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Abstract

Many modern statistical problems can be cast in the framework of multivariate regression, where 

the main task is to make statistical inference for a possibly sparse and low-rank coefficient matrix. 

The low-rank structure in the coefficient matrix is of intrinsic multivariate nature, which, when 

combined with sparsity, can further lift dimension reduction, conduct variable selection, and 

facilitate model interpretation. Using a Bayesian approach, we develop a unified sparse and low-

rank multivariate regression method to both estimate the coefficient matrix and obtain its credible 

region for making inference. The newly developed sparse and low-rank prior for the coefficient 

matrix enables rank reduction, predictor selection and response selection simultaneously. We 

utilize the marginal likelihood to determine the regularization hyperparameter, so our method 

maximizes its posterior probability given the data. For theoretical aspect, the posterior consistency 

is established to discuss an asymptotic behavior of the proposed method. The efficacy of the 

proposed approach is demonstrated via simulation studies and a real application on yeast cell cycle 

data.
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1. Introduction

In various fields of scientific research such as genomics, economics, image processing, 

astronomy, etc., massive amount of data are routinely collected, and many associated 

statistical problems can be cast in the framework of multivariate regression, where both the 

number of response variables and the number of predictors are possibly of high 

dimensionality For example, in genomics study, it is critical to explore the relationship 

between genetic markers and gene expression profiles in order to understand the gene 

regulatory network; in a study of human lung disease mechanism, the detailed CT-scanned 

lung imaging data enable us to examine the systematic variations in airway tree 

measurements across various lung disease status and pulmonary function test results. To 
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formulate, suppose we have n independent observations of the response vector yi ∈ ℝq and 

the predictor vector xi ∈ ℝp, i = 1, …, n. Consider the multivariate linear regression model

(1)

where Y = (y1, …, yn)⊤ ∈ ℝn×q is the response matrix, X = (x1, …, xn)⊤ ∈ ℝn×p is the 

predictor matrix, C ∈ ℝn×q is the unknown regression coefficient matrix, and E = (e1, 

…,en)⊤ ∈ ℝn×q is the error matrix with ei's being independently and identically distributed 

(i.i.d.) with mean zero and covariance matrix Σe, a q × q positive definite matrix. Following 

Bunea et al. [8, 9], Chen et al. [11] and Mukherjee et al. [28], we assume Σe = σ2Iq. We 

further assume the response variables and the predictors are all centered, and there is no 

intercept term. In what follows, we use  to denote the jth row of a generic matrix A and ãℓ 
the ℓth column of A, e.g., C = (c1, …, cp)⊤ = (c̃1, …, c̃q). A fundamental goal of multivariate 

regression is thus to estimate and make inference about the coefficient matrix C so that 

meaningful dependence structure between the responses and predictors can be revealed.

When the predictor dimension p and the response dimension q are large relative to the 

sample size n, classical estimation methods such as ordinary least squares (OLS) may fail 

miserably. The curse of dimensionality can be mitigated by assuming that C admits certain 

low-dimensional structures, and regularization/penalization approaches are then commonly 

deployed to conduct dimension reduction and model estimation. The celebrated reduced 

rank regression (RRR) [2, 24, 32] achieved dimension reduction through constraining the 

coefficient matrix C to be rank deficient, building upon the belief that the response variables 

are related to the predictors through only a few latent directions, i.e., some linear 

combinations of the original predictors. As such, low-rank structure induces and models 

dependency among responses, which is the essence of conducting multivariate analysis. 

Bunea et al. [8] generalized the classical RRR to high dimensional settings, casting reduced-

rank estimation as a penalized least squares problem with the penalty being proportional to 

the rank of C. Yuan et al. [37] utilized the nuclear norm penalty, defined as the ℓ1 norm of the 

singular values. See also, Chen et al. [11], Mukherjee and Zhu [29], Negahban and 

Wainwright [30], and Rohde and Tsybakov [33].

It is worth noting that low-rankness in C is of intrinsic multivariate nature; when combined 

with row and/or column-wise sparsity, it can further lift dimension reduction and facilitate 

model interpretation. For example, in the aforementioned genomics study, it is plausible that 

the gene expression profiles (responses) and the genetic markers (predictors) are associated 

through only a few latent pathways (linear combinations of possibly highly-correlated 

genetic markers), and moreover, very likely such linear associations only involve a small 

subset of genetic markers and/or gene profiles. Therefore, recovering a low-rank and also 

sparse coefficient matrix C in model (1) hold the key to reveal such interesting connections 

between the responses and predictors. Chen et al. [10] proposed a regularized sparse singular 

value decomposition (SVD) approach with known rank, in which each latent variable is 

constructed from only a subset of the predictors and is associated with only a subset of the 

responses. Chen and Huang [12] proposed a rank-constrained adaptive group Lasso 
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approach to recover a low-rank coefficient matrix C with sparse rows; for each zero row in 

C, the corresponding predictor is then completely eliminated from the model. Bunea et al. 

