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Abstract

By the age of 40, one in five adults without symptoms of cardiovascular disease are at risk

for developing congestive heart failure. Within this population, dilated cardiomyopathy

(DCM) remains one of the leading causes of disease and death, with nearly half of cases

genetically determined. Though genetic and high throughput sequencing-based approaches

have identified sporadic and inherited mutations in a multitude of genes implicated in cardio-

myopathy, how combinations of asymptomatic mutations lead to cardiac failure remains a

mystery. Since a number of studies have implicated mutations of the transcription factor

TBX20 in congenital heart diseases, we investigated the underlying mechanisms, using an

unbiased systems-based screen to identify novel, cardiac-specific binding partners. We

demonstrated that TBX20 physically and genetically interacts with the essential transcription

factor CASZ1. This interaction is required for survival, as mice heterozygous for both Tbx20

and Casz1 die post-natally as a result of DCM. A Tbx20 mutation associated with human

familial DCM sterically interferes with the TBX20-CASZ1 interaction and provides a physical

basis for how this human mutation disrupts normal cardiac function. Finally, we employed

quantitative proteomic analyses to define the molecular pathways mis-regulated upon dis-

ruption of this novel complex. Collectively, our proteomic, biochemical, genetic, and struc-

tural studies suggest that the physical interaction between TBX20 and CASZ1 is required

for cardiac homeostasis, and further, that reduction or loss of this critical interaction leads to

DCM. This work provides strong evidence that DCM can be inherited through a digenic

mechanism.
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Author summary

A molecular understanding of cardiomyocyte development is an essential goal for

improving clinical approaches to CHD. While TBX20 is an essential transcription factor

for heart development and its disease relevance is well established, many fundamental

questions remain about the mechanism of TBX20 function. Principle among these is how

TBX20 mutations associated with adult dilated cardiomyopathy circumvent (DCM) the

essential embryonic requirement for TBX20 in heart development. Here we report using

an integrated approach that TBX20 complexes with the cardiac transcription factor

CASZ1 in vivo. We confirmed TBX20 and CASZ1 interact biochemically and genetically,

and show mice heterozygous for both Tbx20 and Casz1 die, beginning at 4 to 8 weeks post

birth, exhibiting hallmarks of DCM. Interestingly, the human mutant TBX20F256I

bypasses the early essential requirement for TBX20 but leads to DCM. We report here

that TBX20F256I disrupts the TBX20-CASZ1 interaction, ascribing clinical relevance to

this protein complex. Further, by using quantitative proteomics we have identified the

molecular pathways altered in TBX20-CASZ1-mediated DCM. Together, these results

identify a novel interaction between TBX20 and CASZ1 that is essential for maintaining

cardiac homeostasis and imply that DCM can be inherited through a digenic mechanism.

Introduction

Heart failure is a major cause of morbidity in the United States with more than 5 million peo-

ple in the US living with this disease [1]. A major risk factor for developing heart failure is

dilated cardiomyopathy (DCM). Clinically recognized as systolic dysfunction accompanied by

dilation of one or both ventricles, DCM is a predominating cardiomyopathy and the most

common disease requiring heart transplantation in the US [2, 3]; however, nearly half of DCM

cases are of unknown etiology [4].

In efforts to understand the etiology of idiopathic DCM, mutations in over 50 genes includ-

ing components of the contractile apparatus and cell cytoskeleton, as well as in factors involved

in excitation-conduction coupling, have been identified as causative in DCM [5, 6]. However,

few studies have explored the potential for aberrant transcriptional regulation of these factors

to contribute to disease pathogenesis. In exception to this, recent studies have identified muta-

tions in the T-box transcription factor TBX20 associated with DCM [7–9].

Results of genetic analysis and protein depletion studies are consistent with an essential role

for TBX20 during the early stages of vertebrate heart development [10–17]. Hearts lacking

Tbx20 show progressive loss of cardiomyocytes, failure of the heart to undergo looping and

chamber formation, and defects in cardiomyocyte maturation [17–21]. In humans, loss-of-

function mutations in TBX20 can cause dilated cardiomyopathy, atrial septal defects, or mitral

valve disease, while gain-of-function mutations in TBX20 have been reported in patients with

Tetralogy of Fallot (i.e., pulmonary outflow tract obstruction, ventricular septal defect, overrid-

ing aortic root and right ventricular hypertrophy) [7, 8, 22–24]. It has been further demon-

strated that ablation of Tbx20 in adult mouse cardiomyocytes leads to the onset of severe

cardiomyopathy leading to death within 1–2 weeks after Tbx20 loss [25].

While TBX20 is an essential transcription factor for heart development and its disease rele-

vance is well established, many fundamental questions remain about the mechanism of TBX20

function. Principle among these is how TBX20 mutations associated with DCM circumvent

the essential embryonic cardiac requirement for TBX20.
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To elucidate the mechanisms by which mutations in TBX20 lead to human adult pathologi-

cal states, we identified endogenous TBX20 cardiac protein-protein interactions by coupling a

tagged endogenous allele of Tbx20 with unbiased proteomic analysis. Results from these stud-

ies revealed TBX20 interacts with the essential cardiac transcription factor Castor (CASZ1), a

gene that was also recently linked to DCM [26]. We confirmed that TBX20 and CASZ1 inter-

act biochemically and genetically, and we go on to show that while mice singularly haploinsuffi-

cient for Tbx20 or Casz1 are asymptomatic, mice heterozygous for both Tbx20 and Casz1 die,

beginning at 4 to 8 weeks post birth, and exhibit cardiomyocyte hypertrophy, interstitial fibro-

sis, and severe DCM. Interestingly, the human mutant TBX20F256I bypasses the early essential

requirement for TBX20 but leads to DCM. We report here that TBX20F256I disrupts the TBX20-

CASZ1 interaction, ascribing clinical relevance to this protein complex. Further, by using quan-

titative proteomics we have identified the molecular pathways altered in TBX20-CASZ1-me-

diated DCM. Together, these results identify a novel interaction between TBX20 and CASZ1

that is essential for maintaining cardiac homeostasis. These findings imply that DCM can be

inherited through a digenic mechanism.

Results

Defining the endogenous cardiac TBX20 interactome

To identify endogenous protein interactions that regulate TBX20 function, we introduced the

Avitag, in-frame, to the carboxy terminus of mouse Tbx20 through homologous recombination

in mouse embryonic stem cells (ESCs) (Tbx20Avi) (S1A and S1B Fig). Since the Avi-tag can be

biotinylated through recognition of the Avi-tag sequence by the E. coli biotin ligase BirA [27,

28], we generated a lentivirus expressing BirA and transduced it into mouse Tbx20Avi/+ ESCs.

