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Random variables representing measurements,
broadly understood to include any responses to
any inputs, form a system in which each of them
is uniquely identified by its content (that which it
measures) and its context (the conditions under which
it is recorded). Two random variables are jointly
distributed if and only if they share a context. In
a canonical representation of a system, all random
variables are binary, and every content-sharing pair
of random variables has a unique maximal coupling
(the joint distribution imposed on them so that they
coincide with maximal possible probability). The
system is contextual if these maximal couplings
are incompatible with the joint distributions of the
context-sharing random variables. We propose to
represent any system of measurements in a canonical
form and to consider the system contextual if and
only if its canonical representation is contextual.
As an illustration, we establish a criterion for
contextuality of the canonical system consisting of all
dichotomizations of a single pair of content-sharing
categorical random variables.

This article is part of the themed issue ‘Second
quantum revolution: foundational questions’.

1. Introduction
We begin by recapitulating the basics of our theory of
‘quantum-like’ contextuality, and then explain how this
theory is developed in this paper. The name of the theory
is Contextuality-by-Default (CbD), and its recent accounts
can be found in [1–3].
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Remark 1.1. We use the following two notation conventions throughout the paper: (1) owing
to its frequent occurrence, we abbreviate the term random variable as rv (rvs in plural); and (2) we
unconventionally capitalize the words conteNt and conteXt to prevent their confusion in reading.

The matrix below represents the smallest possible version of what we call a cyclic system [4–7]:

R1
1 R1

2 c = 1

R2
1 R2

2 c = 2

q = 1 q = 2 R .

Each of the rvs Rc
q represents measurements of one of two properties, q = 1 or q = 2, under one of

two conditions, c = 1 or c = 2. The ‘properties’ q can also be called ‘objects’, ‘inputs’, ‘stimuli’, etc.
depending on the application, and we refer to q generically as the conteNt of the measurement Rc

q.
The superscript c in Rc

q describes how and under what circumstances q is measured, including
what other conteNts are measured together with q. We refer to c generically (and traditionally) as
the conteXt of the measurement Rc

q. The conteNt–conteXt pair (q, c) provides a unique identification
of Rc

q within the system of measurements R. In addition, being an rv, Rc
q is characterized by its

distribution. In this paper, consideration is confined to categorical rvs, those with finite numbers of
values. The term ‘measurement’ is understood very broadly, to include any response to any input
or stimulus.

Let us begin with the simplest case of the system R, when all four rvs Rc
q are binary. In quantum

physics, Rc
q may describe a measurement of spin along one of two fixed axes, q = 1 or q = 2, in a

spin- 1
2 particle. In psychology, Rc

q may describe a response to one of two Yes–No questions, q = 1
or q = 2. In both applications, in conteXt c = 1 one measures first q = 1 and then q = 2; in conteXt
c = 2 the measurements are made in the opposite order. The rvs sharing a conteXt c are recorded
in pairs, (Rc

1, Rc
2), which means that they are jointly distributed and can be viewed as a single (here,

four-valued) rv. No such joint distribution is defined for rvs in different conteXts, such as R1
2 and

R2
1. They are stochastically unrelated (to each other): one cannot ask about the probability of an

‘event’ [R1
2 = x, R2

1 = y], as no such ‘event’ is defined. In particular, two conteNt-sharing rvs, R1
q

and R2
q , are always stochastically unrelated, hence they can never be considered one and the same

rv, even if they are identically distributed (see [1] for a detailed probabilistic analysis).
In both applications mentioned, the distributions of R1

q and R2
q are de facto different. In the

quantum-mechanical example, the first spin measurement generally changes the state of the
particle [8]. Assuming identical preparations in both conteXts c, therefore, the state of the particle
when a q-spin is measured first will be different from that when it is measured second. In the
behavioural example, one’s response to a question asked second will generally be influenced
by the question asked first [9,10]. This creates obvious conteXt-dependence of the measurements,
but this is not what we call contextuality in our theory. The original meaning of the term in
quantum mechanics, when translated into the language of probability theory (as in [1,3,11] and,
with caveats, [6,12–17]), is that measurements of one and the same physical property q have to
be represented by different rvs depending on what other properties are being measured together
with q—even when the laws of physics exclude all direct interactions (energy/information transfer)
between the measurements. By extension, when such direct interactions are present, as they are
in our two applications of the system R, we speak of contextuality only if the dependence of Rc

q
on c is greater, in a well-defined sense, than just the changes in its distribution. Contextuality is a
non-causal aspect of conteXt-dependence, revealed in the probabilistic relations between different
measurements rather than in their individual distributions.

