 = |〈A|e−iaσz/2e−itn·σ eiaσz/2|A〉|2 = |〈A|e−ia/2e−itn·σ eia/2|A〉|2. The last equality employs
the fact that σz|A〉 = |A〉 =

( 1
0
)
, and then the three operators eia/2, e−itn·σ and e−ia/2 commute.

So we conclude Prob′A(t)= |〈A|e−itn·σ |A〉|2, exactly as before. In the Bloch representation, it
corresponds to the same behaviour of projection of the evolved state vector on the z-axis (cf.
figure 2c with e and figure 2d with f ). Note that this analysis relies on the particular relation
between the state and the form of considered Hamiltonians. In general, the Hamiltonian will
have impact on the dynamics of ProbA(t). This is best illustrated with the Bloch sphere, in terms
of the effect of each of σ x, σ y and σ z on the rotation of the state vector.

We always consider ProbA(t), A= ( 1
0
)
. Consider a comparison between |ψ(t1)〉 = e−it1n·σ |ψ(t0)〉

and |ψ(t2)〉 = e−it2n·σ |ψ(t0)〉, where t2> t1. As time increases, we can think of ψ as tracing the
circumference of a disc whose centre is n. So, if |ψ(t1)〉 is set as in figure 2a, then an increase in t
will translate at first into an increased ProbA(t), followed by a decrease; eventually, it will return
to the initial value. If all we are interested in is changes in ProbA(t) with time (or some other
equivalent quantity), then the simplest choice is to consider the Hamiltonian H= σ y and initial
state |ψ〉 =A= ( 1

0
)

as in figure 2b. In such a case, the projection along the z-axis varies all the way
from +1 to −1 and so ProbA(t) varies from 1 to 0. The main quantum-like feature of such a form
of dynamics is oscillatory behaviour.
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min

ProbA (t)

ProbA (t)

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

Figure 2. (a) For Hamiltonian H= n · σ , the state of the system traces a circle whose centre is n. Probability ProbA(t) exhibits
oscillatory behaviour. (b) A simple formof dynamics regardingProbA(t) (projection along the z-axis),whereH= σ y . Probability
ProbA(t) oscillates between 0 and 1. (c) Hamiltonian of the form H= nyσ y+ nzσ z ; rotation axis n in the yz-plane at angle θ
to z-axis. (d) Hamiltonian of the form H= nyσ y+ nzσ z ; rotation axis n in the yz-plane at angle θ ′ to z-axis. (e) Hamiltonian
of the form H= nxσ x+ nyσ y+ nzσ z ; rotation axis n at angle θ to z-axis (i.e. it obtains from that in c by rotation about
z-axis). Note that the dependence of ProbA(t) is the same as in case c, for this initial state. (f ) Hamiltonian of the form
H= nxσ x+ nyσ y+ nzσ z ; rotation axisn at angleθ ′ to z-axis (i.e. it obtains from that ind by rotation about z-axis). Note that
the dependence of ProbA(t) is the same as in case d, for this initial state. (g) Probability ProbA(t) in c and e oscillate between the
maximum value equal to 1 and minimal value equal to (1/2)(1+ cos 2θ )= cos2θ . (h) Probability ProbA(t) in d and f oscillates
between the maximum value equal to 1 and minimal value equal to (1/2)(1+ cos 2θ ′)= cos2θ ′. (Online version in colour.)
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What would be the effect of introducing a rotation component along the z-axis, so that the
Hamiltonian now looks like H=nyσ y+ nzσ z? As the rotation axis moves in the yz-plane from
the y-axis to the z-axis, the amplitude of the oscillation is reduced and the average ProbA(t)
is increased. Therefore, in moving from a Hamiltonian of the form H= σ y to one of the form
H=nyσ y+nzσ z, one basically increases the minimum possible value for ProbA(t); the greater nz

relative to ny, the higher the minimum possible value for ProbA(t) (cf. figure 2b, c and d). The
impact of introducing a σ x component, so that the Hamiltonian is now of the more general form
H=nxσ x+nyσ y+nzσ z, is subtler still. As indeed shown in figure 2b–d, the critical factor affecting
the amplitude of oscillations is the angle between n and the z-axis, so that, when ny nx, nz

(i.e. the rotation axis n is approximately in the xz-plane), one obtains max≈ 1 and min≈ 0; the
frequency of oscillations depends on the length of vector n. Comparing figure 2c with e and
figure 2d with f, one can see that rotating n towards the x-axis does not change the overall
amplitude, though specific aspects of the oscillation may change. Note that the Bloch sphere
picture ignores the irrelevant overall phase of the state vector, and hence this component in the
general Hamiltonian may be harmlessly neglected for a single qubit, simplifying the Hamiltonian
to H=n · σ . (As a word of caution, for more complex systems, the overall phase of a subsystem
may lead to non-trivial interference effects; however, for the present considerations of a single
qubit, we can ignore it.)

Overall, this section shows that each possible component of the Hamiltonian, σ x, σ y and σ z,
can have a very distinctive effect on the dynamics of the state vector and, in a general case, there
is no theoretical reason to exclude any components. Of course, in specific cases, it may be that
simpler Hamiltonians are descriptively adequate. In the next sections, we explore these themes
further and illustrate numerically the kind of dynamical curves produced by different modelling
options.

4. A hierarchy of models for dynamical evolution
In this section, we present a first set of numerical illustrations regarding the impact of different
choices for the Hamiltonian on ProbA(t), A= ( 1

0
)
. Before we do this, there is a source of complexity

which we have yet to consider, concerning the way the state vector is specified. The elementary
way to specify a state vector of a two-state QPT system is as a vector in a two-dimensional Hilbert
space, |ψ〉 = ( a

b
)
, called a pure state, with a, b in C. In the context of an intention to create a QPT

model for a cognitive situation, such a pure state would represent the belief or mental state of
the average or typical participant (that is, we assume that an ensemble of participants can be
represented by a single ‘typical’ participant, who can characterize all individuals, approximately
speaking). In QPT terms, to employ a pure state means that we cannot assert with more precision
knowledge of the state the system is in. However, QPT offers an alternative way to represent
information about the state of a system, using mixed states (represented by density matrices).

A mixed state is meant to represent classical uncertainty of the particular (quantum) state of a
system. For example, suppose that the individuals in our sample could be assumed to be in one
of two orthogonal states,

( a
b
)

and
( a

b
)⊥. Then, the state of the system would be written as pP( a

b

) +
(1− p)P( a

b

)⊥ , where P( a
b

) indicates the projector along the
( a

b
)

ray and analogously for P( a
b

)⊥ .