After hygromycin selection, Tbx20Avi/+ ESCs that stably expressed BirA (S1C Fig) were differen-

tiated into induced cardiomyocytes (iCM) using a serum-free differentiation method that rou-

tinely generates cultures containing>60% cardiomyocytes (Fig 1A) [29].

Expression analysis at each day of differentiation confirmed the Tbx20Avi:BirA ESCs reca-

pitulated the wild-type cardiomyocyte differentiation program (Fig 1B). We further showed by

Myosin Heavy Chain (MHC) expression and time lapse imaging that the Tbx20Avi:BirA ESCs

differentiated into beating neonatal cardiomyocytes (Fig 1C, S1 Movie). Our analysis further

verifies that Tbx20Avi expression recapitulates endogenous Tbx20 expression with highest lev-

els in immature cardiomyocytes at day 4 and differentiated cardiomyocytes at day 7 (Fig 1B).

Published data has demonstrated a requirement for TBX20 in adult mice, with loss of

TBX20 leading to abrupt cardiac failure [25]. Recently, mutations in TBX20 in humans were

associated with DCM [7–9]. To delineate the mechanisms of how TBX20 DCM-associated

mutations circumvent the essential requirements for TBX20 in cardiac development, we iso-

lated and characterized the endogenous TBX20 cardiac protein interactome under physiological

conditions from Tbx20Avi; BirA iCMs at day 7 of differentiation. As a control for non-specific

interactions, identical affinity isolations were performed from BirA-negative iCMs. Proteins co-

isolated from TBX20Avi affinity purifications (APs) were analyzed by an SDS-PAGE tandem

mass spectrometry-based proteomics approach, as in [30]. TBX20 was detected in the AP from

BirA-expressing iCMs, with 19 unique tryptic peptides covering 54% of the TBX20 sequence

(out of a theoretical maximum coverage of ~75%) (Fig 1D and 1E; S2A and S2B Fig; S1 Table).

Identification of candidate high-confidence TBX20 interactions that have the potential to

regulate cardiac functions was achieved using a multi-step bioinformatics approach based on

the number of identified spectra per protein. First, interacting proteins identified by less than

10 spectra did not meet the identification requirement and were excluded from further analy-

sis. Further, proteins identified in the BirA-expressing isolations were required to have at least
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a 4-fold increase in identified spectra over isolations from control iCMs. Due to the ascribed

function of TBX20 as a critical cardiac transcription factor, we specifically focused on proteins

with a nuclear or unknown subcellular localization. Finally, these interaction candidates were

ranked by their AP enrichment (AP abundance versus whole cell abundance, S1 Table), which

Fig 1. The TBX20Avi-BirA system for isolation of the TBX20 interactome. (A) Schematic diagram of ESC transduction with Lenti-BirA and

subsequent differentiation. (B) RT-PCR panel showing changes in gene expression that ESCs undergo during 8-day differentiation into iCMs. (C)

Immunohistochemistry of iCMs stained with cardiomyocyte marker Myosin heavy chain (MHC) and counterstained with DAPI. (D) Schematic of BirA-

dependent biotinylation and streptavidin affinity isolation of TBX20 from iCMs. (E) Steptavidin affinity isolation of TBX20Avi complexes confirmed in

BirA-expressing iCMs by western blot analysis.

https://doi.org/10.1371/journal.pgen.1007011.g001
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we have previously used to highlight the most prominent associations suitable for functional

validation [31, 32]. Interestingly, the top 50 most enriched proteins in the TBX20 AP were pre-

dominately (32/50) annotated to Chromatin and Transcription gene ontologies (Fig 2A; S1

Table). Functional annotation of these proteins in the STRING database [33] revealed an inter-

connected network containing components of chromatin remodeling and RNA polymerase

transcriptional complexes (including four components of the INO80 complex—Ino80, Actr5,

Actr5, Nfrkb, and five components of the RNA Pol II mediator complex- Med13, Med14,

Med17, Med19, Med27) (Fig 2A). These data suggest that TBX20 predominantly acts to regu-

late transcription in neonatal cardiomyocytes, likely via interactions with the INO80 and RNA

Pol II mediator complexes.

TBX20 complexes with CASZ1

In addition to identifying components of broadly expressed multiprotein chromatin machines,

our analysis revealed the association of TBX20 with the essential cardiac transcription factor

CASZ1 in BirA-expressing iCMs (25 unique peptides and 21% sequence coverage. As previ-

ously reported [34, 35], CASZ1 protein runs as three bands on at approximately 191kD, pre-

sumably due to post translational processing) (Fig 2B, S2C Fig). Surprisingly, this was the only

developmentally-regulated cardiac transcription factor we found to interact with TBX20 in

Day 7 cardiomyocytes. The low estimated cellular abundance of CASZ1 and the relatively high

AP enrichment ratio (S1 Table) highlighted CASZ1 as a potential in vivo TBX20 interacting

protein. We further confirmed the TBX20-CASZ1 interaction through reciprocal immuno-

isolation of endogenous CASZ1 in cardiac nuclei from adult mouse hearts (Fig 2C) thus, veri-

fying our ESC differentiation-based approach can successfully identify bona fide TBX20 inter-

action partners under physiological conditions. Since expression analysis and genetic fate

mapping studies have shown CASZ1 is expressed only in cardiomyocytes and no other cardiac

cell types [36], and since we were unable to identify this interaction at Day 4 of iCM differenti-

ation, these studies imply the interaction between TBX20 and CASZ1 is temporally regulated

and cardiomyocyte-specific.

Phylogenic analysis shows that TBX20 and CASZ1 are highly conserved across vertebrate

orthologs [34, 35], suggesting that the TBX20-CASZ1 interaction may also be evolutionarily

conserved. To confirm the interaction and to determine whether it is evolutionarily conserved,

we injected X. laevis embryos with the Xenopus orthologous mRNAs of TBX20 and CASZ1. In

parallel, we co-expressed murine versions of tagged TBX20 and CASZ1 proteins in HEK293

cells. Immunoaffinity purification of TBX20 protein complexes from both of these sources, fol-

lowed by immunoblotting confirms the formation of a TBX20-CASZ1 interaction in human

cells and in X. laevis embryos (S3A and S3B Fig). Taken together, our findings are supportive

of an evolutionarily conserved role for the formation of a TBX20-CASZ1 protein complex in

differentiated cardiomyocytes.