[9] also proposed a joint sparse and low-rank estimation approach and derived its 

nonasymptotic oracle error bounds. Both methods required to solve the nonconvex rank-

constrained problem by fitting models of various ranks. Recently, Ma et al. [27] proposed a 

subspace assisted regression with row sparsity method which was shown to achieve near 

optimal nonasymptotic minimax rates in estimation.

While all the aforementioned regularized regression techniques produce attractive point 

estimators of the coefficient matrix C, it remains a difficult problem to assess the uncertainty 

of the obtained estimators. To overcome this limitation, there has already been a rich 

literature on Bayesian approaches of the reduced rank regression. From a Bayesian 

perspective, the unknown parameter is considered as a random variable, and thus the 

statistical inference can be made by the posterior distribution. The first attempt to develop 

the Bayesian reduced rank regression was made by Geweke [20]. The coefficient matrix is 

assumed to be C = AB⊤ with A ∈ ℝp×r and B ∈ ℝq×r, where r < min(p, q) is assumed to be 

known. Then, by assigning Gaussian prior for each elements of A and B, the induced 

posterior achieves the low-rank structure of the prespecified rank. As an alternative, Lim and 

Teh [26] proposed to start from the largest possible rank r = min(p, q), assign a column-wise 

shrinkage Gaussian prior on each columns of A and B. The posterior for redundant columns 

of A and B is forced to be concentrated around zero, so the (approximate) rank reduction can 

be accomplished. The main challenge of this Bayesian approach is the choice of the 

hyperparameters of the Gaussian priors in order to control the amount of shrinkage. There 

have been several attempts to overcome this challenge by assigning priors on the 

hyperparameters, so that they can be determined in the estimation procedure. For instance, 

Salakhutdinov and Mnih [34] proposed to utilize the Wishart distribution as the hyperprior. 

Similar hierarchical Bayesian methods were also proposed in the context of matrix 

completion, matrix completion deals with missing values, but we do not [4, 40]. However, 

none of the aforementioned studies dealt with the sparsity of the coefficient matrix C. 

Recently, Zhu et al. [41] introduced a Bayesian low-rank regression model with high-

dimensional responses and covariates. To enable sparse estimation under low rank constraint 

with a prefixed rank, they utilized a sparse singular value decomposition (SVD) structure 

[10] with Gaussian-mixtures of gamma priors on all the elements of the decomposed 

matrices. Then, the sparsity of C was achieved using Bayesian thresholding method. For a 

survey on Bayesian reduce rank models, see Alquier [1] and the references therein.

We develop in this article a novel Bayesian simultaneous dimension reduction and variable 

selection approach. Our method aims to tackle several challenges regarding both the 

estimation and inference in the sparse and low-rank regression problems. First, the proposed 

method enables us to simultaneously estimate the unknown rank and remove irrelevant 

predictors, in contrast to several existing methods in which rank selection has to be resolved 

by comparing fitted models of various ranks or by some ad hoc approach such as scree plot. 

In addition, we also seek potential column sparsity of the coefficient matrix, so that it is 

applicable to problems with high-dimensional responses where response selection is highly 

desirable (to be elaborated below). Second, by careful construction of the prior distribution, 
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our method alleviates the many difficulties brought by the use of nonsmooth and non-convex 

penalty functions and by the tuning parameter selection procedure in penalized regression 

analysis. From a Bayesian perspective, the penalty function can be viewed as a negative 

logarithm of the prior density function [25, 31, 36]. We develop a general prior for C 
mimicking the rank penalty and the group ℓ0 row/column penalty, to achieve simultaneous 

rank reduction and variable selection through the induced posterior distribution, yet the 

computation is kept tractable and efficient, where the group ℓ0 penalty directly restricts the 

number of nonzero rows and columns. Since the tuning parameters are considered as random 

variables in our Bayesian formulation, the optimal ones are selected to achieve the highest 

posterior probability given the data. Furthermore, using our Bayesian approach, the 

credibility intervals for the regression coefficients and their functions can be easily 

constructed using the Markov Chain Monte Carlo (MCMC) technique. In contrast, there has 

been little work on quantifying the estimation uncertainty in regularized regression 

approaches.

We now formally state our assumptions or prior beliefs about the coefficient matrix C in 

model (1).

A1. (Reduced rank) r* ≤ r, where r* = rank(C) indicates the rank of C and r = min(p, 

q).

A2. (Row-wise sparsity) p* ≤ p, where  and  denotes the jth 

row of C, where card(·) denotes the cardinality of a set.

A3. (Column-wise sparsity) q* ≤ q, where  and c̃ℓ denotes the 

ℓth column of C.