The variable p is analogous to a classical probability that any particular individual will be in state( a
b
)
. Alternatively, we could assume that participants are in one of two non-orthogonal states, so

that the state of the system is pP( a
b

) + (1− p)P( c
d

). In general, a mixed state can be represented

by any positive, semi-definite operator ρ, such that tr(ρ)= 1 and ρ†= ρ. For illustration, we show
the mixed state explicitly assuming a decomposition into two orthogonal states in R; we have

ρ =
(

a −b
b a

) (
p 0
0 1−p

) (
a b
−b a

)
=
(

pa2+b2(1−p) 2pab−ab
2pab−ab pb2+a2(1−p)

)
. The corresponding expression for a, b in C

is
(

p|a|2+|b|2(1−p) 2p Re(a∗b)−a∗b
2p Re(a∗b)−ab∗ p|b|2+|a|2(1−p)

)
, noting that * indicates the complex conjugate.
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One can readily see that the number of parameters required to represent a state rises as
we go from a pure state (two parameters if in C, one if real) to a constrained (orthogonal)
mixed state (three parameters if in C, two if real). For a general mixed state with a particular
decomposition into pure states, we need to count five parameters, working in C (three if
real), when two psychologically interpretable component states are aimed for. In a population
sample, it will not always be possible to accommodate individual differences as variations
from a single typical pure state. It is not uncommon for the population sample to have two
distinct groupings that can be thought of as opposite in some way, e.g. risk-seeking versus risk-
averse individuals in a gambling task. In such cases, it is computationally desirable to represent
the relevant mental state for the decision making task as a mixed state of two orthogonal
pure states. That is, the mixed state reflects our classical uncertainty of which of two pure
states each participant is in. The assumption of orthogonality is partly as well an issue of
keeping the total number of parameters low. The non-orthogonal mixed state is applicable
when the population sample can be divided into two groups, but cannot be considered as
orthogonal in some meaningful way. For example, in a gambling task, the population sample
may reflect a group of participants particularly high in risk seeking and one particularly
high in reward sensitivity. In such a case, the two groups are different, but it would be
inappropriate to consider them as opposite, because risk seeking may partly reflect reward
sensitivity.

One key problem undermining the utility of mixed states in psychology is, however, that
their decomposition is not unique. This degeneracy reduces the number of parameters to three
if in C (two if real), and no specification of the component vectors is assumed. If we have
grounds to assume that our participant sample can be represented by two orthogonal states,
then a decomposition as above can be used. However, unfortunately, there are usually alternative
decompositions, involving more pure states, which result in the same mixed state. Therefore,
the use of a mixed state is better seen as a general statement of the inhomogeneity of a sample,
rather than as a specific statement of what is the form of this inhomogeneity. Importantly, in
using a mixed state, the dynamics remains of the Schrödinger type but the outcome probabilities
can be affected (in general, the maximum amplitude of oscillations is reduced). Note that, using
the Bloch sphere representation, pure states are points on the surface of the sphere, but mixed
states are situated within the sphere, with the maximally uniformed state (represented by the
identity matrix I/2) represented by the centre of the sphere. As such, it can be intuitively seen
that configurations within the Bloch sphere would, in general, produce oscillations with a smaller
maximum amplitude compared to those on the surface of the Bloch sphere. We finally remark that
mixed states can be used for cognitive experiments when the participants sample is, for example,
a mixture of two groups of typical participants with non-orthogonal mental states. Alternatively,
such states could be employed if there is just one typical participant whose mental state is itself
a mixture of two non-orthogonal choices. To fully describe these situations, we would need five,
not three, parameters, which would not just encode the mixed state per se, but also account for the
non-orthogonal decomposition. As an interesting footnote, in physics, there is a well-developed
approach for distinguishing between two non-orthogonal states by ‘generalized measurement’
through positive operator-valued measures (POVM). The idea behind it is that a mixed state
always corresponds to some larger-dimensional pure state, traced over the extra degrees of
freedom. These POVMs thus correspond to a projection measurement in a larger-dimensional
encompassing space. Applications of POVMs in psychology are very new; see e.g. Khrennikov
et al. [31] or [32]. One obvious application of POVMs is for violations of repeatability, because
applying a POVM twice can easily lead to a different result (as opposed to regular projectors P
with their characteristic property P2=P).

Regarding our illustration, for simple Hamiltonians it is possible to produce analytical
solutions using the identity e−iHωt = cos(ωt)I − i sin(ωt)n · σ , where n · σ =nxσ x+nyσ y+ nzσ z.
These correspond to the famous Rabi oscillation expressions, where ω is the Rabi frequency, which
we consider as a scaling constant (for time, or whichever other quantity t corresponds to) and I
is the identity matrix. In its more general form, when X2= (1+h2)I, the unitary propagator can be
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shown to satisfy

e−itX = cos
(√

1+ h2t
)

I− i
sin(

√
1+ h2t)√

1+ h2
X,

with h another constant which we shall relate to mixing strength in C
4 in the next section.

Table 1 summarizes the unitary propagator for simple Pauli matrix-based Hamiltonians and gives
the corresponding outcome probabilities for state A= ( 1

0
)

starting from initial vector
( a

b
)

in R
2,

with b= ±
√

1− a2. The outcome probabilities for state A over time are obtained using the QPT
standard expression ProbA(t)= |PAU(t)|ψ0〉|2, where PA is the projector over the A eigenstate. We
notice that the outcome probabilities ProbA(t) are periodic functions with periodicity π in most
cases. Moreover, we notice that by itself the Pauli matrix σ z does not engender a time dynamics;
indeed one can easily see that the diagonal structure of the Pauli matrix σ z only produces a trivial
phase to the state over time.

The reason why we have assumed a pure state in R
2 for table 1 is that this is indeed the most

common approach in QPT cognitive models, as a simplifying assumption. A pure, real starting
state is not a theoretical requirement and particular data sets or theoretical considerations may
motivate the need to adopt a more general representation for the initial state (as above). Still,
even for a pure, real starting state, the complexity of the expressions in table 1 quickly increases
with more complex Hamiltonians. A pertinent question is this: Assuming a modelling objective
corresponding to a binary observable (which is reasonably common in cognitive models and
otherwise), what would a modeller gain by considering these more complex Hamiltonians? Is
there any particular reason to consider a single Pauli spin matrix—apart from σ z, which leads
to flat dynamics? We provide a series of illustrative graphs, for the restricted case represented in
table 1.

The first point is that, if we are concerned just with projection along A= ( 1
0
)

and adopt the
simplest possible Hamiltonian (corresponding to just a single Pauli matrix), then the choice of
Hamiltonian informs the maximum amplitude of the oscillations, as can be seen in figure 3,
employing an initial state

( a
b
)= ( 0.6

0.8
)
. Note that, as pointed out above too, the Hamiltonian based

on σ z does not produce any evolution, while the Hamiltonian based on σ y reaches maximum

values of 0 and 1 at t= 1
2 arctan

(
2a
√

1− a2/(1− 2a2)
)
− kπ/2. The evolution of ProbA(t) when the

Hamiltonian is just σ x attains a maximum value of 1− a2 at t=π/2 when a< 1/
√

2 (if a> 1/
√

2,
this will be a minimum instead). One should notice that it is necessary to vary the initial state in
order to see these differences in dynamical evolution from these three Hamiltonians. Should one

only choose a uniformed initial state,
(

1/
√

2
1/
√

2

)
, then there is no change in the temporal evolution

of both σ x and σ z.
An important question for modellers is whether the state should be modelled as a pure state

or a mixed state. We have already seen that this choice translates to a difference in the number
of free parameters required to specify the initial state (and associated assumptions regarding the
homogeneity of the ensemble of systems used for data collection; in psychology studies, this
ensemble would typically correspond to a population sample). Does the dynamical evolution
change in consistent ways as we move from pure states to mixed states? We noted above that,
in general, mixed states lead to dampened oscillations and this point is illustrated in figure 4,
where we compare pure state evolution with orthogonal mixture evolution and ‘general’ mixture
evolution. For the orthogonal mixture, an ad hoc value of p= 1/3 has been adopted and the time
dependence shows the expected dampened oscillation. One can verify that giving equal classical
weights p= 0.5 to the two orthogonal components will also extinguish all temporal dependence
for a σ x Hamiltonian similarly as for general mixtures with a σ z Hamiltonian. For the general
mixture, a classical weight of p= 1/3 was also adopted and the second component was set to
(−0.8, 0.6).

