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Cellular/Molecular

Action Potential Broadening in Capsaicin-Sensitive DRG
Neurons from Frequency-Dependent Reduction of Kv3
Current

Pin W. Liu, Nathaniel T. Blair, and Bruce P. Bean
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115

Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-
sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz
produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 = 7% at
22°C and by 38 * 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of
potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-
repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC5, <100 pm)
and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kvl-mediated current during
AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of
calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current
reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major
contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike
broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the
frequency-dependent decreases in conduction velocity typical of C-fiber axons.
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Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of
potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action
potentials of small-diameter rat DRG neurons showed spike broadening at frequencies as low as 1 Hz and that spike broadening
resulted predominantly from frequency-dependent inactivation of Kv3 channels. Spike width helps to control transmitter release,
conduction velocity, and firing patterns and understanding the role of particular potassium channels can help to guide new
pharmacological strategies for targeting pain-sensing neurons selectively. j

ignificance Statement

Introduction

The sensation of pain originates in primary afferent sensory neu-
rons and some pathophysiological pain likely involves altered
excitability of these neurons (Liu et al., 2000; Chung and Chung,
2002; Katz and Gold, 2006). The excitability of dorsal root ganglia
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(DRG) neurons corresponding to pain-sensing C-fibers is con-
trolled by the many voltage-dependent ion channels that they
express, including multiple types of sodium channels, calcium
channels, and potassium channels (Gold et al., 1996; Rasband et
al., 2001; Rush et al., 2007; Dib-Hajj et al., 2009; Zamponi et al.,
2009). Potassium currents in DRG neurons comprise an espe-
cially complex mixture of components, including multiple inac-
tivating and sustained voltage-gated potassium currents (Gold et
al., 1996; Safronov et al., 1996; Everill et al., 1998; Rola et al.,
2003), calcium-activated potassium currents (Gold et al., 1996;
Scholz et al., 1998), and sodium-activated potassium current
(Nuwer et al., 2010; Martinez-Espinosa et al., 2015) Reduced
potassium currents likely contribute to aberrant nociceptor ac-
tivity produced by inflammation (Nicol et al., 1997; Vaughn and



9706 - J. Neurosci., October 4, 2017 - 37(40):9705-9714

Gold, 2010; Zhang et al., 2012) and nerve injury (Ishikawa et al.,
1999; Abdulla and Smith, 2001; Rasband et al., 2001).

Action potential (AP) shape varies considerably among differ-
ent types of mammalian peripheral and central neurons, reflect-
ing different contributions of various potassium channels. For
example, some neocortical GABAergic interneurons have unusu-
ally narrow APs that result from large fast-activating currents
from Kv3-family channels (Rudy and McBain, 2001; Lien and
Jonas, 2003), whereas repolarization of the broader APs of neo-
cortical pyramidal neurons depends on Kv1, Kv2, and Kv4 chan-
nels and BK-calcium-activated potassium channels (Shao et al.,
1999; Kim et al., 2005; Liu and Bean, 2014; Pathak et al., 2016).
The APs of C-fiber nociceptors are distinctive in being unusually
broad, with a pronounced “shoulder” on the falling phase (Ritter
and Mendell, 1992; Djouhri et al., 1998). The AP shoulder reflects
in part inward voltage-dependent calcium current (McCobb and
Beam, 1991; Scroggs and Fox, 1992) and TTX-resistant Nav1.8
channel current (Renganathan et al., 2001; Blair and Bean, 2002)
flowing during the falling phase and partially competing with
outward potassium currents. The makeup of the potassium cur-
rents flowing during AP repolarization in small-diameter nocice-
ptive DRG neurons is not known in detail. Recent experiments
suggest that channels formed by Kv3.4 subunits are important
because knock-down of Kv3.4 using siRNA results in wider APs
(Ritter et al., 2012), a striking result given the previous associa-
tion of Kv3 channels with cell types with narrow APs. A role of
BK-calcium-activated potassium channels in spike repolariza-
tion is suggested by the ability of the BK blocker iberiotoxin to
broaden APs in some small-diameter DRG neurons (Li et al.,
2007; Zhang et al., 2010).