A1 states that C is possibly of low rank. In A2, excluding the jth predictor from model (1) is 

equivalent to setting all entries of the jth row of C as zero. Therefore, the first two 

assumptions concern rank reduction and predictor selection. The third assumption is about 

“response selection”, i.e., if the ℓth column of C is zero, the ℓth response is modeled as a noise 

variable. While such structural assumption can be treated as optional depending on the 

specific application, we stress that there are many circumstances where response selection is 

highly desirable [10]. For example, in many applications the dimension of the responses can 

be very high, and there may exist noise variables that are not related to any predictors in the 

model. In addition, eliminating irrelevant predictors dramatically reduces the number of free 

parameters of the model and thus it improves the accuracy of parameter estimation [5]. In 

addition, allowing possible response selection provides more flexibility and generality in the 

multivariate linear regression framework, since the case of selecting all responses can be 

viewed as a special case.

The remainder of the paper is organized as follows. In Section 2, we briefly introduce a 

general penalized regression approach for conducting sparse and low-rank estimation. In 

Section 3, we develop our new Bayesian approach, and explore the connections between the 

penalized least squares and our Bayes estimators. The full conditionals are obtained in 

Section 4, and we describe the posterior optimization algorithm and posterior sampling 

technique. In Section 5, we study the posterior consistency of the proposed method. 
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Simulation studies and a real application on yeast cycle data are presented in Section 6 and 

Section 7. Some concluding remarks are given in Section 8.

2. Penalized regression approach

In the regularized estimation framework, the unknown coefficient matrix C in model (1) can 

be estimated by the following penalized least squares (PLS) method,

(2)

where  denotes the Frobenius norm and λ(C) is a 

penalty function with non-negative tuning parameter λ controlling the amount of 

regularization. It is natural to construct a penalty function of an additive form,

where ,  and  induce the low-rankness, row-wise sparsity and 

column-wise sparsity in C, with tuning parameters λ1, λ2 and λ3, respectively. There are 

numerous choices of the penalty functions. Note that the rank of matrix C is same as the 

number of non-zero singular values, i.e., rank(C) = card ({k: sk(C) > 0}) = r*, where sk(C) 

denotes the kth singular value of C. Hence, rank reduction can be achieved by penalizing the 

singular values of C, i.e.,

(3)

where ρ1 is a sparsity-inducing penalty function. In particular, choosing ρ1(|a|) = 1 (|a| ≠ 0) 

corresponds to directly penalizing/restraining the rank of C, and that ρ1(|a|) = |a|β1 gives the 

Schatten-β quasi-norm penalty when 0 < β1 < 1 and the convex nuclear norm penalty 

λ1‖C‖* when β1 = 1, where  denotes the nuclear norm. For promoting 

rowwise/column-wise sparsity, selecting or eliminating parameters by groups is needed, 

which can be achieved by penalizing the row/column ℓ2 norms of C,

(4)
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(5)

where  denotes the ℓ2 norm. Choosing ρ2(|a|) = 1 (|a| ≠ 0) corresponds to directly 

counting and penalizing the number of nonzero rows, and ρ2(|a|) = |a| corresponds to the 

convex group Lasso penalty [38]. Other methods include group SCAD [16] and group MCP 

[7, 39]; see Fan and Lv [18] and Huang et al. [22] for comprehensive reviews. In principal, 

rank reduction and variable selection can be accomplished by solving the PLS problem (2) 

with any sparsity-inducing penalties ρ1, ρ2 and ρ3.

The pros and cons of using convex penalties in model selection are well understood. In low-

rank estimation, Bunea et al. [8] showed that while the convex nuclear norm penalized 

estimator has similar estimation properties to those of the nonconvex rank penalized 

estimator, the former requires stronger conditions and is in general not as parsimonious as 

the latter in rank selection. For sparse group selection, it is known that the convex group 

Lasso criterion often leads to over-selection and substantial estimation bias, and adopting 

nonconvex penalties may lead to superior properties in both model estimation and variable 

selection under milder conditions [23, 27]. Unfortunately, the nonconvexity of a penalized 

regression criterion also imposes great challenges in both understanding its theoretical 

properties and solving the optimization problem in computation. Therefore, trading off 

computation efficiency and statistical properties is critical in formulating penalized 

estimation criterion, and it is particularly relevant when dealing with large data applications. 

The problem of tuning parameter selection can also be troublesome, especially so for the 

problem of interest here as it requires multiple tuning parameters. Furthermore, it is still a 

largely unsolved problem on how to make statistical inference and attach error measures to 

any penalized estimator. All these concerns motivate us to tackle the sparse and low-rank 

estimation problem in a Bayesian fashion, to achieve a computationally efficient 

implementation and be able to make valid inference about the composite low-dimensional 

structure of C.