Appendix A shows the time evolution when two Pauli matrices are combined to create a
Hamiltonian. When combining Pauli matrices, the resulting time evolution does not retain the
distinctive features of dynamics that are characteristic of each separate Pauli component. This
indistinctive temporal behaviour can be observed in the σ x–σ y composition and the σ y–σ z
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Figure 3. The change of ProbA(t) over time, where A=
(
1
0

)
, when the initial state is

(
0.6
0.8

)
. (Online version in colour.)
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Figure 4. Outcome probability for state A based on a Hamiltonian dynamics due to σ z , σ y and σ z on descending rows. For
initial pure state

( a√
1−a2
)
in (a), an orthogonal mixed state with weight 1/3 for

( a√
1−a2
)
and 2/3 for

( −√1−a2
a

)
in (b) and

initial general mixed state with weight 1/3 for
( a√

1−a2
)
and 2/3 for

( −0.8
0.6

)
in (c). For all cases, a2= 0 to 1 in five steps of 0.2

(i= 0–5). (Online version in colour.)

composition. In the σ x–σ z composition, however, the time of extrema t=π/2 of the pure σ x case
is retained. The overall similarity of the combined two Pauli case Hamiltonians is due to the fact
that, in such combinations, there will always be a counter-diagonal Pauli matrix (either σ x or σ y).
In the next section, we will study this ‘mixing’ behaviour by counter-diagonal elements in the
extended dynamical model for bivariate paradigms.

The final issue concerns the extent to which considering the most general C
2 Hamiltonian,

involving components from all three Pauli matrices, can modify temporal dynamics. With
our previous observation, the triple Pauli combination will not add essential features to the
temporal behaviour of the probability outcome of A, because the counter-diagonal position in
the Hamiltonian was already covered by double Pauli combinations (figure 5).
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Figure 5. Outcome probability for state A based on Hamiltonian dynamics due to combined σx + σy + σz . (a) For initial
pure state

( a√
1−a2
)
, (b) orthogonal mixed state with weight 1/3 for

( a√
1−a2
)
and 2/3 for

( −√1−a2
a

)
and (c) initial general

mixed state with weight 1/3 for
( a√
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)
and 2/3 for

( −0.8
0.6

)
. For a2= 0–1 in steps of 0.2 (i= 0–5). (Online version in colour.)
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Figure 6. Outcome probability for state A based on a Hamiltonian dynamics due to combined σ x + σ y + σ z and stepwise
transition to single (a)σ x , (b)σ y and (c)σ z forμ2= 0–1 andν2= 0–1 in steps of 0.2 (i=0–5). For initial pure state (0.6,0.8).
(Online version in colour.)
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initial pure state (
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0.95). (Online version in colour.)

In figure 6, we juxtapose the temporal behaviour of the outcome probability for the
equiponderate Hamiltonian H= (1/

√
3)(σx + σy + σz) evolving into each of the three single Pauli

matrices separately.
While setting real-valued initial vectors is a typical simplifying assumption in cognitive

modelling, the following reasoning is valid for all types of initial vector. By their make-up, we
observe that the mixing of vector components can be achieved by combining either σ x or σ y with
σ z. Therefore, when both are used together without σ z, no mixing of the components takes place
any more, but only component swapping occurs. Swapping dynamics causes (a,b)→ (b,a), while
mixing dynamics causes (a, b)→ (const · a+ const · b, const · b+ const · a). This effect is clear in
figure 7, where we parametrized the Hamiltonian to evolve from equiponderate composition to
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σ y+ σ z, σ x+ σ z and σ x+ σ y composition. Using a contrasted initial vector (
√

0.05,
√

0.95), we
observe that both the xz and yz Hamiltonians lead to component mixing (smaller oscillation
amplitude), while the xy Hamiltonian swaps the probability mass (large oscillation amplitude).

5. Violations of the law of total probability in dynamical models
Section 4 was intended to illustrate the temporal evolution that is possible with basic Hamiltonian
dynamics and the range of technical modifications available for cognitive modelling. As noted,
most QPT cognitive models are built using C

2 components, that is, components corresponding to
a choice involving two alternatives. We note that, in the literature, Hamiltonian-driven cognitive
models with an odd dimension n, e.g. n= 3 [33], or with not Pauli-based Hamiltonians, n= 5 [20]
and n= 8 [34], have been proposed.

A main source of interest for QPT dynamical models is how a separable C
2 structure consistent

with the law of total probability can be extended to produce interference effects which allow
deviations from the law of total probability. The essential idea is that, as long as the dynamics has
a separable structure of the form H1⊕H2 (where each of H1 and H2 acts on separate C

2 spaces),
then, whatever the specific form for the evolution of the composite state vector |ψ1〉 ⊕ |ψ2〉, the
resulting probabilities will obey the law of total probability. But, like Markovian dynamics, QPT
dynamics on the composite system allows extensions of the form H1⊕H2+Hmix. In QPT, Hmix
acts on C

4 and can result in evolved state vectors not of the form |ψ1〉 ⊕ |ψ2〉, and which violate
the law of total probability. What are the possible forms for Hmix and what kind of dynamics is
produced?

We proceed in this discussion in the context of a generic decision framework, which can easily
be adapted to more specific situations—including the Prisoner’s Dilemma paradigm of Pothos &
Busemeyer [13]. Example framework: Imagine a gambling task with sequential steps. The gamble
is organized such that if you are on a winning streak your payoff for the gamble on the next step
is determined by one bankroll function, while if you are on a losing streak your payoff for the
gamble is determined by another bankroll function. The experimental paradigm thus has two
distinct and non-overlapping conditions: win and lose. The decision-makers are asked to decide
whether to proceed with the next step in the sequence, given knowledge that they have either
been in a winning streak, or a losing streak, or the outcome of previous steps is left unknown.
The experimental paradigm thus involves a binary decision: stop or continue. Classically, the
probabilities to stop or continue in the last ‘unknown’ condition would be given by the law of
total probability on probabilities to stop or continue from each of the corresponding known win
and known lose conditions. In an analogous QPT model, the Hamiltonian would be Hwin⊕Hlose.
A more elaborate QPT model would, however, allow for violations of the law of total probability
and utilize a Hamiltonian of the form Hwin⊕Hlose+Hmix.

We consider next what is a simple form of Hmix, such that the Hamiltonian can produce
violations of the law of total probability, while still allowing for analytical solutions for the
probabilities. The latter is clearly not a cognitive modelling requirement, but it facilitates the
discussion of the temporal behaviour of the outcome probabilities.

Recall that we pointed out that a simple class of analytically expressible propagators follows
the identity

e−itX = cos
(√

1+ h2t
)
I− i

sin(
√

1+ h2t)√
1+ h2

X

when X satisfies X2= (1+ h2)I. While, in the simple C
2 space, Hamiltonians corresponding to any

combination of the Pauli matrices will readily satisfy this condition, this is not the case for general
Hamiltonians with a mixing component in C

4 space. We recall that, in general, Hmix can be any
Hermitian matrix operating in the 2× 2 off-diagonal space, but the Pauli-based version will allow
analytical expression. We can write such a Pauli-based general Hamiltonian as H= ( nwin·σ nmix·σ

nmix·σ nlose·σ
)
,

where we have normalization conditions on the weighing vector for the Hamiltonian composition
in both subspaces of win and lose, nwin ·nwin= 1=nlose ·nlose. Notice that we do not assume
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normalization of nmix, as its norm will be defining for the strength of the mixing dynamics. For
simple calculational notation, it is convenient to employ Feynman’s slash notation, so that the

Hamiltonian can be rewritten as H=
(
/w /h
/h /l

)
, where /w is short hand for nw · σ , and /l stands for

nl · σ ; finally, /h= nmix · σ . Using this slash notation and following Pauli matrix algebra, we have
/a · /b= na · nbI + i na × nb · σ , where, in the above equation and for these computations, the dot
indicates the vector dot product and the cross the vector cross product. We can now express
the condition for when we would be able to use the simple analytical expression for the time
propagator for a Pauli matrix-based Hamiltonian.