Combined haploinsufficiency of Tbx20 and Casz1 results in dilated

cardiomyopathy

To determine the biological relevance of the TBX20-CASZ1 interaction, we tested for genetic

interaction between Tbx20 and Casz1 by generating mice with cardiac-specific heterozygous

loss of Tbx20 and Casz1 (Tbx20flox/+; Casz1flox/+; Nkx2.5Cre)[21, 36]. Compound heterozygous

mice, hereafter referred to as Tbx20flox/+; Casz1flox/+, were born and appeared normal. How-

ever, beginning at 4 weeks of age we observed an increased incidence of death among

Tbx20flox/+; Casz1flox/+ mice (2.7%) compared to the single heterozygotes (0%) (Table 1). This

effect was amplified at later timepoints, with survival rates of 90.5% and 62.5% at 8 and 16
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weeks of age, respectively, compared to a 100% survival rate in the single heterozygotes. Fur-

thermore, we did not observe any overt phenotypes in Tbx20flox/+; Nkx2.5Cre or Casz1flox/+;
Nkx2.5Cre mice. Since we were able to demonstrate that loss of Casz1 does not affect Tbx20
expression in adult heart tissue and that loss of Tbx20 does not affect Casz1 expression (S4A

and S4B Fig), these studies are supportive of a genetic requirement for a functional interaction

between TBX20 and CASZ1.

Fig 2. Endogenous TBX20 interactome. (A) Functional interaction network of the top 50 most enriched TBX20 interaction candidates. Known

functional relationships are based on the STRING mouse database. Nodes are labeled with the protein’s gene symbol and color-coded based on its

primary UniProt annotated cellular role. (B) Proteomic detection of TBX20 and CASZ1 in affinity purifications. The number of assigned spectra between

control (-BirA) and BirA-expressing (+BirA) iCMs, unique peptides, percent amino acid sequence coverage, and respective molecular weights are

provided. (C) Co-immunoprecipitations from Xenopus laevis embryos ectopically expressing full-length TBX20-EGFP alone, or in combination with full-

length CASZ1-V5.

https://doi.org/10.1371/journal.pgen.1007011.g002
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The TBX20-CASZ1 interaction is essential for normal cardiac function

To determine the cause of the reduced survival rate we observe in Tbx20flox/+; Casz1flox/+ mice,

we performed detailed physiological analysis, using echocardiography, of single and com-

pound heterozygous mice. These studies revealed that cardiac function is significantly com-

promised in Tbx20; Casz1 compound heterozygotes compared to single heterozygotes.

Compound heterozygotes exhibit significantly decreased ejection fraction and fractional short-

ening, increased left ventricular blood volume, and increased left ventricular diameter (Fig

3A–3D; Tables 2 and 3; S2 Table; S2–S6 Movies). Further, Tbx20flox/+; Casz1flox/+ heterozygous

mice display dilated ventricles with a striking decrease in ventricular wall thickness compared

to single heterozygotes (Fig 4A and 4B). These findings were observed in both male and female

mice (S3 Table). Thus, Tbx20flox/+; Casz1flox/+ mice display defining anatomical features of

DCM that progress to cardiac failure. Collectively, these findings suggest that the genetic inter-

action between Tbx20 and Casz1 is essential for normal cardiac homeostasis, and perturbation

of this interaction leads to DCM.

Tbx20; Casz1 compound heterozygous hearts undergo cardiac

remodeling

One of the defining clinical features of severe DCM is an accumulation of myocardial collagen

leading to interstitial fibrosis, a contributing and compounding factor in cardiac dysfunction

[37–39]. To confirm that the severe cardiac dysfunction we observe in Tbx20; Casz1 com-

pound heterozygotes is associated with advanced DCM, we examined collagen fibers and

found robust collagen deposition in the interstitium of Tbx20flox/+; Casz1flox/+ hearts (Fig 4B

and 4C). Despite the interstitial fibrosis and severely impaired systolic function, the fact that

over half of these mice survive to adulthood with some degree of cardiac function led us to

hypothesize that Tbx20; Casz1 compound heterozygous cardiomyocytes undergo compensa-

tory pathological hypertrophy. To test this hypothesis, we measured cardiomyocyte cross-sec-

tional areas and found that MF20-positive cells in compound heterozygotes were indeed

increased in size relative to controls (Fig 4D and 4E). This data suggests that disrupting the

TBX20-CASZ1 interaction leads to severe DCM and cardiac fibrosis. In response to this

heightened cardiac stress, Tbx20; Casz1 compound heterozygote hearts appear to undergo

pathological hypertrophy as an adaptive response.

A human DCM-associated TBX20 mutation reduces the TBX20-CASZ1

interaction

Our data implies the TBX20-CASZ1 interaction is essential for normal cardiac homeostasis.

To define the region of TBX20 that mediates interaction with CASZ1, we conducted immunoi-

solations with wild-type and deletion mutants in which either the T-Box or the C-terminus of

Table 1. Lethality in mutant and control mice at 4, 8, and 16 weeks old.

Lethality*

4 weeks 8 weeks 16 weeks

Nkx2.5Cre 0% (20) 0% (19) 0% (13)

Tbx20flox/+; Nkx2.5Cre 0% (21) 0% (13) 0% (3)

Casz1flox/+; Nkx2.5Cre 0% (13) 0% (7) 0% (2)

Tbx20flox/+; Casz1flox/+; Nkx2.5Cre 2.7% (37) 9.5% (21) 37.5% (8)

*Lethality is expressed as a percentage of the total shown in parentheses.

https://doi.org/10.1371/journal.pgen.1007011.t001
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TBX20 has been removed (Fig 5A). Immunopurifications of CASZ1 in the presence of wild-

type TBX20, TBX20ΔT-box, or TBX20ΔC, show that the T-box domain is required for interac-

tion with CASZ1, but that the C-terminus is dispensable (Fig 5A). In reciprocal studies, we

find the four most amino-terminal zinc finger domains of CASZ1 are necessary for interaction

with TBX20 (Fig 5B). The CASZ1-interacting region of TBX20, as well as the

Fig 3. Tbx20flox/+; Casz1flox/+ compound heterozygotes display decreased cardiac function. (A-D) Echocardiography in mice aged 8–11 weeks,

(A) left ventricular ejection fraction, (B) fractional shortening, (C) left ventricular inner diameter at diastole (LIVD-D), and (D) left ventricular inner

diameter at systole (LIVD-S) was measured for mice in indicated cohorts. Each red circle represents one mouse analyzed within that cohort. *p<0.05,

**p<0.005, ***p<0.0005. Statistical significance between pairs was calculated using Student’s t-test.

https://doi.org/10.1371/journal.pgen.1007011.g003
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TBX20-interacting region of CASZ1, are highly conserved across species implying functional

relevance to these regions (Fig 5C).

Recently, human TBX20 mutations have been identified that are associated with DCM;

however, only one of these mutations, TBX20F256I, co-segregates in a dominant manner with

complete penetrance in a family with DCM [9]. Moreover, DCM was found in all affected

Table 2. The TBX20-CASZ1 interaction is required for maintaining cardiac homeostasis in young adult mice (4–7 weeks old).

