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Abstract

The Foodborne Diseases Active Surveillance Network (FoodNet) is currently using a negative 

binomial regression model to estimate temporal changes in the incidence of Campylobacter 
infection. FoodNet active surveillance in 483 counties collected data on 40212 Campylobacter 
cases between years 2004 and 2011. We explored models that disaggregated these data to allow us 

to account for demographic, geographic, and seasonal factors when examining changes in 

incidence of Campylobacter infection. We hypothesized that modeling structural zeros and 

including demographic variables would increase the fit of FoodNet’s Campylobacter incidence 

regression models. Five different models were compared: negative binomial without demographic 

covariates, negative binomial with demographic covariates, hurdle negative binomial with 

covariates in the count component only, hurdle negative binomial with covariates in both zero and 

count components, and zero-inflated negative binomial with covariates in the count component 

only. Of the models evaluated, the non-zero-augmented negative binomial model with 

demographic variables provided the best fit. Results suggest that even though zero inflation was 

not present at this level, individualizing the level of aggregation and using different model 

structures and predictors per site might be required to correctly distinguish between structural and 

observational zeros and to account for risk factors that vary geographically.

INTRODUCTION

The Foodborne Diseases Active Surveillance Network (FoodNet) is a collaboration among 

the Centers for Disease Control and Prevention (CDC), 10 state health departments, the U.S. 

Department of Agriculture’s Food Safety and Inspection Service (USDA-FSIS), and the 
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Food and Drug Administration (FDA). FoodNet conducts active, population-based 

surveillance for laboratory-confirmed infections of nine bacterial and parasitic pathogens 

transmitted commonly through food. The FoodNet surveillance area includes the full states 

of Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, and Tennessee, and 

selected counties in California, Colorado, and New York. One aim of FoodNet is to track 

changes over time in the incidence of 9 enteric pathogens commonly transmitted through 

food. FoodNet is currently using a negative binomial regression model to estimate temporal 

changes (Henao et al., 2010).

The FoodNet model is used on data aggregated by year and FoodNet site to account for the 

growth of the surveillance area from 5 sites in 1996 to 10 sites in 2004, and adjust for site to 

site variation in incidence. This level of aggregation limits our ability to explore variations in 

incidence for smaller geographic areas or units of time, or demographic features of 

individual cases, such as patients’ age and sex; all factors that have been shown to describe 

unique characteristics of Campylobacter epidemiology (Ailes et al., 2008; Samuel et al., 
2004). Exploration of changes in incidence over time associated with specific subgroups 

may contribute to hypotheses regarding geographically- or time-varying sources of 

Campylobacter infection. However, disaggregating data can cause an increase in the 

proportion of case counts in each subgroup that are zero, because the total population in 

each group is decreased.

Zero-augmented models consist of two separate model components: one for modeling case 

counts (using a negative binomial distribution) and one for modeling the proportion of zeros 

(using a binomial distribution). The zero-inflated and hurdle models differ in whether their 

count model component can yield a count of zero. Zero-inflated models assume zeros can be 

either structural or true observational zeros and therefore zeros are estimated by both binary 

and count components and have an additional mixing parameter not present in hurdle 

models. Hurdle models assume that all zeros are structural zeros and therefore only model 

the binary component and use conditionally specified versions of the negative binomial 

distribution which are truncated to begin at a count of one (Mullahy, 1986; Desjardins, 

2013).

Consequently, zero-augmented models, hurdle and zero-inflated, may be useful to model 

Campylobacter case counts in FoodNet where the high proportion of observed zero counts 

may be attributed to factors that make it impossible to observe a case (structural zeros) as 

well as factors associated with the sampling (observational zeros) (Ridout et al., 1998; Hu et 
al., 2011). We hypothesized that factors such as diagnostic testing performance or 

population immunity may contribute to the presence of structural zeros, and that the size of 

the surveillance population contributes to observational zeros.

We examined zero-augmented modifications (zero-inflated, hurdle) of the regression model 

used by FoodNet to estimate changes over time and added predictors to account for 

additional sources of variation in incidence. We hypothesized that modeling structural zeros 

and including demographic variables would increase the fit of FoodNet’s Campylobacter 
incidence regression models. Our objectives were to explore modeling incidence at a finer 
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geographic level, evaluate the effect of covariates that vary geographically, and examine the 

characteristics of zero counts in Campylobacter surveillance data.