This is how this understanding is implemented in CbD. We characterize the conteXt-induced
changes in the individual distributions, i.e. the difference between those of R1

q and R2
q , by

maximally coupling them. This means that we replace R1
q and R2

q with jointly distributed T1
q and

T2
q that have the same respective individual distributions, and among all such couplings we find

one with the maximal value of Pr [T1
q = T2

q ]. This maximal coupling (T1
q , T2

q ) always exists and
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is unique. The next step is to see if there exists an overall coupling S of R, a jointly distributed
quadruple with elements corresponding to those of R,

S1
1 S1

2 c = 1

S2
1 S2

2 c = 2

q = 1 q = 2 S ,

such that its rows (Sc
1, Sc

2) are distributed as the rows of R and its columns (S1
q , S2

q) are distributed
as the maximal couplings (T1

q , T2
q ) of the columns of R. If such a maximally connected coupling

S does not exist, one can say that the within-conteXt (row-wise) relations prevent different
measurements of the same conteNt (column-wise) from being as close to each other as this is
allowed by the direct influences alone. Put differently, the relations of R1

q and R2
q with their same-

conteXt counterparts force them, if imposed a joint distribution on, to coincide less frequently than
if these relations are ignored. The system then is deemed contextual. Conversely, if the coupling S
above exists, the within-conteXt relations do not make the measurements of R1

q and R2
q any more

dissimilar than required by the direct influences: the system is non-contextual.
The (non)existence of S is determined by a simple linear programming procedure [3,4]: in

our example, S has 24 possible values, and we find out if they can be assigned non-negative
numbers (probability masses) that sum to the given row-wise probabilities Pr [Rc

1 = x, Rc
2 = y]

and the computed column-wise probabilities Pr[T1
q = x, T2

q = y]. There is also a simple criterion
(inequality) for the existence of a solution for this system of equations [4–6]. Using it one can show,
e.g. that in our quantum-mechanical application the system R is always non-contextual, and this
is also true for the behavioural application if one adopts the model proposed in [9] (see [18] for
details). Mathematically, however, the system R can be contextual, and if it is, CbD provides a
simple way of computing the degree of its contextuality [3]: one replaces the probability masses in
the above linear programing task with quasi-probabilities, allowed to be negative, and finds among
the solutions the minimum sum of their absolute values (see §2c).

Although most of these principles and procedures of CbD have been formulated for arbitrary
systems of measurements [3,11], they only work without complications with systems that satisfy
the following two constraints: (A) they contain only binary rvs, and (B) there are no more than
two rvs sharing a conteNt (i.e. occupying the same column). What we propose in this paper is
to always present a system of measurements in a canonical form, which is in essence one with the
properties A and B. The cyclic systems form a subclass of canonical systems, rich enough to cover
most experimental paradigms of traditional interest in quantum-mechanical and behavioural
contextuality studies [3,4,6,11,18,19], but far from satisfactory generality.

What are the complications one faces if a system does not satisfy the properties A and B?
Consider the system below, with all its rvs binary but with three rather than two of them in
each column:

R1
1 R1

2 c = 1

R2
1 R2

2 c = 2

R3
1 R3

2 c = 3

q = 1 q = 2 R′ .

How does CbD apply here? In the earlier version of the theory (summarized in [3,11]), we
computed the couplings (T1

q , T2
q , T3

q ) of each column that maximize Pr [T1
q = T2

q = T3
q ]. One problem

with this approach is that the maximal coupling (T1
q , T2

q , T3
q ), while it always exists, is not defined

uniquely. What should be the contextuality analysis of R′ if the within-conteXt (row-wise)
distributions are compatible with some but not all combinations of the maximal couplings for
the two columns? Shall one then speak of a partial (non)contextuality? Originally, we proposed
to consider a system non-contextual if it is compatible with at least one of these pairs of maximal
couplings, but in addition to being arbitrary, this leads to another complication: it may then very
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well happen that the system R′ is non-contextual but one of its subsystems, e.g. R, is contextual.
This is contrary to one’s intuition of non-contextuality.

In the most recent publications therefore [1,2], we modified our approach into ‘CbD 2.0’,
by positing that a coupling for conteNt-sharing measurements should be computed so that it
maximizes the probability of coincidence for every pair (equivalently, every subset) of them. In our
case, this means maximization of Pr [T1

q = T2
q ], Pr [T2

q = T3
q ] and Pr [T1

q = T3
q ] (it is in fact sufficient

to maximize only certain pairs rather than all of them, but this is not critical here). Such a coupling
(T1

q , T2
q , T3

q ) is called multimaximal. With only binary rvs involved, a multimaximal coupling always
exists and is unique; and a subsystem of a non-contextual system then is always non-contextual.

Returning to system R, consider now the situation when the measurements involved are
not dichotomous. For example, let the two successive spin measurements along axes q = 1 and
q = 2 be made on a hypothetical spin-2 particle, with the measurement outcomes denoted by
{−2, −1, 0, 1, 2}. In the behavioural application, let the questions asked allow five answers each,
labelled in the same way. A maximal coupling in this situation exists for each column of R, but not
uniquely. This takes us back to the problem of what one should do if the row-wise distributions
are compatible with some but not all pairs of these maximal couplings. Another problem is even
harder. If the system is deemed non-contextual, one may consider it desirable that it remain non-
contextual after some of the measurement outcomes are ‘lumped together.’ Thus, one may wish
to consider {−2, −1, 0, 1, 2} in terms of ‘negative-zero-positive’, lumping together −2 with −1 and
2 with 1. Or one may wish to look at the outcomes in terms of ‘zero-non-zero.’ As it turns out, a
non-contextual system may become contextual after such coarsening of some of its measurements.