Casz1flox/+; Nkx2.5Cre (n = 6) Tbx20flox/+; Nkx2.5Cre (n = 8) Tbx20flox/+; Casz1flox/+; Nkx2.5Cre (n = 9) ANOVA P Value

LVEF (%) 81.1 ± 2.7 * 88.2 ± 2.3 ** 72.4 ± 2.2 0.0004

LVFS (%) 48.2 ± 2.9 *, # 57.6 ± 2.5 ** 40.3 ± 2.3 0.0002

LVVol;D (uL) 25.9 ± 3.8 28.2 ± 3.3 27.5 ± 3.1 0.8951

LVVol;S (uL) 4.91 ± 1.3 3.68 ± 1.6 7.79 ± 1.1 0.0495

LVID;D (mm) 2.63 ± 0.15 2.72 ± 0.13 2.67 ± 0.13 0.9073

LVID;S (mm) 1.36 ± 0.13 1.17 ± 0.11 1.60 ± 0.11 0.0372

IVS;D (mm) 0.995 ± 0.06 0.937 ± 0.06 0.868 ± 0.05 0.3152

IVS;S (mm) 1.51 ± 0.07 1.54 ± 0.06 * 1.35 ± 0.06 0.0643

LVPW;D (mm) 1.14 ± 0.08 1.07 ± 0.07 1.05 ± 0.06 0.6722

LVPW;S (mm) 1.68 ± 0.06 1.69 ± 0.06 1.54 ± 0.05 0.1082

Mean ± SEM. LVEF- Left Ventricular Ejection Fraction; LVFS- Left Ventricular Fractional Shortening; LVVol;D- Left Ventricular Volume at end Diastole;

LVVol;S- Left Ventricular Volume at end Systole; LVID;D- Left Ventricular Inner Diameter at end Diastole; LVID;S- Left Ventricular Inner Diameter at end

Systole; IVS;D- Interventricular Septum thickness at end Diastole; IVS;S- Interventricular Septum thickness at end Systole; LVPW;D- Left Ventricular

Posterior Wall at end Diastole; LVPW;S- Left Ventricular Posterior Wall at end Systole.

*p<0.05

**p<0.005 (indicated control groups were compared to compound heterozygotes)
#p<0.05 (indicated group was compared to Tbx20flox/+; Nkx2.5Cre).

https://doi.org/10.1371/journal.pgen.1007011.t002

Table 3. The TBX20-CASZ1 interaction is required for maintaining cardiac homeostasis in 8-11wk old mice.

Nkx2.5Cre (n = 6) Casz1flox/+; Nkx2.5Cre

(n = 5)

Tbx20flox/+; Nkx2.5Cre

(n = 10)

Tbx20flox/+; Casz1flox/+; Nkx2.5Cre

(n = 11)

ANOVA P

Value

LVEF (%) 82.2 ± 5.7 ** 79.3 ± 6.3 * 84.8 ± 4.4 *** 58.8 ± 4.2 0.0010

LVFS (%) 50.6 ± 4.5 ** 47.7 ± 4.9 * 53.5 ± 3.5 *** 31.8 ± 3.3 0.0006

LVVol;D (uL) 34.2 ± 8.7 * 27.5 ± 9.5 * 27.1 ± 6.7 ** 58.9 ± 6.4 0.0078

LVVol;S (uL) 6.12 ± 8.8 * 6.24 ± 9.6 * 4.62 ± 6.8 * 30.0 ± 6.5 0.0403

LVID;D (mm) 2.97 ± 0.22 * 2.69 ± 0.25 ** 2.65 ± 0.17 *** 3.63 ± 0.17 0.0017

LVID;S (mm) 1.47 ± 0.29 * 1.44 ± 0.32 * 1.26 ± 0.22 *** 2.55 ± 0.21 0.0012

IVS;D (mm) 0.90 ± 0.07 0.96 ± 0.08 1.01 ± 0.05 * 0.84 ± 0.05 0.1602

IVS;S (mm) 1.49 ± 0.09 1.49 ± 0.10 1.53 ± 0.07 * 1.25 ± 0.07 0.0457

LVPW;D

(mm)

1.03 ± 0.11 1.17 ± 0.12 1.08 ± 0.08 1.00 ± 0.08 0.6740

LVPW;S

(mm)

1.70 ± 0.11 * 1.72 ± 0.12 * 1.73 ± 0.08 ** 1.36 ± 0.08 0.0138

Mean ± SEM. LVEF- Left Ventricular Ejection Fraction; LVFS- Left Ventricular Fractional Shortening; LVVol;D- Left Ventricular Volume at end Diastole;

LVVol;S- Left Ventricular Volume at end Systole; LVID;D- Left Ventricular Inner Diameter at end Diastole; LVID;S- Left Ventricular Inner Diameter at end

Systole; IVS;D- Interventricular Septum thickness at end Diastole; IVS;S- Interventricular Septum thickness at end Systole; LVPW;D- Left Ventricular

Posterior Wall at end Diastole; LVPW;S- Left Ventricular Posterior Wall at end Systole.

*p<0.05

**p<0.005

***p<0.0005 (indicated control groups were compared to compound heterozygotes).

https://doi.org/10.1371/journal.pgen.1007011.t003
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Fig 4. Double heterozygous hearts undergo pathological remodeling. (A-D) Hearts from mice aged

8–11 weeks. (A) Transverse sections of hearts stained with hematoxylin and counter-stained with eosin. (B)

Transverse sections of hearts stained with Picrosirius red and fast green, and visualized using bright field

microscopy. (C) Polarizing light microscopy of Picrosirius red-stained sections. Thin collagen fibers stain
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green to yellow, while thicker collagen fibers stain orange to red. (D) Transverse heart sections were

immunostained with tropomyosin (red, cardiomyocytes) and WGA (green, cell membranes). Region of left

ventricular free wall shown. (E) Quantification of cardiomyocyte cross-sectional areas, shown as mean ± SEM

of 450+ cardiomyocytes per heart, n = 3 hearts per genotype. *p<0.05, **p<0.0005. Statistical significance

between pairs was calculated using Student’s t-test. A-C, scale bar = 300 μm. D, scale bar = 20 μm.

https://doi.org/10.1371/journal.pgen.1007011.g004

Fig 5. TBX20 and CASZ1 interact through their DNA binding domains. (A) (Top) Schematic of full-length TBX20 and truncations. NLS, Nuclear

Localization Signal. Putative activation domain shown in green and putative repression domain in orange. (Bottom) Co-immunoisolations from X. laevis

embryos expressing full-length CASZ1-V5 and either full-length HA-TBX20 or deletions shown in top panel. (B) (Top) Schematic of full-length CASZ1

and the truncations used in the co-immunoisolations. (Bottom) Co-immunoisolations from X. laevis embryos expressing full-length HA-TBX20 alone, or

in combination with either full-length CASZ1-V5 or truncations shown in top panel. (C) (Top) Sequence alignment of TBX20 position 248–288 across 90

TBX20 orthologs. Height of letters is relative to conservation at that residue. (Bottom) Sequence alignment of CASZ1 at positions 601–650 across 90

CASZ1 orthologs.

https://doi.org/10.1371/journal.pgen.1007011.g005
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family members reported as healthy during health assessments performed when they were

juveniles. The functional relevance of the F256I mutation is further underscored by the finding

that the amino acid disrupted by this mutation is 100% conserved across all TBX20 orthologs

and by the observation that no F256I mutations were identified in 600 control samples [9].