In some neurons, repetitive firing results in broadening of
APs, generally appearing to reflect cumulative inactivation of po-
tassium channels. Different potassium channel types are involved
in different kinds of neurons. In various molluscan neurons,
spike broadening can result from cumulative inactivation of both
delayed-rectifier potassium current and A-type potassium cur-
rent (Aldrich et al., 1979; Ma and Koester, 1996). In hippocampal
CA1 pyramidal neurons, inactivation of both BK-calcium-activated
potassium channels (Shao et al., 1999) and Kv4-mediated A-type
channels (Kim et al., 2005) is involved. Spike broadening in var-
ious hypothalamic neurons reflects calcium-dependent progres-
sive inactivation of A-type potassium current (Kirkpatrick and
Bourque, 1991, Hlubek and Cobbett, 2000; Sonner et al., 2008).
In hippocampal mossy fiber boutons, spike broadening reflects
inactivation of a Kvl-mediated component of current, resulting
in enhanced calcium entry and enhanced synaptic transmission
(Geiger and Jonas, 2000).

Frequency-dependent spike broadening has been described
in DRG neurons (Harper and Lawson, 1985; Park and Dunlap,
1998), but the mechanism is unknown. Studying small-diameter,
capsaicin-sensitive rat DRG neurons, we found prominent spike
broadening at frequencies as low as 1 Hz. Using the AP clamp
method and pharmacological dissection of currents, we found
that spike broadening in these neurons results primarily from
frequency-dependent inactivation of Kv3 channels.

Materials and Methods

Cell preparation. Dissociated DRG neurons were prepared as described
previously (Blair and Bean, 2002). DRGs were removed from Long—
Evans rats (postnatal day 14-16, either sex), cut in half, and treated for
20 min at 37°C with 20 U/ml papain (Worthington Biochemical) and 5 mm
DpL-cysteine in a Ca?* -free, Mg?* -free (CMF) Hank’s solution contain-
ing the following (in mwm): 136.9 NaCl, 5.4 KCl, 0.34 Na,HPO,,
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Figure 1. Broadening of APs during repetitive stimulation. 4, First and 15th APs evoked by
5 Hz stimulation in a small-diameter, capsaicin-sensitive DRG neuron. APs were evoked by a
0.5ms 1.7 nA current injection. B, Time course of AP broadening with stimulation at frequencies
from 1 to 20 Hz. Symbols show mean = SEM for determinations at 1, 5, 10, and 20 Hz, each
determined in 13 neurons.

0.44 KH,PO,, 5.55 glucose, and 5 HEPES, 0.005% phenol red, pH 7.4.
Ganglia were then treated for 20 min at 37°C with 3 mg/ml collagenase
(type I; Sigma-Aldrich) and 4 mg/ml dispase IT (Boehringer Mannheim)
in CMF Hank’s solution. Cells were dispersed by trituration with a fire-
polished glass Pasteur pipette in a solution of Leibovitz’s L-15 medium
(Invitrogen) supplemented with 10% fetal calf serum, 5 mm HEPES, 50
U/ml penicillin, 50 pg/ml streptomycin, 2 mM L-glutamine, and 100
ng/ml NGF (Invitrogen) and then plated on glass coverslips treated with
200 pg/ml poly-p-lysine. Cells were incubated in the supplemented L-15
solution at 33°C (room air) for 2—4 h, after which they were stored at 4°C
and used within 48 h. Storing the neurons at 4°C inhibited the growth of
neurites so that cells could be voltage clamped with fast settling of the
capacity transient, enabling accurate recording of currents on the fast
time scale of the AP.