Noting that H2 =
(

1+h2 /w·/h+/h·/l
/h·/w+/l ·/h 1+h2

)
, we will now require this expression to be of the form

(1+ h2)I4:

H2 = (1+ h2)

⎛
⎜⎝ I

1
1+ h2 (h · (w+ l)I + i h× (l−w) · σ )

1
1+ h2 (h · (w+ l)I − i h× (l−w) · σ ) I

⎞
⎟⎠ ,

where we have used /b · /a= nb · naI + i nb × na · σ = na · nbI − i na × nb · σ = (/a . /b)† and self-
adjointness of the Pauli matrices. We therefore have to meet the following two conditions:

h · (w+ l)= 0

and h× (l−w)= 0,

or explicitly
nmix · (nwin + nlose)= 0,
nmix × (nlose − nwin)= 0.

Thus, nmix should be orthogonal to the sum of nwin and nlose, and parallel to their difference.
This is satisfied by nmix=m(nlose−nwin), where m is a free parameter, and thus

h2 = n2
mix = 2m2 (1− nlose · nwin).

This final expression allows us to finally write the required mixing Hamiltonian as

Hmix =m (/l − /w)= h√
2(1− nlose · nwin)

(nlose − nwin) · σ .

Note that h is a mixing variable dependent on the free parameter m and the relative orientation of
nlose and nwin. One retrieves the non-mixing case by taking the limit h→ 0.

The end result Hmix has a simple psychological expression. The degree of mixing—and thus
interference—in the dynamics of the unknown condition could be reduced either by diminishing
the free parameter m, or also implicitly by narrowing the difference between nlose and nwin.
This is an interesting aspect of this particular dynamical construction based on Pauli matrices.
Recall that nlose characterizes the cognitive dynamics in a losing streak and nwin in the winning
streak. This structure for the dynamics suggests that interference—and thus the degree of non-
classicality—increases when there is a greater discrepancy in the dynamics for the two known
conditions. On the other hand, experimental paradigms may be such that the disjunctive—or
‘unknown’—condition may lead to a cognitive shift in the belief state of the decision-maker
even if the dynamics in both subspaces are almost identical because she deems the condition
of one subspace more probable than the other. This latter situation should then be captured by
increasing the free parameter m when fitting with experimental data. Finally, we note that, besides
monitoring the strength of the mixing, h also modifies the temporal rate at which the dynamics
evolves, with higher values of h leading to relatively faster progression of the unitary operator.

Given this simplified dynamics, ProbA(t) can now be computed analytically for a range of
Pauli-based Hamiltonians in C

4 space as well. The corresponding expressions can be complicated
for the general case; nevertheless, we think there is merit in producing them, for reference
purposes and for transparency regarding the classical and non-classical terms (and, indeed, the
extent to which they can be separated) in ProbA(t). The expression of ProbA(t) for an initial general
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mixture and its analytical calculation is delayed to appendices A and B. We will only discuss the
pure state expression in more detail here, but will still also provide the formalism for the mixed
states.

To facilitate interpretation, we choose the basis corresponding to the condition—i.e. w (win)
or l (lose)—and the decision that is taken—i.e. c (continue) or s (stop)—leading to a representation
(ψcw ψsw ψcl ψsl)† of the belief state.

Now, for example, in the w-space (in the space concerning the dynamics when a participant
knows she has been winning), we could have a mixed state composed of two pure states,
corresponding to each of the two participant groups (recall, in this picture, we are assuming
that the population sample is best described by two distinct groups; clearly, this would be an
approximation in some cases). The pure states appearing in the general mixed state will be
parametrized, respectively, by pcw (probability to choose c given condition w) and p′sw (probability
to choose s given condition w). Note that the prime indicates quantities belonging to the
second group (out of two). The respective weight of both distinctly featured subgroups in the
decision-maker sample is again denoted by p and 1− p.

W states: a linear combination of
(√

pcw
√

1− pcw 0 0
)† and

(−√1− p′sw√
p′sw 0 0

)†.

So, the above two pure states capture the two (assumed) groups that the mixed state is
composed of. Note that a more intuitive notation for the w-states might be something like
(
√

pcw1
√

1− pcw1 0 0)† and (−√pcw2
√

1− pcw2 0 0)†, indicating that we have two groups of
participants, with different tendency to continue playing. However, it is algebraically more
convenient to express one group of participants in terms of the probability to continue and the
other in terms of the probability to stop. Notice that when p′sw = pcw, the two distinct groups of
decision-makers assumed in the population sample are represented by orthogonal belief states.
As long as the reader remembers that cw is the index for group 1 and sw′ for group 2, then the
algebra should be straightforward.

Similarly, we define, in the l-space, pcl (probability to choose c given condition l) and p′sl
(probability to choose s given condition l).

L states: a linear combination of
(
0 0

√
pcl

√
1− pcl

)† and
(
0 0 −√1− p′sl

√
p′sl
)†.

In the disjunctive condition, the decision-maker has no information on the condition and will
attribute a weight pw to believing w to be the condition (or weight 1− pw for the possibility that l is
the condition). The initial belief state of the decision-maker is then a superposition

√
pw times the

w-state and
√

1− pw times the l-state. We choose square roots with plus sign, ignoring possible
phase difference in order to keep things as simple as possible. We suppose a similar predisposition
to occur in the second subgroup but then parametrized by p′w.

Unknown states: a combination of
(√

pw
√

pcw
√

pw
√

1− pcw
√

1− pw
√

pcl√
1− pw

√
1− pcl

)† and
(−√p′w

√
1− p′sw

√
p′w

√
p′sw −√1− p′w

√
1− p′sl

√
1− p′w

√
p′sl
)†.

We proceed in C
4 as in C

2 (§4). The initial mixed state is obtained by weighing the respective
projectors for both participant groups: ρX(0)= pPX + (1− p)P′X , where X can be any of w, l or u
(note that the unknown state is produced as a combination of the w and l states; as above, we just
indicate here where the projectors for the mixed state should come from).

The Schrödinger evolution for the density operator implies ρX(t)= e−iHtρX(0)e+iHt and the
outcome probability of obtaining a ‘continue’ decision—i.e. probability to decide to c—under
condition X is obtained by taking the trace ProbA(t)= tr(PAρ(t)PA ), with projector PA now equal
to the matrix Diag(1 0 1 0). Note that this is the same as taking the partial trace of ρ(t) over the
second index (w or l) and then applying the two-dimensional projector PA of §4. In the appendices
A and B, we provide some details of the calculation of ProbA(t), given the mixed initial state in
the u-condition. From this expression, all simpler cases can be derived.
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We discuss now the outcome probability to continue in the u-condition for an initial pure
state. A priori in the u-condition one expects the presence of distinct terms stemming from
the w-condition and from the l-condition, augmented with a third type of terms stemming
from the mixing. This anticipated subdivision is, however, only partially realized (see equation
below), because all the trigonometric functions in the u-condition show an accelerated temporal
behaviour by a factor

√
1+ h2 to the time variable t in these functions. Therefore, only if no

mixing occurs in the ‘unknown’ condition—either through vanishing m or coincidence of the
nX vectors—do the terms appropriate to the distinct w and l cases add up in the unknown cases
regarding the probability to continue. If mixing takes place, then it is also the case that these
dedicated w and l terms will be affected, in terms of accelerated time development. In any case,
one can attempt to subdivide the expression for ProbA(t) into three main summands: one with pre-
factor pw indicating it is the w-contribution (i.e. the contribution from the known win dynamics);
one term with pre-factor 1− pw indicating it is the l-contribution; and finally an interference
term preceded by the factor

√
pw
√

1− pw exclusively produced by the mixing dynamics. One
should, however, notice that both in the l- and w-parts, the sin2(

√
1+ h2t) terms have factors that

depend purely on second-order nM components (recall, M stands for mixer). These terms in the
w-contribution result from probability amplitude transfer from the l-subspace to the w-subspace
and vice versa as determined by the mixing Hamiltonian (analogously for the l-contribution).