Both these problems can be resolved if we agree that every measurement included in the system,
empirically recorded or computed from those empirically recorded, should be represented by a set of binary
rvs. Let us denote by Dc

qW the Bernoulli rv that equals 1 if the value of Rc
q is within the subset W

of its possible values. We call Dc
qW a split (of the original rv). We posit that a measurement with

k distinct values should always be represented by k ‘detectors’ of these values, i.e. the splits with
one-element subsets W. Thus, in our system R, each measurement Rc

q should be replaced with
the jointly distributed splits

(Dc
q{−2}, Dc

q{−1}, Dc
q{0}, Dc

q{1}, Dc
q{2}).

If one is also interested in the coarsening of Rc
q′ into values ‘negative-zero-positive’, then the list

should be expanded into

(Dc
q{−2}, Dc

q{−1}, Dc
q{0}, Dc

q{1}, Dc
q{2}, Dc

q{−2,−1}, Dc
q{1,2}).

If one wishes to include all possible coarsenings of the original rvs in R, then the set of binary rvs
should consist of all possible splits. As every dichotomization creating a split should be applied
to all rvs sharing a conteNt, one ends up replacing the system R with

D1
1{−2} · · · D1

1{2} D1
1{−2,−1} · · · D1

1{1,2} · · · D1
2{1,2} c = 1

D2
1{−2} · · · D2

1{2} D2
1{−2,−1} · · · D2

1{1,2} · · · D2
2{1,2} c = 2

q = 1{−2} · · · q = 1{2} q = 1{−2, −1} · · · q = 1{1, 2} · · · q = 2{1, 2} D .

There are (25 − 2)/2 = 15 distinct dichotomizations of the set {−2, −1, 0, 1, 2}, and the 15 subsets
W in Dc

qW should be chosen to avoid duplication, such as in Dc
q{0,1} and Dc

q{−2,−1,2}. Once
duplication is prevented, however, all splits of all rvs one is interested in should be included.
It is irrelevant that some of them can be presented as functions of the others. In fact, any split of
our Rc

q can be presented as a function of just three splits, chosen, e.g. as

Dc
q′ = Dc

q{−1,1}, Dc
q′′ = Dc

q{0,1}, Dc
q′′′ = Dc

q{2}.
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It is easy to show, however, that in the subsystem

D1
1′ D1

1′′ D1
1′′′ f (D1

1′ , D1
1′′ , D1

1′′′ ) c = 1

D2
1′ D2

1′′ D2
1′′′ f (D2

1′ , D2
1′′ , D2

1′′′ ) c = 2

q = 1′ q = 1′′ q = 1′′′ q∗ D′

of the system D, the f -transformation of the maximal couplings of the first three columns, because
these couplings are not jointly distributed, would not determine the coupling of the fourth
column, let alone ensure that this coupling is maximal.

There is no general prescription as to which rvs should or should not be included in the
system representing an empirical set of measurements: what one includes (e.g. what coarsenings
of the rvs already in play one considers) reflects what aspects of the empirical situation one is
interested in. Once a set of rvs is chosen, however, we uniquely form their splits and place them
in a canonical system.

The remainder of the paper is organized as follows. In §2, we present the abstract version of
CbD applicable to all possible systems of categorical (and not only categorical) rvs. In §3, we
formalize the idea of representing any system of rvs by their splits and applying contextuality
analysis to these representations only. In §4, we investigate the representation of all coarsenings
of a single pair of conteNt-sharing rvs by all possible splits. In the concluding section, we explain
why one might wish to consider only some rather than all possible splits.

Remark 1.2. The proofs of the formal propositions in the paper, unless obvious or referenced
as presented elsewhere, are given in electronic supplementary material, file S, together with
additional theorems and examples.

2. Formal theory of contextuality

(a) Basic notions
The definition of a system of rvs requires two non-empty finite sets, a set of conteNts Q and a set
of conteXts C. There is a relation

� ⊆ Q × C, (2.1)

such that the projections of � into Q and C equal Q and C, respectively (this means that, for every
q ∈ Q, there is a c ∈ C, and vice versa, such that q � c). We read both q � c and c � q as ‘q is measured
in c’.