3. Bayesian sparse and low-rank regression

From a Bayesian perspective, the PLS estimator in (2) can be viewed as the maximum a 

posteriori (MAP) estimator from the following posterior density function,

where f(Y | C) denotes the likelihood function and π(C | λ) denotes the prior density 

function of C given the tuning parameter λ. Since the MAP estimator of C is free of σ2, 

without loss of generality, throughout this paper we assume that σ2 = 1. Motivated by the 

connections between PLS and MAP and by the penalty function defined in (3)-(5), it is 

natural to consider the following prior,
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(6)

where ε > 0 is a suitably small value and λ = (λ1, λ2, λ3). Note that as ε → 0, this prior 

converges to the following penalty function under the MAP estimation:

In penalized regression, this £0 penalty corresponds to directly penalize the rank, the number 

of nonzero rows, and the number of nonzero columns of C, which leads to an intractable 

combinatory problem. Similarly, in Bayesian framework, even though this setup directly 

targets on the desired structure of C, there are several difficulties in using such a prior 

distribution. Since the prior density function in (6) involves the singular values of C, it 

induces an improper posterior distribution, as it is generally difficult to be considered as a 

probability density function of C. Moreover, the non-differentiability of indicator function 

induces a discontinuous posterior density function.

To overcome the first difficulty, i.e., avoiding direct use of the singular values, we propose 

an indirect modeling method through decomposing the matrix C. We write C = AB⊤, where 

A is a p × r matrix, Bisaq×r matrix, and r is an upper bound of the true rank r* of C, e.g., a 

trivial one is r = min(p, q). Apparently such a decomposition is not unique, as with any 

nonsingular r×r matrix Q, C = AB⊤ = AQQ−1B⊤ = ÃB̃⊤ where Ã = AQ and B̃ = B (Q−1)⊤. 

Interestingly, the following lemma reveals that the low-rankness and the row/column 

sparsity of C can all be represented as certain row/column sparsity of A and B, and more 

importantly, the representations are invariant to any nonsingular transformation.

Lemma 1. Let C ∈ ℝp×q, and suppose C = AB⊤ for some A ∈ ℝp×r, B ∈ ℝq×r with r = 

min(p, q). Let ãk and b̃
k denote the kth column of A and B, respectively. Let  and 

denote the jth row of A and the ℓth row of B, respectively. Then

1.

2. {j: ‖cj‖2≠0} ⊂ {j: ‖aj‖2≠0}.

3. {ℓ: ‖c̃ℓ‖2 ≠ 0} ⊂ {ℓ: ‖bℓ‖2 ≠ 0}.

The first statement in the above lemma suggests the following rank-reducing prior,

Goh et al. Page 7

J Multivar Anal. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

where ε > 0 and λ1 > 0. For a sufficiently small ε, this prior induces sparsity on columns of 

A and B simultaneously and thus reduces the rank of C. Similarly, Lemma 1 suggests the 

following row-wise and column-wise sparsity-inducing priors,

(8)

(9)

where ε > 0, λ2 > 0 and λ3 > 0. Combining (7), (8) and (9) leads us to the following prior,

(10)

where λ = (λ1, λ2, λ3).

The discontinuity problem still presents in (10) due to the indicator functions. We address 

this problem by approximating ℓ0-norm by a well-behaved smooth function. Let D be a m × 

n matrix. Define

(11)

where D = (d1, …, dm)⊤, 0 ≤ β ≤ 1 and ω > 0. We have

as ω → 0, where we define (0)0 = 0. This implies that the proposed penalty approximates 

the group ℓβ-norm penalty when ω is sufficiently small. In particular, when β = 0 and ω is 

chosen to be a small positive constant ω0, (11) gives an approximate group ℓ0-norm penalty 

and produces approximately sparse solutions, while it is continuous as well as differentiable 
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with respect to D. In all our numerical studies, we set ω0 = 10−10 and utilize tolerance level 

10−5 to determine zero estimates. Fig. 1 shows the plots of f(x) = x2/(x2 + ω0) for varying ω0 

= 10−k, k = 4, 6, 8,10. Indeed, when w0 = 10−10, the function closely mimics the ℓ0 penalty.

We now propose the following prior distribution for our Bayesian Sparse and Reduced-rank 

Regression (BSRR) method,

(12)

where λ = (λ1, λ2, λ3) and λi, ≥ 0 (i = 1, 2, 3). The BSRR posterior is then given as

(13)

and the MAP estimate (Âmap, B̂
map) is defined as

Since C = AB⊤, the MAP estimator for C, named BSRR estimator, is given by ĈBSRR = 

Âmap(B̂
map)⊤.

The following lemma tells us the BSRR model can be expressed as a hierarchical Bayesian 

model by introducing auxiliary variables.