PA(t)= pw

(
cos2(

√
1+ h2t) pcw

+ 1
1+ h2 sin2(

√
1+ h2t)

[
[nWz

2pcw + 2 nWx nWz
√

pcw
√

1− pcw + (1− pcw)(nWx
2 + nWy

2)]

+ [nMz
2pcw + 2nMx nMz

√
pcw

√
1− pcw + (1− pcw)(nMx

2 + nMy
2)]
]

− 1√
1+ h2

2 sin(
√

1+ h2 t) cos(
√

1+ h2t) nWy
√

pcw
√

1− pcw

)

+ (1− pw)

(
cos2(

√
1+ h2t) pcl

+ 1
1+ h2 sin2(

√
1+ h2t)

[
[nMz

2pcl + 2 nMx nMz
√

pcl
√

1− pcl + (1− pcl)(nMx
2 +nMy

2)]

+ [nLz
2pcl + 2 nLx nLz

√
pcl
√

1− pcl + (1− pcl)(nLx
2 + nLy

2)]
]

− 1√
1+ h2

2 sin(
√

1+ h2 t) cos(
√

1+ h2t) nLy
√

pcl
√

1− pcl

)

+√pw

√
1− pw

(
1

1+ h2 sin2(
√

1+ h2t)
{

2
[
nMznWz

√
pcl
√

pcw

+ nMxnWz
√

1− pcl
√

pcw + nMznWx
√

pcl
√

1− pcw

+ (nMxnWx + nMynWy)
√

1− pcl
√

1− pcw

]
+ 2

[(
nMznLz

√
pcw
√

pcl + nMxnLz
√

1− pcw
√

pcl + nMznLx
√

pcw
√

1− pcl

+ (nMxnLx + nMynLy)
√

1− pcw
√

1− pcl

)] }

− 1√
1+ h2

2 sin(
√

1+ h2 t) cos(
√

1+ h2t)nMy

{√
pcw

√
1− pcl +√pcl

√
1− pcw

})

In figure 8, the effect of increasing the mixing parameter m is shown for a u-state defined
by pw= 0.6, pcw= 0.7 and pcl= 0.1, and its subspace w-dynamics and l-dynamics are defined by
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Figure 8. Outcome probability to continue based on Hamiltonian dynamics with Pauli matrix combination w={0.9,0,1} in
w-space and l={−0.5,0,1} in l-space, and with an initial pure state in the u-condition specified by pw= 0.6, pcw= 0.7 and
pcl= 0.1. The mixing parameter is varied,m= 0–1 in steps of 0.2 (i= 0–5). (Online version in colour.)

the Hamiltonian vectors w={0.09, 0, 1}, l={−0.5, 0, 1} (where their normalized expression is
nX=X/|X|). This corresponds to a belief state which slightly biases the w-state over the l-state,
and which reflects a preference to decide c in the w-condition while avoiding the c decision in the
l-condition. The Hamiltonian subspace dynamics express a similar bias for c when w through our
specific choice of w, and aversion for c when l through our specific choice of l.

For higher values of the mixing parameter m, the oscillation frequency of ProbA(t) increases
and, in this case, depresses the probability for decision c in the u-condition. When no
mixing occurs (m= 0), the probability ProbA(t) corresponds to the classically weighted sum of
probabilities for decision c in the respective conditions of w and l.

With the Hamiltonian scheme, we can easily evaluate the degree of violation of the law of
classical total probability, as a function of the mixing strength. The classical total probability to
decide for c at time t consists of adding the probability for the decision to happen in the two
mutually exclusive conditions w and l, where we weigh each condition with its probability to
occur, respectively, pw and pl:

PTot,A(t)= pwPA|w(t)+ plPA|l(t),

where we have rendered explicit the conditional w and l in the index of PA. Any quantum
violation of the law of classical total probability can be observed by comparing ProbTot,A(t) with
PA|u(t), where we recall u indicates the unknown condition.

The violation of the classical total probability can be expressed using the ‘unpacking factor’
by Tversky & Koehler [7], which is the idea of unpacking an event into subevents with disjoint
probabilities. The factor needs to be assessed relative to 1:

UF(t)= PTot,A(t)
PA|u(t)

= pwPA|w(t)+ plPA|l(t)
PA|u(t)

.

This quantity will be larger than 1 for destructive interference of beliefs under conditions ‘w OR l’
and smaller than 1 in the case of constructive interference of beliefs under ‘w OR l’. Both regimes
are covered by the present Hamiltonian scheme. For the mutually exclusive conditions w and l,
the disjunction fallacy is of the fully subadditive type in figure 9 with pw= 0.6 and occasionally of
superadditive type in figure 10 with pw= 0.1.

In the next section, the dynamical scheme is expanded to take into account damping through
Lindblad evolution.
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Figure 9. Evolution of the unpacking factor over time showing destructive interference for Hamiltonian dynamics with Pauli
matrix superpositionw={0.9,0,1} inw-space and l={−0.5,0,1} in l-space, and with an initial pure state in the u-condition
specified by pw= 0.6, pcw= 0.7 and pcl= 0.1. The mixing parameter is varied, m= 0–1 in steps of 0.2 (i= 0–5). (Online
version in colour.)
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Figure 10. Evolution of the unpacking factor over time showing both destructive and constructive interference for Hamiltonian
dynamics with Pauli matrix superposition w={0.9,0,1} in w-space and l={−0.5,0,1} in l-space, and with an initial pure
state in the u-condition specified by pw= 0.1, pcw= 0.7 and pcl= 0.1. Themixing parameter is varied,m= 0–1 in steps of 0.2
(i= 0–5). (Online version in colour.)

6. Dynamics of an open quantum system
The Schrödinger equation represents by far the most common approach to dynamics in cognitive
modelling (for exceptions, see [35,36]). A distinctive characteristic of such dynamics is their
imperative periodicity and, for some cases at least, this periodicity will be the main theoretical
motivation for employing such dynamics in the first place (as well as the potential for violations
of the law of total probability, as discussed). Empirically, however, there may be cases when a
strict requirement for periodicity is undesirable (even when there are other reasons motivating
a QPT approach). Additionally, Schrödinger dynamics entail an assumption that the system
under consideration is isolated from its environment. Psychologically, such an assumption may
be occasionally tenable, e.g. when a participant is immersed in a psychological task that is being
performed in relative isolation to the participant’s beliefs and general knowledge (of course, even
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if common, such an assumption is hardly trivial, cf. [37]). Equally, it is simple to think of situations
when cognitive processing in a psychological task cannot be considered isolated, e.g. when a
participant is asked to reflect on what her answers on a task mean for her personally.