A categorical rv is one with a finite set of values and its power set as the codomain sigma-
algebra. A system of (categorical) rvs is a double-indexed set (we use calligraphic letters for sets
of random variables)

R= {Rc
q : q ∈ Q, c ∈ C, q � c}, (2.2)

such that (i) any Rc
q and Rc′

q have the same set of possible values; (ii) Rc
q and Rc′

q′ are jointly

distributed if c = c′; and (iii) if c �= c′, Rc
q and Rc′

q′ are stochastically unrelated (possess no joint
distribution). For any c ∈ C, the subset

Rc = {Rc
q : q ∈ Q, q � c} = Rc (2.3)

of R is called a bunch (of rvs) corresponding to c. As the elements of a bunch are jointly distributed,
the bunch is a (categorical) rv in its own right, so it can be also written as Rc. Note that we do not
distinguish the representations of R as (2.2) and as

R= {Rc : c ∈ C}. (2.4)

(See [1,3] for a detailed probabilisitic analysis.)
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For any q ∈ Q, the subset
Rq = {Rc

q : c ∈ C, q � c} (2.5)

of R is called a connection (between the bunches of rvs) corresponding to q. Any two elements of
a connection are stochastically unrelated, so it is not an rv.

(b) General definition of (non)contextuality
A (probabilistic) coupling Y of a set of rvs {X1, . . . , Xn} is a set of jointly distributed {Y1, . . . , Yn}
such that Yi ∼ Xi for i = 1, . . . , n. The tilde ∼ stands for ‘has the same distribution as’.

An (overall) coupling S of a system R in (2.2) is a coupling of its bunches. That is, it is an rv

S = {Sc : c ∈ C}, (2.6)

(with jointly distributed components) such that Sc ∼ Rc for any c ∈ C. This implies that

Sc = {Sc
q : q ∈ Q, q � c} (2.7)

is a set of jointly distributed rvs in a one-to-one correspondence with the identically labelled
elements of R.

For a given q ∈ Q, a coupling Tq of a connection Rq is an rv

Tq = {Tc
q : c ∈ C, q � c}, (2.8)

such that Tc
q ∼ Rc

q. In particular, if S is a coupling of R, then

Sq = {Sc
q : c ∈ C, q � c} (2.9)

is a coupling of Rq for any q ∈ Q.

Definition 2.1. Given a set T = {Tc : c ∈ C} of couplings for all connections in a system R, the
system is said to be non-contextual with respect to T if R has a coupling S with Sq ∼ Tq for any q ∈ Q.
Otherwise R is said to be contextual with respect to T .

Put differently, R is non-contextual with respect to T if and only if there is a jointly distributed
set

S = {Sc
q : q ∈ Q, c ∈ C, q � c}, (2.10)

such that, for every c ∈ C, Sc ∼ Rc, and for every q ∈ Q, Sq ∼ Tq. A coupling S with this property
is called T -connected.

If the couplings Tq are characterized by some property C such that one and only one coupling
Tq satisfies this property for any given connection Rq, then the definition can be rephrased as
follows.

Definition 2.2. R is said to be non-contextual with respect to property C if it has a C-connected
coupling S, defined as one with Sq satisfying C for any q ∈ Q. Otherwise R is said to be contextual
with respect to C.

Remark 2.3. In §3c, we will use the property of (multi)maximality to play the role of C, and the
couplings in question then are referred to as (multi)maximally connected.

(c) Degree of contextuality
A quasi-distribution on a finite set V is a function V → R (real numbers) such that the numbers
assigned to the elements of V sum to 1. We will refer to these numbers as quasi-probability masses.
A quasi-rv X is defined analogously to an rv but with a quasi-distribution instead of a distribution.

A quasi-coupling X of R is defined as a quasi-rv

X = {Xc
q : q ∈ Q, c ∈ C, q � c}, (2.11)

such that Xc ∼ Rc for every c ∈ C. We have the following results.
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Theorem 2.4 ([3, Theorem 6.1]). For any system R and any set T of couplings for the connections
of R, there is a quasi-coupling X of R such that Xq = {Xc

q : c ∈ C, q � c} ∼ Tq for any q ∈ Q.

The total variation of X is denoted by ‖X‖ and defined as the sum of the absolute values of the
quasi-probability masses assigned to all values of X.

Theorem 2.5 ([3, Section 6.3]). The total variation ‖X‖ reaches its minimum in the class of all quasi-
couplings X satisfying the conditions of theorem 2.4.

If min ‖X‖ is 1, then all quasi-probability masses are non-negative, and the system R is non-
contextual with respect to T . If min ‖X‖ > 1, then the system is contextual with respect to T , and
min ‖X‖ − 1 can be taken as a (universally applicable) measure of the degree of contextuality.

3. Splits and canonical representations

(a) Expansions of the original system
One is often interested not only in a system of empirically measured rvs R but also in some
transformations thereof. Each such a transformation Fq1,...,qk is labelled by a set of conteNts,
q1, . . . , qk, and it takes as its arguments the rvs Rc

q1
, . . . , Rc

qk
in each conteXt c such that c � q1, . . . , qk.

The outcome,

Rc
q∗ = Fq1,...,qk (Rc

q1
, . . . , Rc

qk
) (3.1)

is an rv interpreted as measuring a new conteNt q∗ in the conteXt c. One is free to choose any such
transformations and form the corresponding new conteNts, as there can be no rules mandating
what one should be interested in measuring.