Lemma 2. Define d = (d1,1, …, d1,r, d2,1,…, d2,p, d3,1,…, d3,q). Let π (A, B, d | λ) be a 

density function of (A, B, d) such that

(14)

where m1 = r, m2 = p and m3 = q. Let πBSRR(A, B | λ) denote the BSRR prior defined in 

(12). Then, for any positive λ and ω0, we have that
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The proof of Lemma 2 can be shown by differentiating Eq. (14) with respect to di,j's, letting 

them to be zero, and finding the solutions of the equations. Based on Lemma 2, we introduce 

the following hierarchical Bayesian representation of the sparse reduced-rank regression 

model (HBSRR),

(15)

(16)

(17)

where m1 = r, m2 = p, m3 = q, d = {diag(D1), diag(D2), diag(D3)}, λ = (λ1, λ2, λ3), and 

di,mi > 0 (i = 1, 2, 3). Let (Âmode, B̂
mode, d̂

mode) be the mode of the induced posterior π(A, 

B, d | Y, λ) from the above hierarchical model. Recall that ĈBSRRindicates the BSRR 

estimator. Then, using Lemma 2, it is straightforward to show that ĈBSRR = Âmode (B̂
mode)⊤, 

almost surely. This enables us to easily find ĈBSRR using the HBSRR. Since all full 

conditional distributions of the HBSRR are well-known distributions such as Gaussian and 

gamma, the estimation procedure can be conducted by standard Bayesian estimation 

algorithms.

4. Bayesian analysis

Since our posterior distribution is complex, the Bayesian inference procedure requires the 

implementation of iterated conditional modes (ICM) algorithm [6] or Markov chain Monte 

Carlo (MCMC) sampling techniques, to obtain Bayes estimators such as posterior mode, 

posterior mean, or credible set. We derive full conditional distributions from the joint 

posterior of HBSRR. Then, we describe the implementation of ICM and MCMC, and 

discuss the determination of the tuning parameter from a Bayesian perspective.
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4.1. Full conditionals

To derive the full conditionals of the HBSRR, we write

(18)

Here we use the notation C(j) to denote the submatrix of a generic matrix C by deleting its 

jth row, and C(j̃) by deleting its jth column. Using (15), (16) and (18), the full conditional 

distribution of aj (j = 1,…, p) is determined to be

(19)

where

with Ir denoting the r × r identity matrix. Similar to (18), we have

The full conditional distribution of bℓ, for ℓ = 1,…, q, is given by

(20)

where
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From (16) and (17), it is straightforward to show that the full conditionals for elements of D 
are written as

where k = 1,…, r, j = 1,…, p, and ℓ = 1, …, q.

4.2. Iterated conditional modes

All full conditionals in Section 4.1 are well-known distributions (normal or gamma 

distribution), and the modes are thus well-known. Consequently, using the full conditionals, 

we construct the following ICM algorithm to find the BSRR estimate ĈBSRR:

Algorithm 1 ICM algorithm for ĈBSRR

Step 1) Set initial values (Â, B̂, d̂) = (A(0), B(0), d(0)).

Step 2) Update (Â, B̂, d̂) = (A(t+1), B(t+1), d(t+1)) by

  

  

  

  

  

for k = 1, …, r; j = 1, …, p; ℓ = 1, …, q.

Step 3) Repeat step 2 until convergence.

Step 4) Return ĈBSRR = ÂB̂⊤.

To set an initial value (A(0), B(0), d(0)), we propose to utilize the OLS estimate Ĉols = 

(X⊤X)−X⊤Y. Let Ĉols = USV⊤ be the sigular value decomposition of Ĉols. Then, (A(0), B(0), 

d(0)) can be defined as
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for k = 1, …, r, j = 1, …, p and ℓ = 1, …, q.

4.3. Posterior sampling

Using the HBSRR, we introduce indirect sampling method to obtain the posterior samples 

for C, so that they can be used to construct the credible set for the BSRR estimate ĈBSRR. 

Recall that (Âmode, B̂
mode, d̂

mode) denotes the posterior mode of the HBSRR. Then,

Consequently, we can obtain the posterior sample of C from the following posterior

Note that d̂
mode can be obtained by the proposed ICM algorithm in the previous section. 

First, to generate MCMC samples from the above posterior distribution of (A, B), we 

consider a Gibbs sampler that iterates through the following steps:

1. update aj for j = 1, …, p;

2. update bℓ for ℓ= 1, …, q.

The explicit forms of full conditionals of aj and bℓ, respectively, are given in (19) and (20). 

In each Gibbs step, we update aj and bℓ by generating samples from
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where d̂
mode = {diag(D̂

1), diag(D̂
2), diag(D̂

3)}. Let  be a set of obtained MCMC 

samples from the above sampling procedure. Then a set of posterior samples for C can be 

obtained by .