Various contexts of decision-making include mood, physical and emotional condition of the
participant, interaction with other people’s opinions and interference with other (probably latent)
tasks of the participant. These contexts can be interpreted as environment. The significance
of environment in mental processing can be so large that it solely defines the final result,
regardless of inherent motivations of the participant (described by the Hamiltonian). For example,
a relatively unimportant choice faced in an extremely noisy environment (e.g. under the pressure
of more vital tasks) can be easily imagined to be made randomly, with equal probability of any
option. This uniform mixture of possible opinions would correspond to a classical mental state,
given by a normalized identity matrix. Other examples for such open-system modelling occur
in political science, in the complex dynamics of election campaigns where potential voters are
submerged in a high-intensity information flow from various external sources [38,39], or they
occur in connectionist approaches describing the decision-maker embedded in her surrounding
environment [40].

In this paper, we consider one particular form of open quantum system equation, namely, the
Lindblad equation. This is motivated, first of all, by the simplicity of the equation itself (it basically
has one parameter, Γ ) and the interpretation (the greater the parameter Γ , the stronger is the
coupling to the environment). Namely, the Markovian approximation, used in the derivation of
this equation, corresponds to the possibility to neglect the impact of the long-term memory of the
problem in question in comparison to the whole environment.

In QPT, if a quantum system is assumed to interact with a classical environment, then the
Lindblad equation must be employed, which can be seen as a modification to the Schrödinger
equation. The idea is that our quantum state is coupled to numerous other, also quantum, states,
comprising the (classical) environment. The total dynamics of this huge system (represented by a
tensor product of the quantum system of interest and the many-dimensional environment) is also
governed by a Hamiltonian, and the dynamics of our system are extracted by taking a trace over
all environmental degrees of freedom.

The general form of the Lindblad equation is [41,42]

ρ̇ =−i[H, ρ]+
∑

j

Γj

(
CjρC†

j −
1
2
ρC†

j Cj −
1
2

C†
j Cjρ

)
,

where the Planck constant is set to one, Cj are arbitrary operators and the constants Γ j are positive
and interpreted as inverse relaxation times (the higher the value of these constants, the faster
the extinction of oscillatory behaviour). The Cj are called ‘collapse operators’ or ‘quantum jump
operators’. Note that the solution of the above equation ρ(t) remains a positive density matrix
with trace 1 if started with such ρ(0) (so this general form of dynamics preserves trace in the same
way as Schrödinger dynamics does). A simple form (with one non-zero j), which will be used in
all subsequent considerations, can be given as

ρ̇ =−i[H, ρ]− Γ [ Jz, [ Jz, ρ]].

The key aspect of the Lindblad equation is that, whereas the standard Schrödinger equation
produces incessant periodic oscillations in all probabilities for all observables (unless the state is
an eigenvector of H), the Lindblad equation eventually produces a ρ(t) with only diagonal non-
zero terms (for the part of ρ(t) that it affects). Indeed, this exactly corresponds to a statement that
diagonal density matrix ρ(t) is a classical mixture of eigenstates. In other words, for such a ρ,
all quantum structure has been lost and any residual uncertainty simply corresponds to classical
uncertainty (of which particular state the system is in). This process of extinguishing quantum
structure is called decoherence. It can be seen more clearly in the Lindblad form how the size of Γ
determines the strength of decoherence, which can be thought of as the strength of the interaction
with the environment.
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When physicists talk about decoherence of a quantum system, this means losing coherence,
that is, loosely speaking, the degree of quantum structure, which can be quantified as follows.
In a pure state, the degree of purity of the state is maximal and decoherence is zero (note that
the higher the decoherence of a system, the more classical it will be). In a totally classical state,
purity is minimal, and decoherence maximal. One interpretation of decoherence in decision-
making may be that it is a measurement without an actual measurement procedure, but rather
by means of interaction with the environment. The classical stable state to which the dynamics
converges may be interpreted as the final opinion of the decision-maker. The main problem with
this interpretation is that very often this asymptotic stable state would be a uniform mixture, that
is, expressing total classical uncertainty or complete personal indifference. That is, the question of
the time of measurement remains open for many open-system approaches, as is the case in the
standard unitary evolution approach.

Even though interpretations of decoherence (and open quantum systems in general) in
psychology have yet to be established, we present here for completeness a basic approach to
its quantification. One measure of decoherence is (1− Tr(ρ2))N/(N − 1), where N is the space
dimension. This measure is zero (the minimum) when the state is pure and one (the maximum)
for a density matrix ρ with equal (diagonal) elements 1/N. Note that 1−Tr(ρ2) can be easily seen
(remembering that trace is basis-independent) to be zero when the state is pure and to attain its
maximum value only for a density matrix ρ with diagonal elements equal to 1/N. In any basis,
the maximally mixed state ρ is the identity matrix I multiplied by 1/N. So, the diagonal elements
of ρ2 are 1/N2 and Tr(ρ2)=N · (1/N2)= 1/N. Such a maximally mixed state (1/N)I is always a
(stable) solution to our Lindblad equation, because I commutes with any operator—in particular,
with H and Jz—and very often it is the only stable solution (see below for an exception). In general,
we can represent any density matrix ρ= (1/N)I+μ, where μ is a (not positive) traceless matrix.
Then, Tr(ρ2)= Tr((1/N2)I)+ Tr(μ2), and we can see that the decoherence, 1− Tr(μ2)N/(N − 1), is
maximal only if μ is zero.

Note that Jz is the same observable for an arbitrary-dimensional Hilbert space as σ z/2 is for
a two-dimensional one. That is, Jz is a z-axis spin operator. Generally speaking, if we employ
in the Lindblad equation Jz, we end up asymptotically with a ρ that is diagonal in the Jz basis,
i.e. the basis in which Jz is also diagonal (if we employed another operator instead of Jz, then
we could also end up with a diagonal ρ). This is what is meant by saying that the system ρ has
become classical. Still, it may so happen that some degrees of freedom are decoherence-free [43].
As long as we are interested in the Jz observable, it is natural to employ Jz. Computing explicitly

the Lindblad term for the simple C
2 case, we have

[
0 ρ12
ρ21 0

]
, which again illustrates (to a first

approximation) how the differential equation for ρ includes terms producing a gradient towards
zero for the off-diagonal terms. For a four-dimensional system (C2 ⊕ C

2, which has been much of
the focus of this paper, or the non-separable version), we can specify Jz in the Lindblad equation
as Jz = σz ⊕ σz =Diag( 1

2 − 1
2

1
2 − 1

2 ). Then, the last term in the Lindblad equation would be

−iΓ [Jz,[ Jz, ρ(t)]]=−iΓ

⎛
⎜⎜⎜⎝

0 ρ12
ρ21 0

0 ρ14
ρ23 0

0 ρ32
ρ41 0

0 ρ34
ρ43 0

⎞
⎟⎟⎟⎠ .

Non-diagonal zeros indicate the absence of decoherence between the first (cw) and the third
(cl) basis vector, as well as between the second (sw) and the fourth (sl). But note that a general
diagonal Jz would still preserve the direct sum structure, assuming that the Hamiltonian part was
separable.

Note that our case is an unusual one, because we deal with a direct sum Hamiltonian, with a
mixing term. If there were no mixing term, the two subspaces would be evolving independently.
For example, if the initial state was in the ‘winning’ subspace, it would remain there. It may
decohere to the mixed state (|cw〉〈cw| + |sw〉〈sw|)/2, which looks exactly as if maximally mixed
for the C

2 case, but which is not totally mixed for our C
4 case (because the basis states of the



22

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160387

........................................................