Using various transformations to add new conteNts and new rvs to the original system expands
it into a larger system. Two types of expansions that are of particular interest are expansion-through-
joining and expansion-through-coarsening. Joining is defined as

Rc
q1

, . . . , Rc
qk


−→ (Rc
q1

, . . . , Rc
qk

) = Rc
q′ , (3.2)

whereas coarsening is transformation

Rc
q 
−→ Fq(Rc

q) = Rc
q′′ . (3.3)

In fact any other transformation Fq1,...,qk (Rc
q1

, . . . , Rc
qk

) can be presented as joining followed by
coarsening.

Example 3.1 (joining). Consider the system

R1
1 R1

2 · c = 1

R2
1 R2

2 · c = 2

R3
1 · R3

3 c = 3

· R4
2 R4

3 c = 4

q = 1 q = 2 q = 3 R .

It contains the jointly distributed R1
1, R1

2 and also the jointly distributed R2
1, R2

2, but in
determining the maximal couplings of R1

1, R2
1 and of R1

2, R2
2 in the first and second columns, these

row-wise joints are not used. In some applications, this would be unacceptable (e.g. in the theory
of selective influences [20,21] and in the approach advocated by Abramsky and colleagues [22,23]
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this is never acceptable), and then the following expansion has to be used:

R1
1 R1

2 · (R1
1, R1

2) c = 1

R2
1 R2

2 · (R2
1, R2

2) 2

R3
1 · R3

3 · 3

· R4
2 R4

3 · 4

q = 1 2 3 12 R∗ .

Example 3.2 (coarsening). If V is a set of possible values of Rc
q, then U = Fq(V) is the set of

possible values of the rv Rc
q∗ = Fq(Rc

q). This rv is a coarsening of Rc
q. Note that any rv is its own

coarsening. As the way one labels the values of U is usually irrelevant, each such function Fq can
be presented as a partition of V. Consider, e.g. the ‘mini’-system

R1
q c = 1

R2
q c = 2

q R ,

and let the two rvs take values on {1, 2, 3, 4, 5}. If these values are considered ordered, 1 < · · · < 5,
one may be interested in all possible partitions of {1, 2, 3, 4, 5} into subsets of consecutive numbers,
such as {12 | 34 | 5}, {1 | 2345}, etc. There are 15 such partitions (counting {1 | 2 | 3 | 4 | 5} that defines
the original rvs Rc

q, but excluding the trivial partition {12345}). If the values 1, 2, 3, 4, 5 are treated
as unordered labels, one might consider all possible non-trivial partitions, such as {{14}, {25}, {3}},
{{145}, {23}}, etc. There are 51 such partitions. In either of these two coarsening schemes the
partitions can be ordered in some way, and the respective expanded systems then become

R1
q R1

q1′ · · · R1
q14′ c = 1

R2
q R2

q1′ · · · R2
q14′ c = 2

q q1′ · · · q14′ R′

and

R1
q R1

q1′′ · · · R1
q50′′ c = 1

R2
q R2

q1′′ · · · R2
q50′′ c = 2

q q1′′ · · · q50′′ R′′ .

Remark 3.3. Although the number of the states (combinations of the values of the elements)
of the bunch Rc in R′ and especially in R′′ is very large, the support of each bunch (the set of
the states with non-zero probabilities) has the same size as that of the initial random variable Rc

q
in R (i.e. in our example, it cannot exceed 5). This follows from the facts that each event Rc

q = x
uniquely defines the state of Rc in R′ and in R′′, and that

∑
x Pr [Rc

q = x] = 1.

(b) Dichotomizations and canonical/split representations
Definition 3.4. A dichotomization of a set V is a function f : V → {0, 1}. Applying such an f to

an rv R with the set of possible values V, we get a binary rv f (R). We call this f (R) a split of the
original R.

If Rc
q is an element of a system R, let us agree to identify f (Rc

q) as Dc
qW , where W = f −1(1), with

the understanding that Dc
qW and Dc

q(V−W) are indistinguishable. To make the choice definitive, we
always choose W as the smaller of W and V − W; in case they have the same number of elements,
we order the elements of V, say 1 < 2 < · · · < k, and then choose W as lexicographically preceding
V − W.

With V = {1, 2, . . . , k}, the jointly distributed set of splits

{Dc
q{1}, Dc

q{2}, . . . , Dc
q{k}} (3.4)

is called the split representation of Rc
q. If k = 2, then Rc

q is its own split representation, because Dc
q{1}

and Dc
q{2} are indistinguishable.
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Definition 3.5. The system D obtained from a system R by replacing each of its elements by its
split representations is called the canonical (or split) representation of R.