4.4. Tuning parameter selection

In practice, we are usually interested in selecting a tuning parameter λ = (λ1, λ2, λ3) (or 

hyperparameter) from the set of candidates ℒ = {λ1, …, λK}. We assume that there is no 

preferred model, i.e., π(λk) = 1/K for k = 1, …, K. In general, the tuning parameter is 

determined via a grid search strategy from a lower bound λL = (0+, 0+, 0+) to a given upper 

bound λU which is the smallest value to induce the marginal null model (i.e., all estimates 

are zero). Hence, the set ℒ is well-defined. Let m(Y | λk) = ∫ f(Y | A, B)Π(dA, dB | λk) be a 

marginal likelihood for a given λk. Then, we can show that m(Y | λk) is proportional to the 

posterior probability of λk given Y, that is

(21)

From the above viewpoint, we define the optimal λk* such that

Let C be the p × q coefficient matrix with rank(C) = r*. Without loss of generality, suppose 

that the first p* rows and q* columns of C are non-zero and the remaining rows and columns 

of C are zero. Then, the matrix C can be decomposed as

where Ir*. denotes the identity matrix of order r*, CA is a (p* −r*) × r* nonzero matrix, CB 

is a r* × q* nonzero matrix, and OA is the (p−p*) × r* zero matrix, and OB is the r* × (q − 

q*) zero matrix. The key to above parameterization of C is that the matrix CA and CB are 

uniquely determined. It can be seen that for given (r*, p*, q*), the number of free parameters 

in C is dim(CA) + dim(CB) = r*(p* + q*−r*). Suppose that a given tuning parameter λ = λk 

results in an estimator with (rk, pk, qk). Define θ = {vec(CA)⊤, vec(CB)⊤}⊤ such that θ ∈ Θ 
⊂ ℝrk(pk+qk−rk), where vec(⋅) denotes the vectorization of a matrix. Then, the marginal 

likelihood can be rewritten as
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(22)

where gn(θ | Y, λ) = (nqk)−1 {ln f(Y | θ) + ln π (θ | λk)}. Let θ̂ be the mode of gn(θ | Y, λ). 

By the Laplace approximation, the marginal likelihood in (22) can be expressed as

(23)

where

By taking the logarithm of the formula (23) and ignoring the term of O(1) and higher order 

terms, we have the following approximation of log marginal likelihood

(24)

Let Ĉk be the BRRR estimate for given λk. Then, by substituting it in (24) and multiplying 

by −2, (24) reduces to the BRRR version of Bayesian information criterion [35],

(25)

According (21), we know that minimizing the BIC corresponds to maximizing the posterior 

probability of λk given Y. Hence, we regard the tuning parameter λ* as the optimum if λ* = 

argminλk∈ℒ BIC(λk).

5. Posterior consistency

In Bayesian analysis, the posterior consistency assures that the posterior converges to point 

mass at the true parameter as more data are collected [13, 15, 21]. Here, we discuss the 

posterior consistency for the proposed BSRR method, following Armagan et al. [3]. We 

allow the number of predictors p to grow with sample size n, and the number of true non-

zero coefficients p* is assumed to be finite. Henceforth, we denote p as pn. Similarly the 

response matrix Y and predictor matrix X are denoted by Yn and Xn, respectively. Unlike pn, 

the number of response variables q is assumed to be fixed in our analysis.
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Suppose that, given Xn and C*, Yn is generated from

where  with a positive definite matrix Σ (assumed to be known) and C* is a 

(pn × q) matrix such that card , card  and rank(C*) 

= r*. Further, we make the following assumptions.

I. pn = o(n), but p* < ∞ and q* ≤ q < ∞.

II. 0 < Smin < lim infn→∞ Sn, min/√n ≤ lim supn→∞ Sn, max/√n < Smax < ∞, where 

Sn, min and Sn, max denote the smallest and the largest singular values of X, 

respectively.

III. , where  indicates the (j, ℓ)th element of C*.

Our main results are presented in Theorems 3 and 4 below.

Theorem 3. Under assumptions I and II, if the prior Π(A, B) satisfies the following 

condition:

for all  and  and some ρ > 

0, where τmin and τmax denote, respectively, the smallest and the largest eigenvalue of Σ, 

then the posterior of (A, B) induced by the prior Π(A, B) is strongly consistent, i.e., for any ε 
> 0,

as n → ∞.

Theorem 4. Under assumptions I, II and III, the prior defined in (12) yields a strongly 

consistent posterior if  ln n for finite δi > 0, i = 1, 2, 3.

In Theorem 3, we establish a sufficient condition on a prior distribution in order to achieve 

posterior consistency. Theorem 4 then shows that our BSRR prior in (12) satisfies the 

sufficient condition in Theorem 3, and consequently, our BSRR method possesses the 

desirable posterior consistency property. The proofs of both theorems are shown in the 

supplementary materials.
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6. Simulation studies

To examine the performance of our BSRR method, we conduct Monte Carlo experiments 

under several possible scenarios. For purposes of comparison, we also consider the 

following two reduced priors:

(26)

(27)

We denote the Bayesian methods using (26) and (27) as RR (Row-wise-sparse and Reduced-

rank) method and RC (Row-and-Column-wise sparse) method, respectively. Our BSRR 

method aims to recover all the low-dimensional structures in A1–A3, but RR and RC 

methods, respectively, do not consider the column-wise sparsity of C in A3 and the reduced 

rank structure of C in A1. Therefore, the RR method is analogous to the joint rank and 

predictor selection methods proposed by Chen and Huang [12] and Bunea et al. [9]. The RR 

and RC methods can be derived from BSRR method with setting λ3 = 0 and λ1 = 0 in (13), 

respectively. Hence, the BSRR estimate ĈBSRR as well as RR and RC estimates, ĈRR and 

ĈRC, are obtained by the proposed algorithm in Section 4.2. Similarly, the unknown tuning 

parameter λ for each model is estimated by the proposed BIC in (25).