Interestingly, the F256I mutation associated with DCM lies within the TBX20 T-box domain,

the region we found essential for interaction with CASZ1 (Figs 5A and 6A). To test if

TBX20F256I perturbs the TBX20-CASZ1 interaction, we performed immunoaffinity purifica-

tions of CASZ1 in the presence of wild-type TBX20 or TBX20F256I. Interestingly, the F256I
mutation significantly reduces the interaction with CASZ1 (Fig 6A). These data imply that the

DCM mutation F256I may contribute to the development of cardiac disease by disrupting a

critical physical interaction between TBX20 and CASZ1.

The TBX20F256I mutation acts to sterically inhibit the TBX20-CASZ1

interaction

To gain a structural understanding of how the F256I mutation disrupts the TBX20-CASZ1

interaction, we conducted molecular modeling of the wild-type and TBX20F256I T-box domain

(Fig 5B and 5C). The predicted structures were based on the range of fluctuations in the struc-

ture that occur over a period of 100 ns (S4 Movie). Three regions are highlighted which show

conformational changes induced by the mutation (Fig 6B). Our models find F256 is not pre-

dicted to contact DNA but the conversion of phenylalanine to isoleucine at position 256 leads

to steric clashes with the conserved T-box residues E258 and T259 (Fig 6C). The critical func-

tional nature of this region of TBX20 is underscored by the complete conservation of amino

acids at residues F256, E258, and T259 across 250 members of the T-box gene family (S5A and

S5B Fig). Taken together, these findings imply that F256I leads to a conformational change

across the surface predicted to interact with CASZ1, and that disruption of this interaction

leads to alteration in DNA binding.

To determine the transcriptional consequences of TBX20F256I on the TBX20:CASZ1 interac-

tion, we conducted transcriptional assays with TBX20, CASZ1 and TBX20F256I alone and in

combination. Results demonstrate TBX20 synergistically acts with CASZ1 and that TBX20F256I

significantly diminishes transcriptional activation by TBX20:CASZ1 (S6 Fig). These data

together with our structural studies provide a mechanistic basis for how F256I disrupts TBX20:

CASZ1 function.

Tbx20; Casz1 compound heterozygous hearts have an altered DCM-

associated proteome

To identify the molecular pathways altered in DCM haploinsufficient mutant (Tbx20flox/+;
Casz1flox/+; Nkx2-5Cre) mouse hearts, we used quantitative multiplexed mass spectrometry to

identify proteins with altered abundances relative to control hearts. Proteins were extracted

from nuclear-enriched mouse cardiac fractions of mutant and control (Nkx2-5Cre) mice in

duplicate and digested in-solution with trypsin. Peptides from each sample were labeled with

different isobaric tandem mass tagging (TMT) reagents, pooled, fractionated, and analyzed by

reverse phase nanoliquid chromatography coupled to a high resolution quadrupole Orbitrap

tandem mass spectrometer. Using this strategy, 3164 proteins were identified and quantified

based on their respective sequenced peptides and TMT reporter ions, respectively (S4 Table).

To define the TMT ratio threshold for differential relative abundance, protein abundance

values were compared between biological duplicates (S7 Fig). For both the control and mutant

replicates, the correlation of abundances was high (R2 = 0.99) and the majority of proteins had

low dispersion from a 1:1 linear curve (S7A and S7B Fig), indicating low biological and
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technical variation. Curve-fit analysis of TMT abundance ratio histograms for the control and

Fig 6. TBX20F245I mutant displays impaired interaction with CASZ1. (A) (Top) Schematic of full-length TBX20 with location of F256I

mutation shown. (Bottom) Co-immunoisolations of full-length wild-type CASZ1 with wild-type TBX20 or TBX20F256I. (B) Ribbon models of the

average structures of TBX20 calculated from the 100 ns molecular dynamics simulations of the T-box domain. Left panel: starting structure of

wild-type TBX20 (cyan) including DNA for reference. Right panel: an overlay of wild-type TBX20 (green) and TBX20F256I (magenta). F256 and

I256 side chains are displayed in stick form. Regions designated as 1, 2, and 3 undergo mutation-induced conformational changes in the

unbound form. (C) Enlargement of the F256I residue shown in (B) in a different side chain rotamer that also induces steric clashes. The I256

mutation is rendered in purple stick form, with small red discs indicating steric clashes between the side chain of I256 and T-box residues E258

and T259.

https://doi.org/10.1371/journal.pgen.1007011.g006
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mutant biological duplicates showed that, on average, 90% of the ratios varied less than ±30%

(S7 Fig). Based on this result, a relative abundance ratio of at least ±1.3-fold between mutant

and control mice in both replicates were used to identify a protein as differential. From the

total number of quantified proteins, 175 met this criterion, of which 86 and 89 were up and

down-regulated, respectively (Fig 7C; S4 Table). Further verifying the role of the TBX20;

CASZ1 interaction, 165 of the 175 of the proteins identified by this approach were encoded by

a gene previously demonstrated to be a TBX20 target [40](S5 Table).

To generate an initial picture of potentially dysregulated pathways, the known functional

connectivity among differential proteins can be determined using databases of annotated path-

ways and protein-protein interaction. Towards this goal, known functional associations

among the 175 differential proteins were scored based on the STRING bioinformatics database

[41], and the relational networks visualized in Cytoscape [42] (Fig 7D; S8 Fig). A high degree

of interconnectivity was observed among the differential proteins as 127 of the 175 annotated

proteins had at least one other connection and each protein on average was connected to 4.6

neighbors. Network clustering was performed to identify subsets of highly connected proteins,

which likely share similar functions. Overall, there are 10 functional clusters containing at least

3 proteins, indicated by the color-coding in Fig 6C. To identify the most significant biological

processes and pathways that are perturbed in Tbx20; Casz1 hypomorphic DCM hearts, we per-

formed comparative Gene Ontology over-representation analysis of the differentially regulated

proteins using ClueGO [43] (Fig 7E). Consistent with studies demonstrating an association

between DCM and inflammation [44, 45], we found components of the pro-inflammatory

response (i.e. complement activation) significantly up-regulated.