Example 3.6 (continuing example 3.1). Let all rvs in R be binary, 0/1, whence (R1
1, R1

2)
and (R2

1, R2
2) in R∗ have four values each: 00, 01, 10 and 11. Replacing them with the split

representations and observing that the first three columns do not change, we get the following
canonical representation of R∗:

D1
1 = R1

1 D1
2 = R1

2 · D1
12{00} D1

12{01} D1
12{10} D1

12{11} c = 1

D2
1 = R2

1 D2
2 = R2

2 · D2
12{00} D2

12{01} D2
12{10} D2

12{11} 2

D3
1 = R3

1 · D3
3 = R3

3 · · · · 3

D4
2 = R4

2 D4
3 = R4

3 · · · · 4

q = 1 2 3 12{00} 12{01} 12{10} 12{11} D∗ .

Example 3.7 (continuing example 3.2). For the system R′, it is clear that the split
representations of the 15 coarsenings of Rc

q variously overlap: e.g. D1
q{3} belongs to the split

representations of R1
q and of the coarsenings defined by the partitions {12 | 3 | 45}, {1 | 2 | 3 | 45} and

{12 | 3 | 4 | 5}. Following our rules, W in the splits Dc
qW comprising the split representation of R′ are

(when written as strings) 1, 2, 3, 4, 5, 12, 23, 34, 45 and 15 (note that, e.g., the split of the coarsening
{1 | 23 | 4 | 5} with W = {1, 23} should be denoted as D1

q{1,23} according to our definitions, but this

is the same random variable as D1
q{45} which we have included in the list). For the system R′′ the

canonical representation, obviously, consists of all possible splits of Rc
q. It will be the target of the

analysis presented in §4.

(c) Multimaximality for canonical representations
If each connection in a canonical representation D contains just two rvs, one can compute
unique maximal couplings for all of these connections. The determination of whether D∗ is
(non)contextual then can proceed in compliance with the general theory presented in §2b, and
amounts to determining if D∗ has a maximally connected coupling S (see remark 2.3). If no such
coupling exists, the computation of the degree of contextuality in D∗ can be done in compliance
with §2c.

In a more general case, however, with an arbitrary number of rvs in each connection, maximal
couplings should be replaced with computing what we call multimaximal couplings [1,2].

Definition 3.8. A coupling Tq of a connection Dq of a split representation D is called
multimaximal if, for any c, c′ ∈ C such that c, c′

� q, Pr [Tc
q = Tc′

q ] is maximal over all possible
couplings of Dq. (If the connection contains two rvs, its multimaximal coupling is simply
maximal.)

A multimaximal coupling is known to have the following properties.

Multimax1: The multimaximal coupling exists and is unique for any connection Dq ([2]
Corollary 1).
Multmax2: Tq is a multimaximal coupling of Dq if and only if any subset of Tq is a maximal
coupling for the corresponding subset of Dq ([2, Theorem 5]; [1, Theorem 2.3]).
Multimax3: In a connection Dq, if {c1, . . . , cn} is the set of all c � q enumerated so that

Pr [Dc1
q = 1] ≤ · · · ≤ Pr [Dcn

q = 1],

then Tq is a multimaximal coupling of Dq if and only if Pr [Tci
q = Tci+1

q ] is maximal for
i = 1, . . . , n − 1, over all possible couplings of Dq ([1, Theorem 2.3]).
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4. The largest canonical representation of a two-element connection
We consider here the case when one is interested in all possible coarsenings of the rvs in a
system. The canonical/split representation of the system then contains all splits of all rvs. We will
investigate in detail a fragment of the original (expanded) system involving just two k-valued rvs
within a single connection:

R1
1 c = 1

R2
1 c = 2

q = 1 R .

The canonical system with all splits of these k-valued rvs is

D1 : D1
W1 D1

W2 D1
W(2k−1−1) c = 1

D2 : D2
W1 D2

W2 · · · D2
W(2k−1−1) c = 2

q = W1 W2 · · · W(2k−1 − 1) D ,

where W1, W2, etc. are the subsets f −1(1) chosen as explained in §3b from the 2k−1 − 1 distinct
dichotomizations f of {1, . . . , k}. The number 2k−1 − 1 is arrived at by taking the number of all
subsets, subtracting 2 improper subsets, and dividing by 2 because one chooses only one of W
and {1, 2, . . . , k} − W. The goal is to determine whether D is contextual. If it is, then any canonical
system that includes D as its subsystem (i.e. represents an original system with R as part of one
of its connections) is contextual.

The two original rvs have distributions

Pr [R1
1 = i] = pi and Pr [R2

1 = i] = qi, i = 1, 2, . . . , k. (4.1)

A state (or value) of a bunch in the system D is a vector of 2k−1 − 1 zeroes and ones. However,
the support of each of the bunches in system D consists of at most k corresponding states, and we
can enumerate them by any k symbols, say, 1, 2, . . . , k, as in the original variable:

Pr [D1 = i] = pi and Pr [D2 = i] = qi, i = 1, 2, . . . , k. (4.2)

As a result, D = {D1, D2} has k2 possible states that we can denote as ij, with i, j ∈ {1, 2, . . . , k}.
A coupling S = (S1

q , S2
q) of D assigns probabilities

rij = Pr [S1
q = i, S2

q = j], i, j ∈ {1, . . . , k}, (4.3)

to these k2 states so that they satisfy 2k linear constraints imposed by (4.1),

k∑
j=1

rij = pi and
k∑

i=1

rij = qj, i, j ∈ {1, . . . , k}. (4.4)