Electrophysiology. Whole-cell voltage- and current-clamp recordings
were made from small-diameter DRG neurons (21-33 um) using
electrodes with resistances of 1.5—6 M{) when filled with a potassium-
aspartate internal solution containing the following (in mm): 140
K-aspartate, 13.5 NaCl, 1.6 MgCl,, 0.09 EGTA, 9 HEPES, 4 MgATP, 14
Tris-creatine PO,, and 0.3 Tris-GTP, pH 7.4 with KOH. Pipette tips were
wrapped with thin strips of Parafilm to reduce capacitance. Seals were
formed in Tyrode’s solution containing the following (in mm): 150 NaCl,
4 KCl, 2 CaCl,, 2 MgCl,, 10 glucose, and 10 HEPES, pH 7.4 with NaOH.
Series resistance was compensated by 80-95%. Solutions were applied
after lifting the cell in front of an array of quartz fiber flow pipes. An
initial set of experiments was done at room temperature (22 = 1°C) and
a subsequent set of experiment was done at 35 = 1°C, with temperature
controlled by heating the pipes using a feedback controller system
(Warner Instruments TC-344C).

Data acquisition and analysis. Currents and voltages were controlled
and sampled using a Digidata 1321A or 1322A interface and pClamp 8 or
pClamp 9 software (Molecular Devices). Current and voltage records
were filtered at 5-10 kHz and digitized at 100 kHz. Analysis was
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performed with Igor Pro (Wavemetrics) using DataAccess (Bruxton
Software) to import pClamp data. Reported membrane potentials are
corrected for aliquid junction potential of —10 mV between the internal
solution and the Tyrode’s solution in which current was zeroed before
sealing onto the cell, measured using a flowing 3 M KCI reference elec-
trode as described by Neher (1992).

Current-clamp experiments. APs were evoked with 0.5 ms current in-
jections, leaving most of the AP free of the effect of injected current. For
experiments examining frequency-dependent changes in APs during re-
petitive stimulation, current injections were set to 1.25-1.5 times thresh-
old level to ensure reaching threshold rapidly. When neurons were
stimulated repetitively multiple times, neurons were allowed to rest for at
least 90 s between each train. AP widths were measured at half-maximal
amplitude.

AP clamp experiments. For most AP clamp experiments (Llinds et al.,
1982; de Haas and Vogel, 1989), each cell’'s own AP was used as the
command waveform. Potassium current was quantified by integrating
net outward current during the falling phase of AP, starting at the peak of
the AP and continuing to the most negative voltage in the afterhyperpo-
larization (or to 2 times the AP duration in cases in which there was no
clear afterhyperpolarization).

Inhibitors. Blood depressing substance I (BDS-I) was from Alomone
Laboratories, TTX was from Calbiochem, and w-conotoxin-GVIA was
from Bachem; all other chemicals were from Sigma-Aldrich.

Experimental design and statistical analysis. Summaries of data are
given as mean * SEM. For assaying frequency-dependent reduction of
potassium current during spike repolarization, the experimental mea-
surement was the difference in AP-evoked outward current from the 1st
to the 15th presentation of the AP waveform delivered at 5 Hz. To better
allow comparisons among cells, the change in integrated outward cur-
rent was normalized to each cell’s capacitance. The figures show scatter
plots of all data for each experimental manipulation (replacement of
external calcium by magnesium, addition of tetraethylammonium (TEA),
4-aminopyridine (4-AP), a-dendrotoxin, or BDS-I), with data points
from the same cell connected by lines. Statistical significance reported in
the text was assessed using the two-tailed Wilcoxon test for nonparamet-
ric paired data.

B C D
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Reduction of outward current evoked by AP waveforms delivered at 5 Hz. The cell’s own AP (evoked by a 0.5 ms, 1.1nA
current injection) was used as the command waveform in voltage clamp and applied at 5 Hz. A, Successive applications of the AP
waveform using control Tyrode’s solution containing 2 mm Ca evoked smaller inward currents during the upstroke and smaller
outward currents during repolarization (1st sweep, red; 2nd to 14th sweeps, gray; 15th sweep, blue). B, Outward current shown at
higher gain. €, Outward current afterinhibiting sodium current with 1 um TTXand 1 pm A-803467. D, Current during first (red) and
15th (blue) sweeps after switching to a solution with 5 mum TEA added to TTX and A-803467 and then after switching to a solution
with TEA, TTX, and A-803467 and with equimolar Mg ®* replacing Ca* (first sweep, green; 15th sweep, black).
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Results