We generate data from the multivariate regression model Y = XC + E. For the n × p design 

matrix X, its n rows are independently generated from p(0, Γ), where Γ = (Γij)p×p with Γij 

= (0.5)|i−j|. The p × q coefficient matrix C is defined as , where sk = 5 + (k 
− 1)ȳ15/r*ɉ; the entries of Ck are all zero expect in its upper left p* × q* submatrix, which 

is generated by , where z1 ∈ ℝp*, z2 ∈ ℝq*, and all their entries are i.i.d 

samples from uniform([−1, −0.3] ∪ [0.3,1]). The rows of the noise matrix E are 

independently generated from p(0, Σe), where Σe = (Σij)q×q with Σij = σ2(0.5)|i−j| and σ2 is 

chosen according to the signal to noise ratio(SNR) defined by sr* (XC)/s1(PXE) with PX = 

X(X⊤X)−X⊤.

In the first scenario, we generate models of moderate dimensions (i.e., p, q < n) in three 

setups:

(a1) p = q = 25, n = 50, r* = 3, p* = 10, q* = 10. This setup favors our BSRR method.

(a2) p = q = 25, n = 50, r* = 3, p* = 10, q* = 25. As all the responses are revelent in 

the model, this setup favors the RR method.

(a3) p = q = 25, n = 50, r* = 10, p* = 10, q* = 10. This favors the RC method, which 

does not enforce rank reduction.

In the second scenario, we generate high-dimensional data (i.e., p, q > n) using similar 

settings as above,
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(b1) p = 200, q = 170, n = 50, r* = 3, p* = 10, q* = 10.

(b2) p = 200, q = 170, n = 50, r* = 3, p* = 10, q* = 170.

(b3) p = 200, q = 170, n = 50, r* = 10, p* = 10, q* = 10.

The estimation accuracy is measured by the following three mean squared errors (MSEs):

where s(C) denotes the vector of singular values for a matrix C. To assess the variable 

selection performance, we use false positive rate (FPR) and false negative rate (FNR) such 

that FPR% = 100FP/(TN + FP) and FNR% = 100FN/(TP + FN), where TP, FP, TN and FN 

denote the numbers of true nonzeros, false nonzeros, true zeros and false zeros, respectively. 

The rank selection performance is evaluated by the percentage of correct rank identification 

(CRI%). All measurements are estimated by the Monte Carlo method with 500 replications.

Tables 1 and 2 summarize the simulation results. As expected, in the cases (a1) and (b1), 

where rank reduction, predictor selection and response selection are all preferable, the 

BSRR method performs much better than the other two reduced methods. In cases (a2) and 

(b2), rank reduction and predictor selection are preferable while response selection is not 

necessary. The performance of the BSRR method is very similar to the RR method which 

assumes the correct model structure. In the cases (a3) and (b3), rank reduction becomes 

unnecessary when response and predictor selections are performed. While the BSRR method 

slightly underestimates the true rank (r* = 10), its variable selection performance (FPR and 

FNR) is comparable to that of the RC method which assumes the correct model structure. 

The results are consistent for different SNR levels. Therefore, our BSRR approach provides 

a flexible and unified way for simultaneously exploring rank reduction, predictor selection 

and response selection.

7. Yeast cell cycle data

Transcription factors (TFs), also called sequence-specific DNA binding proteins, regulate 

the transcription of genes from DNA to mRNA by binding specific DNA sequences. In order 

to understand the regulatory mechanism, it is important to reveal the network structure 

between TFs and their target genes. The network structure can be formulated using the 

multivariate regression model in (1), where the row and column of the response matrix, 

respectively, correspond to genes and samples (arrays, tissue types, time points), and the 

design matrix includes the binding information representing the strength of interaction 

between TFs and the target genes. The regression coefficient matrix then describes actual 

transcription factor activities of TFs for genes. In practice, many TFs are not actually related 

to the genes and there exists dependency among the samples due to the design of 

experiment.
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Here, we analyze an Yeast cell cycle data [14] using BSRR. The dataset is available in the 

spls package in R. The response matrix Y consists of 542 cell-cycle-regulated genes from an 

α factor arrest method, where mRNA levels are measured at every 7 minutes during 119 

minutes, i.e., n = 542 and q = 18. The 542 × 106 predictor matrix X contains the binding 

information of the target genes for a total of 106 TFs, where Chromatin immunoprecipitation 

(ChIP) for the 542 genes was performed on each of these 106 TFs. In our analyses, Y and X 
are centered.