In addition to inflammation-associated proteins, our data further revealed a dysregulation

of mitochondrial proteins known to be associated with impaired cardiomyocyte contractile

function in DCM [46]. In line with these findings and the observation that reduced contractile

force is linked to altered glycogen metabolism and cardiomyopathy [47–49], we found an

over-representation of proteins associated with the glycogen metabolic pathway. We note that

these were exclusively down-regulated proteins, represented by glycogen synthase (Gys1), gly-

cogen phosphorylases (Pygm/Pygb), and phosphorylase kinase gamma 1 (Phkg1). Interest-

ingly, proteins involved in glycogen regulation and in myosin-dependent muscle contractility

were part of the same functional cluster (Fig 7D, yellow nodes); however, their individual

abundances were down- and up-regulated, respectively (Fig 7D, circle vs. square nodes).

Taken together, these data confirm at the protein level the DCM pathology in Tbx20; Casz1
hypomorphic DCM mice.

TBX20; CASZ1-linked DCM is associated with dysregulation of cell-cell

adhesion proteins

In addition to proteins previously reported to be associated with DCM, our analysis identified

a distinct set of cell-cell adhesion proteins in Tbx20; Casz1 compound heterozygous hearts that

were significantly overrepresented compared to whole genome annotation (Fig 7E; S8 Fig, yel-

low). These observations highlight the significant changes that are likely occurring in the extra-

cellular and intracellular spaces and raise a key question- what are the signaling mediators that

link these processes? To identify potential key mediators of TBX20-CASZ1-driven DCM, we

constructed a gene-linked GO network for the Cellular Component ontology (S8 and S9 Figs).

This network highlighted two interesting candidates, bone morphogenic protein 10 (Bmp10)

and thrombospondin 1 (Thbs1), the former being a TGF-beta receptor ligand and the latter

having roles in cell-cell adhesion as well as ER stress response [50]. Overall, this systems-level

proteome view of DCM provides potential downstream targets and pathways that may be
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influenced as a result of Tbx20 and Casz1 haploinsufficiency and suggests a role for cell-cell

adhesion in mediating DCM.

Discussion

One in five adults free of cardiovascular disease by the age of 40 are at risk of developing

congestive heart failure over their lifetime [51, 52]. Within this population DCM remains one

of the leading causes of disease and death with nearly half of DCM cases genetically deter-

mined [53–57]. To date, most DCM mutations have been identified in genes coding for com-

ponents of the contractile apparatus or the cell cytoskeleton or factors involved in excitation-

conduction coupling. Though these studies have provided insight into the pathology of DCM,

the transcriptional regulation of DCM is poorly understood. Recently, studies have identified

mutations in the T-box transcription factor TBX20 in DCM patients [7–9]. However, these

studies have not explained how DCM-associated mutations bypass early essential require-

ments for TBX20. Here, we demonstrate TBX20 and CASZ1 physically and genetically interact

in the adult heart and establish that this interaction is essential for cardiac homeostasis. We

further find that disruption of the TBX20-CASZ1 interaction in mice and humans leads to car-

diomyopathy. Mice singly heterozygous for alleles of Tbx20 or Casz1 are asymptomatic, while

Tbx20; Casz1 compound heterozygotes die post-natally, exhibiting systolic dysfunction, as well

as ventricular dilation and interstitial fibrosis. These cardiac defects, in the absence of coronary

artery disease or substantially abnormal load, are defining features of DCM as seen in human

patients [6, 58, 59].

CASZ1 and DCM

CASZ1 is a large para-zinc finger protein of unique structure and to date, there have been lim-

ited studies on the mechanisms of how CASZ1 regulates transcription [60–62]. These types of

studies have been compromised by the lack of high-affinity high-specificity mammalian CASZ1

antibodies, precluding approaches such as ChIP-seq. It further remains unclear if CASZ1, as a

para-zinc finger protein, directly binds DNA or is recruited via other transcription factors. Our

structural studies favor a model by which the TBX20-CASZ1 interaction is required for DNA

binding. This model predicts that the respective region of TBX20 that binds CASZ1 is near to or

contributes to the DNA binding interface and has the potential to impact CASZ1 binding.

CASZ1 was first ascribed a role in vertebrate cardiovascular development in Xenopus [34,

62, 63]. Subsequent genetic studies in mammals uncovered that like TBX20, CASZ1 functions

in the embryonic heart to control cardiomyocyte proliferation, with loss of CASZ1 leading to

cardiac death by E12.5 [36, 64]. Our finding that Tbx20; Casz1 compound heterozygous mice

die post-natally implies that CASZ1 has a second and later role in cardiac homeostasis. This

Fig 7. Proteomic analysis of DCM mouse hearts reveals activation of complement cascades and decreased protein abundance involved in

glycogen metabolic processes. (A-B) Comparison of normalized protein abundances (black dots, n = 3164) quantified by TMT-based proteomics

between biological replicates of (A) Nkx2.5Cre (Control, CTL) and (B) Tbx20flox/+; Casz1flox/+; Nkx2.5Cre (Mutant) mouse hearts. (C) Comparison of

average normalized TMT protein abundances between Mutant and CTL mouse hearts (n = 2). Proteins classified as differentially abundant in the

Mutant (TMT abundance ratios� ±1/3-fold in both replicates) are indicated (red dots, n = 175). (D) Functional interaction network of differentially

abundant proteins constructed using STRING interaction database. Proteins with up- and down-regulated abundances are represented by circle and

square nodes, respectively, and labeled with primary gene symbols. Proteins that did not have connectivity to at least one other protein were excluded.

Nodes are color-coded by cluster connectivity, which was assigned by the ReactomeF1 plug-in (see Methods). (See S7 Fig) Network edges reflect

known STRING database relationships (confidence score >0.4). Edge thickness correlates with STRING confidence score (0.4–1). (E) Gene ontology

(GO)-based network of selected over-represented Biological Processes represented by the differentially abundant proteins. Over-represented GO

terms (p-value <0.05) are colored according to the proportion of the total differentially abundant proteins annotated to that term that were up- (yellow) or

down- (blue) regulated. Protein to GO term assignments are indicated by network edges connecting the respective gene symbols (squares) with their

assigned GO term.

https://doi.org/10.1371/journal.pgen.1007011.g007
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model is supported by the recent finding that mutations in CASZ1, like TBX20, are associated

with human DCM [26].