AP broadening during repetitive
stimulation of small DRG neurons

We recorded from small-diameter rat DRG
neurons, first testing each cell for capsaicin
sensitivity by applying 1 uM capsaicin. Only
cells in which a current was evoked by cap-
saicin were studied further. In recording
APs from this cell population, we found

0ca? that with stimulation even at the relatively

/TTX, A-803467 low frequency of 1 Hz, APs showed pro-
+SImNTER gressive spike-to-spike broadening. This
—— Sweep 1

effect was quite pronounced at frequen-
cies of 5 Hz and higher. Figure 1A shows
an example with stimulation at 5 Hz for
3 s. The AP width (measured at half-
maximal amplitude) increased from 4.9 ms

— Sweep 15

il in the first AP to 6.6 ms in the 15th. Figure
—— Sweep 1 1B shows the frequency dependence of AP
— Sweep 15 broadening in 13 neurons that were each

stimulated 30 times at 1, 5, 10, and 20 Hz.
There was substantial broadening even at
1 Hz (by 12 = 1%) and the degree of
broadening increased at 5 Hz (44 * 4%),
10Hz (76 = 7%),and 20 Hz (129 = 12%).
Broadening was evident by the second
spike in a train and was half-maximal after
three to eight spikes, taking longer to
reach steady state at higher frequencies.
The frequency-dependent spike broaden-
ing seen in these cells fits well with AP broadening seen previously
during low-frequency stimulation in both rat DRG (Harper and
Lawson, 1985) and embryonic chick DRG (Park and Dunlap,
1998) neurons.

To characterize the changes in ionic currents that underlie the
AP broadening, we performed AP clamp using each cell’s own AP
as a command waveform in voltage clamp. We used the first AP
recorded during 5 Hz current-clamp stimulation (i.e., sweep 1 in
Fig. 1A) to focus on changes in ionic current resulting from the
repetitive application of the same voltage waveform independent
of changes resulting from alterations in the shape of the AP.
Figure 2A shows an example of the total ionic current recorded in
external Tyrode’s solution when the AP clamp was applied at
5 Hz. To isolate ionic current, capacitative current was elimi-
nated; most capacitative current was removed electronically us-
ing the capacitative nulling circuit in the amplifier and the
remaining capacitative current was corrected during analysis by
performing a point-by-point subtraction using capacitative cur-
rents evoked by a 5 or 10 mV hyperpolarization from —75mV. As
expected, total ionic current was inward during the rising phase
of the AP and outward during the falling phase.

With repetitive stimulation by the same AP waveform, there
were two changes in the evoked current (Fig. 2A). First, the peak
inward current during the AP upstroke decreased. This frequency-
dependent reduction in inward current during the upstroke re-
sults from slow inactivation of TTX-resistant sodium channels
(Blair and Bean, 2003). The second change in the current evoked
by 5 Hz stimulation was a decrease in net outward current during
the falling phase of the AP. Addition of TTX (1 um) and the
Nav1.8 inhibitor A-803467 (1 uM) (Jarvis et al., 2007) inhibited
the inward sodium current during the rising phase, helping to
isolate changes in the outward potassium current. We used TTX
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The frequency-dependent component of AP-evoked potassium current is inhibited by 5 mu TEA and is mostly calcium independent. A, Currents evoked by the cell’s own AP waveform

during the 1stand 15th application of the waveform delivered at 5 Hz, first in Tyrode’s solution with 1 m TTX and 1 um A-803467 (1st, red; 15th, blue), then in a solution with added 5 mm TEA-C,
then in a calcium-free solution (with Mg2™ replacing Ca2 ™), and then in the Ca-free solution with added 5 mm TEA. All solutions contained 1 wm TTX and 1 jum A-803467. B, Collected results from
33 cells showing the change in current evoked by the 1st and the 15th stimuli before and after the addition of 5 mm TEA. Current was integrated from the peak of the AP to the afterhyperpolarization
and normalized to each cells’ capacitance. Connected points show data for each cell and solid symbols show mean = SEM for each condition. €, Same for currents before and after replacing Ca "

by Mg2™" (n = 33).

and A-803467 in subsequent experiments to focus on changes in
potassium current. In the presence of TTX and A-803467, further
addition of 5 mm TEA inhibited the outward current and resulted
in an inward current flowing during the falling phase of the AP, as
would be expected if inhibiting potassium current reveals an in-
ward calcium current flowing during the shoulder of the AP. This
inward current was eliminated with a solution in which calcium
was replaced by magnesium. There was little or no frequency-
dependent change in the calcium current.