‘lose’ subspace are missing in this mixture and the measure of decoherence is 4
3 (1− 2/4)= 0.66).

Moreover, if we imagine decoherence affecting only one of the subspaces, e.g. Jz= σ z⊕ 0, this
would mean that the ‘losing’ subspace is decoherence-free. Starting with a pure state in a ‘losing’
subspace, we would remain in the ‘losing’ subspace (oscillating incessantly if the initial state
was not an eigenstate) and preserve the purity, with the measure of decoherence remaining
zero.

Moving back to our concrete form of Hamiltonian, we note that for the C
4 Hamiltonian with

the mixing term as described in §5, and with parameters nw= (0, 0.8, 0.6), n1= (0.8, 0.6, 0) and
m= 1, there exists a non-trivial (not I/4) stable state solution

ρ(∞)= 0.1

⎛
⎜⎜⎜⎝

3 0 −1 0
0 3 0 −1
−1 0 2 0
0 −1 0 2

⎞
⎟⎟⎟⎠ ,

which commutes with both Jz and H, [Jz,ρ]= 0, [H,ρ]= 0. Obviously, these two commutation
relations are sufficient for the solution ρ to be time-independent. It was possible to find such a
solution in our case, because both H and Jz are degenerate (note that H2 and Jz

2 are proportional to
I). In order for non-trivial ρ to be diagonalizable together with H, and with Jz, it needs to have the
same eigenvectors as H and Jz. While our H and Jz do not commute, they are not diagonalizable in
one same basis, and if at least one of them was not degenerate, this would imply that no ρ (other
than I/4) could commute with both of them. This could easily happen if we relax some conditions.
Consider, for example, another natural form of Hmix which would just be the identity matrix I2,
mixing |cw〉 and |cl〉 as well as |sw〉 and |sl〉. Then, the C

4 Hamiltonian would have four distinct
eigenvalues, ±√2± g, where we denoted g2 = 2 (1+ nlose · nwin), and none of the eigenvectors is
an eigenvector of Jz, hence the only stable mixed state is I/4.

As it is the case with H and Jz considered throughout the paper, we can see directly from
the form of Jz that it has invariant subspaces Span(|cw〉 , |cl〉) and Span(|sw〉 , |sl〉), and it is easily
seen that H must be degenerate from the fact that H2 is proportional to I (in effect λi

2 = (1+ h2),
following §5; thus, all λi

2 are identical for all four i, which leaves only two values for the four
eigenvalues λi of the Hamiltonian). Indeed, H also has two twice degenerate eigenvalues, which
allows for a choice of eigenvectors such that they would also be eigenvectors of ρ.

For this stationary state ρ, we can either directly calculate the measure of decoherence to be
0.9333, or represent ρ(∞)= 1

4 I + μ(∞) , where μ is a traceless operator responsible for pertaining
of coherence

μ(∞)= 0.1

⎛
⎜⎜⎜⎝

0.5 0 −1 0
0 0.5 0 −1
−1 0 −0.5 0
0 −1 0 −0.5

⎞
⎟⎟⎟⎠ ,

and calculate (1−Tr(ρ2))N/(N− 1)= 1−Tr(µ2)N/(N− 1)= 1 – 4·0.12·(0.52+ (−1)2)·4/3= 0.933.
For other values of parameters, the situation is similar.

For a more general picture, we may look for a stable state solution satisfying commutative
relations [H,ρ]= 0 and [Jz,ρ]= 0 (note that [Jz,[Jz,ρ]]= 0 if and only if [Jz,ρ]= 0). From the
commutation relation [Jz,ρ]= 0, we obtain the form of the solution

ρ(∞)=

⎛
⎜⎜⎜⎝

ρ11 0
0 ρ22

ρ13 0
0 ρ24

ρ13 0
0 ρ24

ρ33 0
0 ρ44

⎞
⎟⎟⎟⎠ ,
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with the condition that all elements are real numbers. Plugging this form into the equation
[H,ρ]= 0, we obtain the following one-parametric solution (m is fixed as mixing strength):

ρ(∞)= I
4
+ μ(c,∞)= I

4
+ c

⎛
⎜⎜⎜⎝

1 0 −2m 0
0 1 0 −2m
−2m 0 −1 0

0 −2m 0 −1

⎞
⎟⎟⎟⎠ ,

where c is a real number, 0≤ c≤ 1/2. Note that the solution is independent of nw and nl, but the
parameter c depends on the difference ρ11(0)+ ρ22(0)− (ρ33(0)+ ρ44(0))− 2m(ρ13(0)+ ρ31(0)+
ρ24(0)+ ρ42(0)). The solution ρ(∞) has two eigenvalues:

1
4
± c

√
1+ 4m2,

which must be between zero and one. This means that c must satisfy

|c| ≤ 1

4
√

1+ 4m2
.

We notice that the larger the mixing parameter m, the more narrow is the range of possible values
for c.

Till now, we did not discuss what initial state will converge to what stable state. Obviously, if
we start with a uniform mixture I/4 (c= 0), or any other stable state with c> 0, we are bound to
stay in this initial state, because it is stationary. Suppose that a particular initial state ρ(0) stabilizes
to a particular ρ(∞)= I/4+ μ(c,∞) (with some concrete c). Since the Lindblad equation is linear
in the density matrix ρ, the linear combinations of its solutions are also solutions. If we consider
now a weighted mixture of ρ(0) and I/4, ρ(a, 0)= aρ(0)+ (1− a)I/4, with the weight 0< a< 1,
the resulting stable state would be the mixture ρ(a,∞)= aρ(∞)+ (1− a)I/4= I/4+ μ(ac,∞). So,
the effect of adding a uniform mixture to an initial state results in a decrease of the non-trivial
part of the solution, μ, which gets multiplied by the factor a. From an interpretive point of view,
this sustains the idea that a group of participants with a fraction 1− a of indifferent deciders will
proportionally diminish the belief difference of the whole group.

If we consider the initial state to be a mixture of two states, with respective weights a
and 1− a, the stable state would have the non-trivial term aμ(c1,∞)+ (1− a)μ(c2,∞), which is
proportionally weighing the outcomes we have for each of the states separately.

To obtain a connection between the parameter c and the initial state ρ(0), we note that there is a
basis in which: (i) our general stable state solution is diagonal; (ii) Jz remains diagonal; and (iii) the
Hamiltonian H is block-diagonal. This means that we have independent evolution of certain
initial states initially prepared in one or the other two-dimensional subspace. Roughly speaking,
we have a situation opposite to having two decoherence-free subspaces (no decoherence within
a subspace but decoherence between the subspaces): namely, in our case, we have two subspaces
which, individually, always decohere completely, but there is no interaction (and no decoherence)
between these two subspaces. So, if the initial state belonged exclusively to one of the subspaces,
it remains there and tends to the stable state ρ(∞)=Diag( 1

2
1
2 0 0) in the basis described in

this paragraph, which has 66% decoherence (minimal possible). The resulting expression for the
parameter c is

c = ρ11(0)+ ρ22(0)− (ρ33(0)+ ρ44(0))− 2m(ρ13(0)+ ρ31(0)+ ρ24(0)+ ρ42(0))
4(1+ 4m2)

.

The measure of decoherence is (1− Tr(ρ2)) 4
3 = 1− 16

3 c2(1+ 4m2)≥ 2/3. If we want less
decoherence, we can increase m (which defines the initial Hamiltonian) or c (which is defined
from the initial state).