MATERIALS AND METHODS

Dataset preparation

Data were available for 48088 cases of Campylobacter infection ascertained between 2004 

and 2011 in the FoodNet surveillance system. The county, state, month, and year in which 

the Campylobacter cases were diagnosed and the age and sex of the patient were used for the 

analysis. Sixty-six cases with missing age or sex information were excluded.

Case-patients were classified by age group [Age_Group: less than 5 (1), 5–17 (2), 18–24 (3), 

25–44 (4), 45–64 (5), and 65+ (6) years of age] using categories used in previous FoodNet 

publications and that represent different life stages: preschool age, school age, college age, 

younger working age, older working age, retirement age (Ailes et al., 2008). Month of 

diagnosis was used to make a season variable (Season) which grouped the months into high 

(High) and low (Low) seasons with each season including 6 consecutive months with the 

highest or lowest case counts, respectively. The high season included May to October and 

the low season included November to April. The patients’ sex remained a binary variable 

(Sex) with two levels: Male and Female.

Campylobacter cases were grouped into one of 24 possible subgroups per county and year 

arising from the total combinations of 6 age groups, 2 seasons, and 2 sex categories (6*2*2). 

Eight years of surveillance for each of 486 counties with 24 subgroups each generated 93312 

subgroups (8*486*24). Population estimates by year, state, county, age, sex, and race were 

provided under a collaborative arrangement with the U. S. Census Bureau (US Census 

Bureau, 2011). The population data were used to calculate county level incidence by 

dividing the number of cases by the total population of each subgroup per county.

The distribution and basic statistics of case counts and incidence were examined for all 

subgroups. The annual observed incidences per county were divided into 4 quartiles. The 

quartiles were used to construct choropleth maps where counties were shaded by incidence 

quartile using qGIS version 1.8.0 (QGIS Development Team, 2013). Because California 

counties were the only surveillance area in FoodNet without any subgroup case counts of 

zero, all data from these 3 counties (information on 7810 case-patients) were removed from 

model analyses. The final dataset had 40212 observations and 92736 case count subgroups.

Model building and comparison

The data were evaluated for overdispersion by comparing the overall mean and variance of 

case counts for each subgroup (McCullagh and Nelder, 1989). Models of Campylobacter 
case counts in each subgroup were built using R version 3.1.2 and its MASS, stats and pscl 

libraries (R Core Team, 2013). A negative binomial distribution was assumed for the 

outcome variable in all the models. A histogram of case counts with a negative binomial 

fitted curve overlay was produced. The reference groups selected for State, Age_Group, and 

Sex were those that represented the largest proportion of the population: Georgia, 25–44 
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years old, and Male, respectively. For Year and Season, the earliest year (2004), and the low 

season (November to April) were used as reference groups.

The first model was a negative binomial (NB) that included Year and State as nominal 

categorical predictors. Season, Age_Group, and Sex were added as categorical predictors to 

produce the next model (NB.Plus). To focus on the mixture difference between the zero-

inflated (ZINB) and hurdle models (Hurdle NB) and to facilitate comparison, the models 

were built without variables included in the models’ component which models the 

proportion of zeros. This was followed by fitting a zero-inflated negative binomial and 

hurdle model using forward selection. Forward selection was used rather than backwards 

elimination since the saturated models did not converge or were overfit. Variables were 

added individually in both model components separately and any significant variables were 

used in the final combination model (ZINB Full, Hurdle NB Full) (Rao and Sumathi, 2011). 

Each model (NB, NB.Plus, Hurdle NB, Hurdle NB Full, ZINB, ZINB Full) was offset with 

the natural log of the population total in each subgroup (Gelman and Hill, 2006). To 

determine significance of covariates, all models used an error level, alpha, of 0.05.

The zero-augmented and non-zero-augmented models were estimated by a maximum 

likelihood algorithm. The Akaike information criterion (AIC), Bayesian information 

criterion (BIC), and −2 log-likelihood were computed for comparison. The BIC-corrected 

Vuong test was used to compare the fit of non-nested models and the likelihood ratio test 

was used to compare the fit of nested models (Vuong, 1989). The zero component intercepts 

in the zero-augmented models were evaluated as a large negative coefficient value does not 

support the idea of zero inflation in the data (Schwadel and Falci, 2012; Erdman et al., 
2008).