The experiment shown in Figure 2 was typical in that 5 mm
TEA inhibited all or most of the outward potassium current,
leaving a net inward calcium current, and there was little or no
frequency dependence remaining in the presence of TEA. We
quantified the frequency-dependent changes in potassium cur-
rent by integrating the current during the falling phase of the AP
from the time of the peak of the AP to the time of the afterhyper-
polarization and calculating the difference in the AP-evoked cur-
rentin the 1st and 15th stimuli delivered at 5 Hz. Figure 3A shows
records in which we explored the sensitivity of the frequency-
dependent component of potassium current to external TEA and
to removal of calcium. TEA completely inhibited the frequency-
dependent component of outward current. In collected results
from 33 cells, there was a use-dependent reduction in outward
current during the falling phase of the AP of 172 * 20 fC/pF
(outward current integrated during the falling phase of the AP

and normalized to each cell’s capacitance) and this was reduced
to 2 £ 3 fC/pF in the presence of 5 mm TEA (n = 33; p < 0.0001,
two-tailed Wilcoxon test).

Previous work has shown that BK-calcium-activated potas-
sium channels contribute to the repolarization of APs in small-
diameter DRG neurons (Gold et al., 1996; Scholz et al., 1998; Li et
al., 2007; Zhang et al., 2010, 2012; Cao et al., 2012). BK channels
are sensitive to external TEA and, with some combinations of
accessory subunits, can undergo inactivation (Wallner et al.,
1999; Xia et al., 1999, 2000). We therefore tested whether the
frequency-dependent component of potassium current was from
calcium-activated potassium channels by using solutions in
which calcium was replaced by magnesium. In most cells, re-
placing calcium with magnesium had little effect on the fre-
quency-dependent component of potassium current (Fig. 3C).
On average, the frequency-dependent component of potassium
current decreased from 170 * 20 fC/pF in calcium-containing
solution to 166 * 16 fC/pF in calcium-free solution (n = 33; p =
0.64, two-tailed Wilcoxon test). In a small fraction of cells (seven of
33), eliminating calcium resulted in a clear reduction of frequency-
dependent current by >10%, suggestive of a component of fre-
quency-dependent BK current. However, this component was
always much smaller than the component of frequency-dependent
current remaining in calcium-free solution. We therefore focused on
this calcium-independent component in further experiments.
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Effect of 100 um 4-AP on frequency-dependent reduction in potassium current. A, Currents evoked by the cell’s AP waveform during the Tst and 15th application of the waveform

delivered at 5 Hz before (left), after (middle) applying 100 v 4-AP, and after applying 100 wum 4-AP together with 5 mm TEA (right). Currents were recorded in a solution containing T um TTX and
1 jum A-803467 to inhibit sodium current and with Mg ™ replacing Ca** to eliminate calcium current. B, Collected results showing the change in current evoked by the 1st and the 15th stimuli
before and after 100 um 4-AP and then 100 pm 4-AP plus 5 mm TEA. Connected points show data for each cell (n = 7 for control/4-AP, n = 6 for control/4-AP/4-AP + TEA) and solid symbols show

mean == SEM for each condition.

To explore what channel types underlie the calcium-inde-
pendent potassium current, we next tested the effect of various
inhibitors on the frequency-sensitive potassium current. We first
tested its sensitivity to 4-AP. We found that 4-AP applied at
100 uM was very effective at inhibiting the frequency-dependent
component of the potassium current. An example is shown in
Figure 4A, in which 100 um 4-AP completely inhibited the
frequency-dependent component of potassium current and there
was little effect of further addition of 5 mm TEA. In collected
results, 100 um 4-AP reduced the frequency-dependent potas-
sium current from 114 = 27 fC/pFto 4 £ 7 fC/pF (n = 7; p <
0.01, Wilcoxon two-tailed test).