TBX20-CASZ1 protein pathways and DCM

In these studies, the Nkx2.5-Cre driver was used to generate mice null for Casz1 and Tbx20. In

all cases the Nkx2.5-Cre driver alone was used, with wild-type mice as a negative control in our

physiological studies and in our quantitative proteomic studies. In contrast to previous reports

[65], we could detect no significant changes in any cardiac function in Nkx2.5-Cre mice rela-

tive to wild-type mice. These finding may be due to genetic background, the sex on which the

Cre driver was delivered to the offspring, or environmental variability as reported for other

lines [66, 67]. Regardless of the reason for the variability, we did find the Nkx2.5-Cre driver

had a high recombination efficiency reducing the levels of TBX20 and CASZ1 by half (S4

Table). Since, reducing CASZ1 expression by half had no detectable alteration in Tbx20
expression and vice versa, our data suggests a biochemical and genetic interaction between

TBX20 and CASZ1. Our data further indicates that disruption of this complex leads to DCM

in mice and humans.

A previously published model of DCM, the phospholamban R9C transgenic mouse [68], has

also been studied by proteomic analysis [69, 70]. This model exhibits impaired calcium regulation

in cardiomyocytes, accompanied by decreased cardiac contractility and premature mortality

[68]. The GO-associated proteome changes that we found in the haploinsufficient mice share

similarities with the Phospholamban R9C mice. Specifically, both mouse models show up-regula-

tion of actin-myosin cytoskeletal networks and down-regulation of mitochondria-associated pro-

teins involved in fatty acid oxidation. Interestingly, proteomic analyses performed on ventricular

tissues from human patients with inflammatory DCM had similar findings [71]. Yet some func-

tional protein classes in our Tbx20-CASZ1 haploinsufficient DCM mice were distinct, including

an up-regulation of the complement system and greater coverage of down-regulated proteins in

glycogen metabolic processes. While we found the Tbx20-CASZ1 haploinsufficient mice have evi-

dence of differential regulation in calcium-binding proteins, not surprisingly, the Phospholam-

ban R9C mice have more pervasive effects on calcium-dependent signaling, such as involving ER

stress responses, though it is possible that these distinctions may be due to differences in the pro-

gression of the fibrosis associated with DCM.

One of the hallmarks of DCM is altered cardiomyocyte force transduction that is frequently

associated with alteration in the composition or functions of intercalated discs- a cardiac-spe-

cific structure at the contact site between cardiomyocytes [72, 73]. Here, we observed a signifi-

cant mis-regulation of proteins involved in cell-cell adhesion in heart tissue from Tbx20; Casz1
heterozygous mice. Moreover, these include three proteins which are encoded by genes that

when mutated are causative to DCM- TTN, DES, and PDLIM3. Thus, our findings imply that

the TBX20-CASZ1 complex acts, at least in part, to control the electrical and mechanical inte-

gration of neighboring cardiomyocytes.

TBX20, CASZ1, and digenic inheritance of DCM

The observation that the TBX20F256I mutation leads to a decreased association with CASZ1,

along with the finding that patients heterozygous for a predicted TBX20 null mutation

(TBX20Q195X) [23] also display DCM suggest that the TBX20F256I mutation may be acting in a

haploinsufficient fashion. However, only two of the individuals within a single pedigree with

the TBX20Q195X mutation display DCM while other individuals display a wide range of cardiac

abnormalities [23]. Moreover, we have screened the Exome Aggregation Consortium (ExAc)

reference set and have identified four variants in TBX20 in individuals that are asymptomatic.
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All variants lead to a premature stop codon in one of the TBX20 alleles and all would be pre-

dicted to be functionally null (introduction of stop codons into exons 2, 4, 7, and 8)[74].

Together, these findings imply that the function of the TBX20-CASZ1 complex in DCM is not

dose dependent. Alternatively, individuals harboring the TBX20F256I mutation have a geneti-

cally sensitized background leading to a varying degree of penetrance that is determined by

modifying genes that may be carried within the CASZ1 pathway.

In cardiovascular disease, genetic mutations often result in varying degrees of penetrance,

and in extreme examples, the presence of a disease-causing mutation can be asymptomatic

[75–80]. These phenomena have often been explained by the action of genetic modifiers in

which one gene mutation is causative to CHD and a second mutation modifies the effect of the

first. However, more recent studies suggest an alternate or additional mechanism by which

complete penetrance is achieved in human disease states by genetic variation at one or more

loci [81]. In digenic inheritance, two genetic mutations are required for the clinical phenotype

with either mutations alone being asymptomatic. Our findings provide an example of digenic

inheritance in DCM and suggest that mutations in TBX20 or CASZ1 could lead to susceptibil-

ity to DCM but in many cases are not in themselves causative. We would envision these find-

ings are not restricted to TBX20 and CASZ1 but rather are applicable to other genes and other

forms of congenital heart disease (CHD) and DCM, and predict that genome sequencing of

familial CHD will ultimately reveal a spectrum of additional CHD susceptibility alleles.

Materials and methods

Generation of Tbx20Avi allele

The Tbx20Avi allele was created by introducing the biotin acceptor peptide (Avi) targeting cas-

sette, similar to our previous study [82], in-frame to the terminal exon of Tbx20 in collabora-

tion with the UNC Animal Models Core and the UNC BAC Core (Chapel Hill).

Generation of Tbx20Avi; BirA cell line

The Tbx20Avi; BirA cell line was generated by targeting a sequence containing the Avitag fol-

lowed by a loxP-flanked neo cassette into the stop codon of exon 8 of a Tbx20a genomic frag-

ment derived from a 129 Sv genomic BAC library. The targeting construct was linearized and

electroporated into mouse embryonic stem cells (ESCs) of E14TG2a.4 origin. Targeted ESCs

were placed under 250 μg/mL G418 selection for 7–10 days and G418-resistant ESC clones

(n = 384) were screened for homologous recombination by Southern blot analysis. Three ESC

clones were correctly targeted, and one of these clones was subsequently used to derive the

Tbx20Avi/+; BirA cell line. Briefly, Tbx20Avi/+ ESCs were grown to approximately 40% conflu-

ence and transduced with 5 MOI Lenti-BirA for 8 hrs. Twenty-four hours following transduc-

tion, cells were placed under 200 μg/mL hygromycin selection for 4–5 days. Hygro-resistant

Tbx20Avi/+ cells were subsequently used for cardiomyocyte differentiations.