If S is maximally connected, then it should also satisfy 2k−1 − 1 linear constraints imposed by the
maximal couplings of the corresponding connections. Specifically, if W = {i1, . . . , im} ⊂ {1, . . . , k},
then the maximal coupling (S1

W , S2
W) of (D1

W , D2
W) is distributed as

Pr [S1
W = 1] = Pr [D1

W = 1] = pi1 + pi2 + · · · + pim

Pr [S2
W = 1] = Pr [D2

W = 1] = qi1 + qi2 + · · · + qim

and Pr [S1
W = S2

W = 1] = min(pi1 + pi2 + · · · + pim , qi1 + qi2 + · · · + qim )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (4.5)

Let us use the term m-split to designate any split DW with an m-element set W (m ≤ k/2). Thus, DW

with W = {i} is a 1-split, with W = {i, j} it is a 2-split, and the higher-order splits appear beginning
with k > 5. Theorem 4.3 and its corollaries below show that in determining whether the system
D is contextual, one needs to consider only the 1-splits and 2-splits. Let us use the term 1–2
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system for this subsystem of D. An overall coupling S of D contains as its part a maximally
connected coupling of the 1–2 system if and only if the probabilities rij in (4.3) satisfy (4.5) for
m = 1 and m = 2:

rii = min(pi, qi), i ∈ {1, . . . , k} (4.6)

and
rii + rij + rji + rjj = min(pi + pj, qi + qj), i, j ∈ {1, . . . , k}, i < j. (4.7)

That is, a maximally connected coupling of the 1–2 system is described by the 3k + (k
2
)

linear
equations (4.4), (4.6) and (4.7). We have therefore the following necessary condition for non-
contextuality of D.

Theorem 4.1. If the system D is non-contextual, then the 3k + (k
2
)

linear equations (4.4), (4.6) and
(4.7) are satisfied.

Remark 4.2. Note that 3k + (k
2
)
< k2 for k > 5. (For completeness only, theorem S.1 in electronic

supplementary material, file S, shows that the rank of this system of equations is 2k − 1 + (k
2
)
.)

Theorem 4.3. In a maximally connected coupling S of D with k > 5, the distributions of the 1-splits
and 2-splits uniquely determine the probabilities of all higher-order splits. Specifically, for any 2 < m ≤ k/2,
and any W = {i1, . . . , im} ⊂ {1, . . . , k}, the probability that the corresponding m-split equals 1 is

min(pi1 + pi2 + · · · + pim , qi1 + qi2 + · · · + qim ) =
m∑

j=1

min(pij , qij )

+
m−1∑
j=1

m∑
j′=j+1

[min(pij + pij′ , qij + qij′ ) − min(pij , qij ) − min(pij′ , qij′ )]. (4.8)

It is easy to find numerical examples of the distributions of R1
1 and R2

1 for which (4.8) is violated
(see example S.2 in electronic supplementary material, file S). As shown below, however, (4.8)
cannot be violated if a maximally connected coupling for the 1–2 system exists. It follows from
the fact that the statement of theorem 4.1 can be reversed: (4.4), (4.6) and (4.7) imply that D is
non-contextual. We establish this fact by first characterizing the distributions of R1

1 and R2
1 for a

non-contextual 1–2 system (theorem 4.4 with corollary 4.5), and then showing that (4.8) always
holds for such distributions (theorem 4.6).

Theorem 4.4. A maximally connected coupling for a 1–2 system is unique if it exists. In this coupling,
the only pairs of ij in (4.3) that may have non-zero probabilities assigned to them are the diagonal states
{11, 22, . . . , kk} and either the states {i1, i2, . . . , ik} for a single fixed i or the states {1j, 2j, . . . , kj} for a single
fixed j (i, j = 1, . . . , k).

Assuming, with no loss of generality, that the single fixed i or the single fixed j in the
formulation above is 2, the theorem says that the non-zero probabilities assigned to the states
of the maximally connected coupling (shown below for k = 4) could only occupy the cells marked
with asterisks:

1 2 3 4

1 ∗ ∗ 0 0

2 0 ∗ 0 0

3 0 ∗ ∗ 0

4 0 ∗ 0 ∗

or

1 2 3 4

1 ∗ 0 0 0

2 ∗ ∗ ∗ ∗
3 0 0 ∗ 0

4 0 0 0 ∗

.

