Skip to main content
. 2017 Jul 5;8(9):6218–6229. doi: 10.1039/c7sc01619k

Fig. 6. Evaluating the interaction of HE12–SNAs with human serum albumin (HSA). (a) Agarose gel electrophoresis of HE12–SNAs prior (Lane 1) and post incubation (Lane 2) with HSA. The gels were visualized under Gel Red DNA stain channel (left panel), Coomassie Blue protein stain (right panel). GelRed panel shows the absence of a gel mobility shift of DNA nanoparticles after HSA incubation. Coomassie panel displays the lower mobility shift of HSA protein compared to DNA nanoparticles. (b) Denaturing PAGE analysis of dissembled HE12–DNA conjugate strands titrated with different HSA concentrations. Lane 1: HE12–DNA strand control, Lanes 2–8, HSA dilutions of 1/1000, 1/100, 1/50, 1/10, 1/5, 1/2 and undiluted HSA (526 μM stock). Under denaturing conditions, disassembly of the DNA particle exposes the lipophilic HE12 segments, which in turn results in strong binding to HSA protein.

Fig. 6