Although many types of potassium channels are inhibited by
millimolar concentrations of 4-AP, only a few are effectively in-
hibited by submillmolar concentrations. Among the currents
with high sensitivity to 4-AP are two kinds of potassium currents
that can undergo inactivation, a Kvl-mediated current known as
I, (Storm, 1988; Wu and Barish, 1992; Shu et al., 2007) and Kv3
channels that include the Kv3.4 subunit (Rettig et al., 1992; Dio-
chot et al., 1998; Baranauskas et al., 2003). We therefore tested
more selective inhibitors of each of these currents. I, is sensitive
to the peptide inhibitor a-dendrotoxin, which inhibits the Kv1-
mediated component of inactivating potassium current that
underlies spike broadening in mossy fiber terminals in the hip-

pocampus (Geiger and Jonas, 2000). However, we found that
there was very little effect of a-dendrotoxin on the frequency-
dependent component of current in small-diameter, capsaicin-
sensitive DRG neurons (Fig. 5). On average, frequency-dependent
potassium current changed from 160 = 34 fC/pF to 158 = 29 fC/pF
with application of 200 nM a-dendrotoxin (n = 10; p = 0.67,
Wilcoxon two-tailed test).

We next tested the Kv3 inhibitor BDS-I (Diochot et al., 1998;
Shevchenko et al., 2004; Yeung et al., 2005; Martina et al., 2007).
BDS-I almost completely inhibited the frequency-dependent po-
tassium current, reducing it from 174 *+ 37 f{C/pF to 1 = 3 fC/pF
(Fig. 55 n =9, p < 0.05, Wilcoxon two-tailed test). The combi-
nation of sensitivity to low concentrations of 4-AP and BDS-I
suggests that the frequency-dependent component of potassium
current is carried by Kv3 channels.

AP broadening at 35°C

The kinetics of channel gating are strongly temperature depen-
dent (Hille, 2001). The kinetics of potassium channels during the
AP are expected to change with changes in temperature. We
therefore did a series of experiments examining spike broadening
at near-physiological temperature (35°C). We found that APs at
35°C showed frequency-dependent broadening (Fig. 6). As at
room temperature, broadening was evident at frequencies as
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Effect of ae-dendrotoxin and BDS-I on frequency-dependent reduction in potassium current. A, Currents evoked by the Tstand 15th AP waveforms are shown in control (left), after the

application of 200 nm ce-dendrotoxin (middle), and after the application of 3 um BDS-I (right). Currents were recorded in a solution containing T um TTXand 1 v A-803467 to inhibit sodium current
and with Mg 2™ replacing Ca2* to eliminate calcium current. B, Collected results showing the change in current evoked by the 1st and 15th stimuli before and after 200 nu dendrotoxin. Connected
points show data for each cell (n = 10) and solid symbols show mean = SEM for each condition. C, Same for currents before and after application of 3 um BDS-I to the external solution (n = 9).

low as 1 Hz, but it took higher frequencies for a given degree of
broadening at 35°C compared with room temperature. In col-
lected results, the amount of broadening during 30 APs at 35°C
was 12 +2%at1Hz(n=16),25*3%at5Hz (n=16),38 = 3%
at 10 Hz (n = 13),and 67 = 10% at 20 Hz (n = 11).

Asat22°C, the outward current evoked by APs at 35°C showed
a frequency-dependent reduction. Furthermore, as at 22°C, BDS-I
very effectively inhibited the frequency-dependent component of
potassium current for APs at 35°C (Fig. 7), reducing it from 83 =
18 f{C/pFto 1 = 5 fC/pF (n = 10; p = 0.0054, two-tailed Wilcoxon
test). Therefore, it appears that Kv3 channels account for the
inactivation of potassium channels producing frequency-depen-
dent APs at 35°C as well as at 22°C.