Corollary 4.5. The 1–2 system for the original rvs R1
1, R2

1 has a maximally connected coupling if and
only if either pi > qi for no more than one i (this single possible i being the single fixed i in the formulation
of the theorem), or pj < qj for no more than one j (this single possible j being the single fixed j in the
formulation of the theorem), i, j ∈ {1, . . . , k}.
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The relationship between (p1, . . . , pk) and (q1, . . . , qk) described in this corollary is some form of
stochastic dominance for categorical rvs, but it does not seem to have been previously identified.
We propose to say that R1

1 nominally dominates R2
1 if pi < qi for no more than one value of i = 1, . . . , k

(i.e. pi ≥ qi for at least k–1 of them). Two categorical rvs nominally dominate each other if and only
if either they are identically distributed or k = 2. Using this notion, and combining corollary 4.5
with theorems 4.1 and 4.4, we get the main result of this section.

Theorem 4.6. The system D is non-contextual if and only if its 1–2 subsystem is non-contextual, i.e. if
and only if one of the R1

1 and R2
1 nominally dominates the other.

5. Concluding remarks
Contextuality analysis of an empirical situation involves the following sequence of steps:

empirical
measurements

�� initial
system of rvs

�� expanded
system of rvs

�� canonical/split
representation

In the initial system, measurements are represented by rvs each of which generally has
multiple values. Expansion means adding to the system new conteNts with corresponding
connections (conteNt-sharing rvs) computed as functions of the existing connections. In a
canonical representation of the system all rvs are binary, and the connections are coupled
multimaximally, meaning essentially that one deals with their elements pair-wise. The issue of
contextuality is reduced to that of compatibility of the unique couplings for pairs of conteNt-
sharing rvs with the known distributions of the conteXt-sharing bunches of rvs. Coupling
the connections multimaximally ensures that a non-contextual system has all its subsystems
non-contextual too.

The canonical system of rvs is uniquely determined by the expanded system, but the latter
is inherently non-unique; it depends on what aspects of the empirical situation one wishes to
include in the system. Thus, it is one’s choice rather than a general rule whether one considers
a multi-valued measurement as representable by all or only some of its possible coarsenings. If
one chooses all coarsenings, the split/canonical representation involves all dichotomizations, and
then theorem 4.6 says that the canonical system is non-contextual only if, for any pair of rvs Rc

q, Rc′
q

in the expanded system, one of them, say Rc
q, ‘nominally dominates’ the other. This domination

means that Pr [Rc
q = x] < Pr [Rc′

q = x] holds for no more than one value x of these rvs: a stringent
necessary condition for non-contextuality, likely to be violated in many empirical systems.

This is of special interest for contextuality studies outside quantum physics. Historically,
the search for non-quantum contextual systems was motivated by the possibility of applying
quantum-theoretic formalisms in such fields as biology [24], psychology [9,25,26], economics
[26,27] and political science [28]. In CbD, the notion of contextuality is not tied to quantum
formalisms in any special way. The possibility of non-quantum contextual systems here is
motivated by treating contextuality as an abstract probabilistic issue: there are no a priori
reasons why a system of rvs describing, say, human behaviour could not be contextual if it
is qualitatively (i.e. up to specific probability values) the same as a contextual one describing
particle spins. Nevertheless, all known to us systems with dichotomous responses investigated
for potential contextuality (with the exception of one, very recent experiment) have been found
to be non-contextual [18,19,29]. The use of canonical representations with dichotomizations of
multiple-choice responses offers new possibilities.

In some cases, however, the use of all possible dichotomizations is not justifiable. Notably,
if the values of an rv are linearly ordered, x1 < x2 < · · · , xN , it may be natural to only allow
dichotomizations f with f −1(1) containing several successive values, {xl, xl+1, . . . , xL}, for some
l, L ∈ {1, . . . , N}. An even stronger restriction would be to only allow ‘cuts’, with f −1(1) =
{xl, xl+1, . . . , xN} or {x1, x2, . . . , xl−1}.
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A B C D

f (x)

g(x)

x

Stronger restrictions on possible dichotomizations translate into stronger restrictions on the pairs
Rc

q, Rc
q′ whose canonical representation is contextual. This fact is especially important if one

considers expanding CbD beyond categorical rvs. Thus, it is easy to see that if one considers
all possible dichotomizations of two conteNt-sharing rvs with continuous densities on the set of
real numbers, then the system will be contextual whenever the two distributions are not identical.
Let the densities of these rvs be f (x) and g(x) shown in the graphic above. If the set of all splits
of these rvs forms a non-contextual system, then any discretization of these rvs should satisfy
corollary 4.5 to theorem 4.4. That is, for any k > 2 and any partition H1, . . . , Hk of the set of reals
into intervals, we should have either

∫
Hi

f (x) dx <
∫

Hi
g(x) dx for no more than one of i = 1, . . . , k

or∫
Hi

f (x) dx >
∫

Hi
g(x) dx for no more than one of i = 1, . . . , k.

(5.1)

This is, however, impossible unless f (x) = g(x). If they are different, then f exceeds g on some
interval, and g exceeds f on some other interval. If we take any two subintervals within each of
these intervals (in the graphic they are denoted by A, B and C, D), any partition H1, . . . , Hk that
includes A, B, C, D will violate (5.1). The development of the theory of canonical representations
with variously restricted sets of splits is a task for future work.
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