Figure 11 illustrates how decoherence grows with time, depending on the strength of the
Lindblad term. Starting with the initial state ρ(0)=Diag(0 0 0 1), we looked at decoherence
across a range of the Γ parameter (0, 0.5, 1, 1.5 and 2), numerically solving the Lindblad
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Figure 11. Dynamics of the density matrix under decoherence. Curves are numbered (0 1 2 3 4) as corresponds toΓ parameter
(0, 0.5, 1, 1.5, 2). (Online version in colour.)

equation. Figure 11 plots the evolution of the elements ρ11(t), ρ22(t), ρ33(t), ρ44(t), |ρ42(t)| and the
decoherence measure as described above. One can see that the decoherence measure grows from 0
to 0.933, more steeply when Γ is greater. For Γ = 0, decoherence is always zero, and the oscillating
pattern repeats forever. For other values of Γ , we observe diagonalization (but not complete!) of
the density matrix, attested, in particular, by quenching of the non-diagonal element |ρ42(t)|.

Moreover, figure 11 demonstrates efficient mixing between all four basic states, starting from
a pure state (0 0 0 1). This mixing is due to the mixing part of the Hamiltonian, Hmix. If Hmix were
set to zero, the oscillations would be observed just between ρ44(t) and ρ33(t), leaving ρ11(t) and
ρ22(t) constant zero.

7. Concluding comments
The richness of dynamical options in QPT cannot be comprehensively covered in a brief paper
and there are textbooks better suited for an in-depth presentation. Here, we aimed to focus on
situations which have been of interest to cognitive scientists, notably corresponding to binary
decisions. We used the eigenstates of the Pauli σ z matrix to correspond to the outcomes of a binary
decision of psychological interest. Then, we have a series of key questions: What are meaningful
options for specifying a general Hamiltonian for the evolution of a corresponding state? How
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should the state be represented in the first place? In what way could we extend the dynamics so
that a more realistic picture for the influences on the mental state is provided?

Regarding the first question, the Bloch sphere presentation was meant to illustrate that the
evolution of states induced by Hamiltonians can be given geometric interpretation. In particular,
we have argued that, for the initial state |0〉, evolution of probabilities ProbA(t) depends only
on the polar angle of the vector n defined by the Hamiltonian H=n · σ . In view of the fact that
the main features of the probabilistic behaviour are insensitive to the particular distribution
of weights between σ x and σ y, one may simplify the picture by considering only σ z and σ y

components in the Hamiltonian. Regarding σ x+ σ z and σ y+ σ z, the resulting Hamiltonian mixes
amplitudes across the state, that is, it combines amplitude in each slot of the mental state with
amplitude from other slots. However, σ x+ σ y merely swaps amplitude from one slot to another.
Noting that each Pauli matrix in the Hamiltonian introduces a free parameter, it seems an
appropriately parsimonious approach to not introduce a third Pauli matrix in the specification of
the Hamiltonian in the first instance. Relatedly, we simplified the specification of the Hamiltonian,
by not including the identity matrix, as it only affects an overall phase in the mental state. Again,
the Bloch sphere presentation illustrates why this is not necessary in simple cases, but note that
this would play a role, for example, in the case of superpositions in the unknown case in C

4.
The mental state representation itself is not a simple problem: when there is an assumption

that inhomogeneity in the population sample may affect outcome probability behaviour, then a
density matrix approach should be employed, even if particular decompositions of the density
matrix cannot be assumed. In this work, and unlike the standard approach in physics, we have
motivated two approaches in specifying a mixed state, as a mixture of either two orthogonal
pure states or two non-orthogonal pure states (to capture an insight of two-cluster structure in
the population). While this may appear an intuitive approach in psychology, bear in mind the
cautionary notes regarding parameters and the non-uniqueness of density state decomposition.
From the point of view of modelling in psychology, the transition between these different
approaches to mental state representation can be operationally determined, in terms of the
complexity of the data set and the additional parameters that are needed in the different cases.
Readers should also be aware that a seemingly innocuous increase in the complexity of the mental
state—by mixing—can translate to much greater complexity regarding probabilities, compared to
the situation of dealing with pure states.

We have devised a novel Hamiltonian mixing scheme in C
4 that allows an analytical

expression of the outcome probability. We were able to specify Hmix in such a way that mixing
will diminish with a greater similarity of the dynamics in the two ‘known condition’ subspaces;
this can plausibly be endowed with psychological meaning, in particular situations. Additionally,
it may be the case that mixing can be theoretically motivated even in cases of almost identical
subspace dynamics; this can be achieved through increasing the free parameter m.

One of the main motivations in adopting modelling with QPT over CPT is the former’s
possibility to formally express the violation of the classical law of total probability in various
experimental paradigms [22]. Comparing the total probability PTot,A(t) with PA|u(t), which can
reflect a result from quantum interference, we observed the law’s violation in the unpacking factor
and displayed both subadditive and superadditive regimes. It is this problem which motivated
the use of direct sum space structure in many QPT cognitive dynamical models, instead of the
more common tensor structures. Here, we saw how we can specify a simple mixer, which has a
powerful interpretation regarding the transition from consistency with the law of total probability
to violations of the law of total probability. Readers should again be cautioned regarding the
algebraic complexity of such directions, especially when the mental states are represented with
mixed operators. Of course, one can always employ numerical methods to address any such
problems.

Finally, we addressed the issue of the time periodicity in conventional—Schrödinger type—
quantum-like modelling and provided an interpretative framework to extend such dynamics.
Unitary dynamics assumes that participants adopt a task in isolation. Such an assumption may
be warranted in some cases (e.g. when an experimenter takes great care to ensure that participants
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approach a task regardless of any other knowledge or biases they might have), but this will
clearly not be a general assumption. An area of quantum cognition, which has received little
attention, concerns the transition from unitary to open-system dynamics, whereby the latter can
be understood as decision situations which take place in the broader context of a participant’s
knowledge and experience. Importantly, this distinction has empirical traction, in the simple
sense that unitary dynamics are perpetually oscillating, whereas open-system dynamics stabilize
to a particular state. We have shown how open-system Lindblad dynamics can be simply
implemented for the dynamical system of interest and illustrated the diminishing of oscillatory
behaviour in the dynamics.

In conclusion, QPT provides a rich set of technical tools for dynamics. Current work in
quantum cognition has only employed a small subset of these tools. It is hoped that this paper
will facilitate the adoption of more complex dynamical tools and so open the doors for richer
empirical predictions.
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Appendix A
See figure 12.

Appendix B
Analytical expression ProbA(t) for general Hamiltonian form Hwin⊕Hlose+Hmix.

pA(t)= p

[
pw

(
cos2(

√
1+ h2t) pcw + 1

1+ h2 sin2(
√

1+ h2t)

×
[
[nWz

2pcw + 2 nWx nWz
√

pcw
√

1− pcw + (1− pcw)(nWx
2 + nWy

2)]

+ [n2
Mzpcw + 2 nMx nMz

√
pcw

√
1− pcw + (1− pcw)(nMx

2 + nMy
2)]
]

− 1√
1+ h2

2 sin(
√

1+ h2 t) cos(
√

1+ h2t) nWy
√

pcw
√

1− pcw

)

+ (1− pw)
(

cos2(
√

1+ h2t) pcl +
1

1+ h2 sin2(
√

1+ h2t)

×
[
[nMz

2pcl + 2 nMx nMz
√

pcl
√

1− pcl + (1− pcl)(nMx
2 + nMy

2)]

+ [nLz
2pcl + 2 nLx nLz

√
pcl
√

1− pcl + (1− pcl)(nLx
2 + nLy

2)]
]
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