Discussion

These results show that, as in a number of other neuronal types,
APs in small-diameter, capsaicin-sensitive DRG neurons show
frequency-dependent broadening. AP clamp experiments show
that the broadening results from frequency-dependent reduction
of potassium current during the falling phase of the AP and that
Kv3 channels account for most of the potassium current under-
going frequency-dependent reduction.

We examined AP broadening at frequencies between 1 and
20 Hz, which is within the range of firing frequencies seen in
C-fiber nociceptors in response to noxious stimuli such as pinch
(Chen and Levine, 2003; Djouhri et al., 2006). In fact, at the onset
of mechanical stimulation, C-fiber nociceptors can fire up to
60 Hz, with firing as fast as 20 Hz sustained for several hundred

milliseconds (Chen and Levine, 2003). We saw substantial broad-
ening at 20 Hz (increase in spike width by ~60% in the first
half-second) suggesting that significant broadening likely occurs
at physiological rates of firing.

Kv3 channels

The identification of Kv3 channels as the key channels underlying
spike broadening fits well with recent work showing expression of
both Kv3.1 subunits (Bocksteins et al., 2012) and Kv3.4 subunits
Chien et al., 2007; Ritter et al., 2012; Ritter et al., 2015a) in small
DRG neurons. Kv3.4 subunits confer rapid inactivation on both
homomeric and heteromeric channels (Rettig et al., 1992; Dio-
chot et al., 1998; Baranauskas et al., 2003). An inactivating com-
ponent of current in small DRG neurons can be reduced using
siRNA for Kv3.4 (Ritter atal., 2012) and was found to be activated
early in spike repolarization (Ritter et al., 2015b), which is con-
sistent with our results. The inactivating component of current
matches the properties of a component of overall potassium
current in small DRG neurons originally called I,,;,, (Gold et
al., 1996).

The key involvement of Kv3 channels in spike broadening is at
first surprising. Kv3 family channels were initially associated with
fast-spiking neocortical interneurons and cerebellar Purkinje
neurons, both of which have narrow APs (half-amplitude width
100-500 us) and can fire at high frequencies without reported
spike broadening (Rudy et al., 1999; Rudy and McBain, 2001;
Lien and Jonas, 2003; Martina et al., 2007). The reasons that
inactivation of Kv3 channels produces spike broadening in DRG
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neurons, but apparently not in interneurons or Purkinje neu-
rons, remain to be determined. In Purkinje neurons, with narrow
APs, only a small fraction (20%) of available channels is actually
activated during spike repolarization (Martina et al., 2007). With
a large “buffer” of potassium current not normally activated,
perhaps a small increase in AP duration can recruit a larger frac-
tion of channels and thus limit spike broadening even if a fraction
of the channels inactivate. When APs are already broad, as in
small DRG neurons, available channels may be activated with a
higher probability to start with (Ritter et al., 2015a) so that there
is little or no buffer to compensate for reduction of available
channels by inactivation. It is also possible that the kinetics of
activation or inactivation of Kv3 channels are different in DRG
neurons and fast-spiking neurons. Further voltage-clamp exper-
iments will be needed to explore these possibilities.

BK channels

In most cells, the component of potassium current undergoing
frequency-dependent reduction was little affected by removal of
calcium. However, there was significant reduction by >10% in a
minority of neurons (seven of 33). It is plausible that this repre-
sents a component of inactivating BK current. There is expres-
sion of BK current in small DRG neurons (Zhang et al., 2003;
Zhang et al., 2010; Hendrich et al., 2012; cf. Cao et al., 2012) and,
in some small DRG neurons, blocking BK current produces
broadening of APs (Scholz et al., 1998; Zhang et al., 2003; Li et al.,
2007; Zhang et al., 2010; Cao et al., 2012). BK channels can un-
dergo inactivation when 32 and 33 subunits are expressed (Wall-
ner et al., 1999; Xia et al., 1999, 2000) and both are found to be
present in DRG neurons by single-cell PCR (Zhang et al., 2012).
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However, the contribution of BK channel inactivation to overall
frequency-dependent reduction of potassium current is clearly
small relative to that of Kv3 current and is unlikely to contribute
significantly to spike broadening in most neurons.