We apply the BSRR method to the dataset. We use the proposed BIC to choose the tuning 

parameter and obtain λ̂
1 = 5, λ̂

2 = 1.5 and λ̂3 = 1.5. As a result, 26 TFs are identified at 17 

time points (105 min is eliminated) with the estimated rank r̂ = 4. Fig. 2 displays the 

obtained parameter estimates and 95% credible bands for randomly selected 4 TFs among 

the 26 TFs; see figures in the supplementary materials for all TFs. The same data set was 

also analyzed by the adaptive SRRR method of Chen and Huang [12]. In the adaptive 

SRRR, 32 TFs were identified at 18 time points with the optimal rank r̂ = 4 determined by a 

cross validation method. Among their selected 32 TFs, 21 TFs were also identified by our 

BSRR method. To compare variable selection performance between two methods, we define 

the following two models:

where X1 contains the information of the 542 genes for the 32 TFs identified by the adaptive 

SRRR, X2 contains the information of the 542 genes for the 26 TFs identified by BSRR, C1 

is the 32 × 18 matrix with rank(C1) = 4, and C2 is the 26 × 18 matrix with rank(C2) = 4. To 

conduct a fair comparison, we consider the following reduced rank priors in Geweke [20] for 

the models M1 and M2, respectively:

(28)

(29)

where A1 is a 32 × 4 matrix, B1 is an 18 × 4 matrix, A2 is an 26 × 4 matrix, B2 is a 18 × 4 

matrix and we set τ = 0.0001 to be a non-informative (flat) prior, so that the parameter 

estimates are determined nearly by the observations (Y1, X1) and (Y2, X2). As the Bayesian 

model selection criterion, using the priors in (28) and (29), we utilize the deviance 

information criteria (DIC) defined by
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where  denotes the posterior mean. If DIC1 > DIC2, then it implies that the model M2 

is more strongly supported by the given data than the model M1. Let  and 

 be MCMC samples from the posteriors π1(A1, B1 | Y, X1) and π2(A2, B2 | Y, 

X2), respectively. Note that the MCMC samples can be easily generated from multivariate 

normal distributions by using the Gibbs sampler. Define , for m = 

1, 2. Then the DIC can be estimated by the following Monte Carlo estimator:

Based on 1,000 MCMC samples (after 1,000 burn-in iterations) with 100 replication, we 

obtain  and  with Monte Carlo errors 1.29 and 1.14, 

respectively. Since , this result supports the model M2. Consequently, this 

implies that our BSRR method has better variable selection performance than the adaptive 

SRRR for Yeast cell cycle data. Recall that the response at 105 min was eliminated in the 

BSRR method. Table 3 displays the parameter estimates and 95% credible intervals (CIs) at 

105 min from the model M2. Since all CIs include zero, this demonstrates that the response 

elimination at 105 min in the BSRR is valid. In other words, none of TFs activates at 105 

min.

8. Discussion

We have developed a Bayesian sparse and low rank regression method, which achieves 

simultaneous rank reduction and predictor/response selection. There are many directions for 

future research. We have mainly focused on the ℓ0 type sparsity-inducing penalties to 

construct prior distribution. The method can be extended to use other forms of penalties for 

inducing diverse lower-dimensional structures. The low-rank structure induces dependency 

among the response variables, and hence the error correlation structure is not explicitly 

considered in the current work. Incorporating the variance component into our model might 

improve the efficiency of the coefficient estimation. In a Bayesian framework, this can be 

accomplished by assigning an appropriate prior on the variance component; the choice of the 

prior should be carefully treated due to the lack of unimodality of the posterior [31]. In 

practice, the response variables could be binary or counts. It is thus pressing to utilize a 

general likelihood function with the proposed BSRR prior. The proposed ICM algorithm 
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converges relatively fast, and in each iteration the main cost is to inverse a matrix of 

dimension min(n, p) owning to Woodbury matrix identity. However, this approach would 

still be inefficient when both p and n are extremely large. One way is to conduct some pre-

screening procedure [17, 19] before implementation of the proposed method. It would also 

be interesting to study on-line learning and the divide-and-conquer strategies of the proposed 

model. We have established the posterior consistency of the proposed sparse and low-rank 

estimation method under a high-dimensional asymptotic regime, which characterizes the 

behavior of the posterior distribution when the number of predictors pn increases with the 

sample size n. The theoretical analysis of the Bayesian (point) estimator itself could be of 

interest rather than the entire posterior distribution [1].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Plot of f(x) = x2/(x2 + ω0) for ω0 = 10−k (k = 4, 6, 8, 10).
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Figure 2. 
The parameter estimates and 95% credible bands for randomly selected 4 TFs from the 

BSRR, where x-axis indicates time (min) and y-axis indicates estimated coefficients.
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