ESC differentiation

Tbx20Avi/+; BirA ESCs were maintained on gelatin-coated dishes in a feeder-free culture system

and differentiated [29] in serum-free (SF) media according to the Keller protocol. Briefly, ESCs

were trypsinized and cultured at 75,000 cells/mL on uncoated petri dishes in SF medium with-

out additional growth factors for 48 hrs. Two-day-old aggregated embryoid bodies (EBs) were

dissociated and the cells reaggregated for 48 hr in SF medium containing 5 ng/mL human Acti-

vin A, 0.1 ng/mL human BMP4, and 5 ng/mL human VEGF (all growth factors purchased from

R&D Systems). Four-day-old EBs were dissociated and 2 x 106 cells were seeded into individual
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gelatin-coated wells of a 6-well dish in StemPro-34 SF medium (Invitrogen) supplemented with

2 mM L-glutamine, 1 mM ascorbic acid, 5 ng/mL human VEGF, 20 ng/mL human bFGF, and

50 ng/mL human FGF10 (R&D Systems). Cardiomyocyte monolayers were maintained in this

media for 4–5 additional days with cells typically beginning to beat 2 days after seeding onto gel-

atin (total of 7–8 days of differentiation).

Immunofluorescence

For immunofluorescence of cardiomyocytes, four-day-old ES cell-derived EBs were dissoci-

ated and seeded into 8-well chamber slides precoated with 0.1% gelatin. Induced cardiomyo-

cytes were fixed on day 7 of differentiation in 4% paraformaldehyde for 20 min at room

temperature, washed (3 x 1X PBS), permeabilized in 0.1% Triton X-100 in 1X PBS for 10 min,

and blocked (10% fetal bovine serum [FBS], 0.1% Tween 20 in 1X PBS) for 30 min. Anti-myo-

sin heavy chain (Abcam) was applied overnight, followed by PBS washes (3 x 1X PBS), and

incubation with goat anti-mouse Alexa 546 (Invitrogen) for 1 hr. Cells were incubated in

DAPI (200 ng/mL in ethanol) for 30 min and visualized by confocal microscopy on a Zeiss

710.

Proteomic analysis of Tbx20 affinity purifications

Protein preparations, conjugation of magnetic beads and immunoaffinity purification and

mass spectrometry were conducted as previously reported [82]. All results are from a mini-

mum of two independent biological replicates. Briefly, immunoisolated proteins were resolved

(~ 4 cm) by SDS-PAGE, and visualized by Coomassie blue. Each lane was subjected to in-gel

digestion with trypsin and analyzed by nanoliquid chromatography coupled to tandem mass

spectrometry as previously reported [83]. Tandem mass spectra were extracted by Proteome

Discoverer (ThermoFisher Scientific, ver 1.4), and searched with the SEQUEST algorithm

against a theoretical tryptic peptide database generated from the forward or reverse entries of

the mouse UniProt-SwissProt protein sequence database (2013/08) and common contami-

nants (total of 43, 007 sequences). SEQUEST search results were analyzed by Scaffold (version

4.6.1, Proteome Software Inc) using the LFDR scoring scheme to calculate peptide and protein

probabilities. Peptide and protein probabilities thresholds were selected to achieve� 1% FDR

at the peptide level based on LFDR modeling and at the protein level, based on the number of

proteins identified as hits to the reverse database. The spectral counts assigned to proteins that

satisfy these criteria and had a minimum of two unique peptides were exported to Excel for

data processing.

Interaction bioinformatics analysis

Proteins identified by LC-tandem MS were filtered to exclude non-specific associations. Pro-

teins were retained as specific interaction candidates if the proteins were assigned (1) at least

ten spectral counts in the Tbx20Avi;BirA condition, and (2) were uniquely identified or had at

least a 4-fold spectral count enrichment in the Tbx20Avi; BirA condition versus the control.

Next, the subset of candidates assigned a nuclear or unknown UniProt subcellular localization

were retained for calculation of enrichment index values, as previously described [31]. Briefly,

the relative protein abundance within the affinity purification was calculated using the NSAF

approach [84], then normalized by each protein’s respective cellular abundance estimated in

the PAX database [85] (Mouse—whole organism, SC GPM 2014). Interaction candidates were

ranked by their enrichment index and the top 50 proteins were analyzed by STRING [86] for

interaction network analysis. Interactions with a combined STRING score of> 0.4 (medium

confidence) were retained, exported, and visualized in Cytoscape (ver. 3.3). Proteins within
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the network were assigned into broad protein functional classes based on annotations in the

UniProtKB database.

Western blot analysis

Western blots were probed with the following primary antibodies overnight at 4˚C: mouse

anti-V5 (Invitrogen) 1:5000; mouse anti-GFP (JL-8, Clontech) 1:10000; mouse anti-HA-HRP

(Cell Signaling #2999) 1:1000, mouse anti-GAPDH (Millipore) 1:1000, goat anti-TBX20 (Santa

Cruz Biotechnology) 1:600, rabbit anti-CASZ (Santa Cruz Biotechnology) 1:1000, and chick

anti-BirA (Abcam) 1:2000. After being rinsed, blots were rinsed in the following secondary

antibodies for 1 hr at room temperature: anti-IgG2a-HRP (Jackson Immunoresearch) 1:10000.

Antibody-antigen complexes were visualized using an ECL Western Blotting Analysis System

(Amersham).

Mice

Tbx20flox/+ mice were generously provided by Sylvia Evans (UCSD) [21]. The Casz1flox/+

mouse has been previously reported [36]. Histological sectioning and immunohistochemistry

were done as reported except as noted [36]. All mice are on a mixed B6/129/SvEv/CD-1 back-

ground and all mouse experiments were performed according to the Animal Care Committee

at the University of North Carolina, Chapel Hill.

Echocardiography

Cardiac function was assessed in conscious 8–11 week-old Casz1flox/+; Nkx2.5Cre, Tbx20flox/+;
Nkx2.5Cre, and Tbx20flox/+; Casz1flox/+; Nkx2.5Cre mice (5–10 mice per genotype) by thoracic

echocardiography using VisualSonics Vevo 770 ultrasound system (Visual Sonics, Inc.). All

imaging was done by trained technicians blinded to the genotypes of the animals. Briefly, a

topical hair removal agent was used on the chest and abdomen of mice. The mice placed on a

warmed table in the supine position for imaging. A 30 MHz pediatric probe used to capture

2-dimensional guided M-mode views of the long and short axes at the level of the papillary

muscle. VisualSonics Analytic software was used to determine mean ventricular wall and inter-

ventricular septum thickness, as well as the left ventricle diameter from at least 3 consecutive

cardiac cycles. Means were used to calculate ejection fraction and fractional shortening.

Statistics

All statistical analysis performed using SAS JMP 10. Statistical significance between individual

groups was calculated using Student’s T-test, while significance between more than 2 groups

was calculated using ANOVA.
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