Kv1 channels

In voltage-clamp experiments using voltage steps, the overall po-
tassium current in small DRG neurons includes a component of
a-dendrotoxin-sensitive Kvl current in both mice (Beekwilder et
al., 2003; Bocksteins et al., 2012) and rats (Yang et al., 2004; Gruss
etal., 2006; Chi and Nicol, 2007; Sculptoreanu et al., 2009), How-
ever, dendrotoxin has little effect on AP duration (Chi and Nicol,
2007). Consistent with this, in our experiments, a-dendrotoxin
inhibited only a very small component of overall potassium cur-
rent evoked by AP waveforms and had very little effect on the
potassium current undergoing frequency-dependent reduction
during repetitive firing. The simplest interpretation is that, al-
though small DRG neurons express Kvl channels, they likely
activate too slowly to be activated much during APs compared
with fast-activating Kv3 channels.
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Comparison with other neurons

Spike broadening from Kv3 channel inactivation has not been
described before and may be unusual. In hippocampal mossy
fiber boutons, Kv3 channels contribute ~60% of the AP-evoked
potassium current (Alle et al., 2011), but spike broadening is
ascribed to inactivation of Kvl-mediated current (Geiger and
Jonas, 2000). In hypothalamic supraoptic neurons, Kv3 channels
help to mediate spike repolarization (Shevchenko et al., 2004),
but spike broadening is attributed to inactivation of other potas-
sium channels (Hlubek and Cobbett, 2000) and facilitation of
calcium currents (O’Regan and Cobbett, 1993).

Spike broadening in DRG neurons was substantial at much
lower frequencies than required in most other neuronal types.
For example, in CA1 pyramidal neurons, frequencies >20 Hz are
needed to produce spike broadening (Shao et al., 1999), similar to
amygdala neurons, in which BK channels also mediate broaden-
ing (Faber and Sah, 2003). In contrast, in capsaicin-sensitive
DRG neurons, spike broadening was evident at 1 Hz and very
dramatic at 20 Hz (67 = 10% at 35°C). The rapid onset of spike
broadening (by the second spike) fits with the fast onset of inac-
tivation of Kv3.4-containing channels and its occurrence at fre-
quencies as low as 1 Hz fits with the slow recovery of inactivation,
which takes several seconds at room temperature (Rettig et al.,
1992; Baranauskas et al., 2003).

Functional significance of spike broadening in small

DRG neurons

Immunocytochemistry shows the expression of Kv3.4 channels
in axons and synaptic boutons of C-fibers and in cell bodies
(Chienetal., 2007), making it plausible that AP broadening could
occur in axons and boutons as well. At boutons, spike broadening
would result in increased calcium entry (Jackson et al., 1991) and
transmitter release (Geiger and Jonas, 2000). In axons, other
things being equal, a broader AP should promote faster conduc-
tion with a larger safety factor because the longer depolarization
prolongs the passive electrotonic depolarization of the down-
stream axon that initiates active recruitment of sodium channels.
This might explain why APs of small DRG neurons associated
with small-diameter, slowly conducting C-fiber axons are nota-
ble for being unusually broad to begin with (Harper and Lawson,
1985; Koerber et al., 1988; Djouhri et al., 1998). Frequency-
dependent spike broadening could then help to mitigate activity-
dependent slowing of conduction velocity and spike failure
resulting from slow inactivation of sodium channels (De Col et
al., 2008, 2012) and accumulation of intraaxonal sodium (Tiger-
holm et al., 2014). Currently, however, our mechanistic under-
standing of AP propagation in C-fiber axons is necessarily based
mainly on computer modeling (Gemes et al., 2013; Petersson et
al., 2014; Tigerholm et al., 2014; Sundt et al., 2015). Further data
on the nature and kinetics of the potassium currents flowing
during the AP should allow such modeling to be increasingly
realistic and lead to new insights about how the many types of ion
channels in C-fiber neurons combine to regulate excitability dur-
ing natural firing patterns.
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