Model assessment was done by evaluating the mean absolute error using leave-one-out-

cross-validation (Kuhn and Johnson, 2013). The difference between the predicted and 

observed zero case counts were compared for all models. Quantile-Quantile (Q-Q) plot and 

residual histogram for the best fitting model were inspected for normally distributed errors. 

The source code of all analysis steps are available by request.

RESULTS

Descriptive Statistics

On average 5027 (±SD 300) cases of Campylobacter infection were reported to FoodNet 

each year between 2004 and 2011 (Range: 4751 in 2004 to 5636 in 2011). The majority 

(63.0% ± 0.9%) were reported during the high season (May to October). The average annual 

incidence (all reported per 100000 persons) for all sites combined was 11.8 (± 0.5) and 

ranged between 11.3 in 2008 and 12.8 in 2011. The average state incidence was 13.4 (± 5.0) 

and varied from state to state (Range: 6.8 in Georgia to 19.5 in California). The average age 

group incidence was 14.2 (± 5.7) and was highest for children aged less than 5 years (25.4) 

and lowest among persons aged 5 to 17 years (9.0). Males had higher rates than females 

(14.6 vs. 11.5).
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To provide a visual representation of geographic variation in incidence among counties, 

quartiles of annual county level incidence were mapped for Minnesota, Georgia, New 

Mexico, and Oregon as examples (Figure 1). The average annual incidence per county was 

12.8 (± 10.0) per 100000. The wide standard deviation was a function of county incidence 

variation among and within states illustrated in Figure 1.

Building Models

Variance (1.71) and mean (0.43) of all the Campylobacter counts in the final dataset were 

calculated. The large variance relative to the mean, suggested that the data were 

overdispersed (Rao and Sumathi, 2011). This was further supported by the negative 

binomial’s estimated overdispersion parameter [log(theta)] which was significantly different 

from zero with a p-value less than 0.001 (Cameron and Trivedi, 2013). The histogram in 

Figure 2 shows the case count frequency with a normal negative binomial curve overlay 

(number of observations= 92736, mean = 0.434, theta = 0.213). Out of the 92736 total 

subgroups, 78.6% had a zero case count. The curve mirrors the observed values closely and 

zero inflation is not apparent.

Model Results

All variables included in the non-zero-augmented models (NB, NB.Plus), both count and 

zero portions of the Hurdle models, and the count portion of the ZINB model were 

statistically significant predictors in the models. The ZINB Full was not included in the 

model comparison because none of the variables added by forward step selection were 

significant in the binary portion of the model. The individual model results are shown in 

Appendix.

The count components of all models (NB, NB.Plus, Hurdle NB, Hurdle NB Full, ZINB) had 

similar results in terms of coefficient direction, magnitude, and significance. However, 

Tennessee, year 2010, and age group 65+ were significant in the NB, NB.Plus and the ZINB 

models but not in the count components of the Hurdle NB and Hurdle NB Full models. The 

other difference was that the age group that includes 45–64 year olds was significant in the 

count component of the Hurdle NB and Hurdle NB Full models but not in the count 

component of the ZINB model.

Model Assessment and Comparison

The zero component intercepts in the zero-augmented models all had large negative 

coefficient values which do not support the idea of zero inflation in the data. This is further 

supported by the goodness of fit evaluations summarized in Table 1. The likelihood ratio test 

led to the same results as the Vuong test when applied to nested models. Using the goodness 

of fit measures the NB.Plus model had the best fit. The ZINB and NB.Plus had the same log 

likelihood but different degrees of freedom. The Hurdle-NB model had the worst fit and the 

Hurdle NB Full had lower fit than both the ZINB and NB.Plus models. The residual 

histogram with a normal curve overlay is shown in Figure 3 for the NB.Plus model and 

displays deviation from homoscedasticity and normality.
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Adding the demographic variables to the non-augmented models decreased the mean 

absolute error by 0.0249 (decreased the error). For the zero-augmented NB.Plus model the 

addition increased the mean absolute error by 2.726e-6 for the ZINB and by 0.0165 for the 

Hurdle NB model (increased the error). There were 72918 zero case counts in the dataset 

and the hurdle models predicted the exact number. When we rounded the predicted number 

of zeros to the nearest integer, both the ZINB and NB.Plus models predicted 73403 zeros or 

485 more than the observed number of zero counts. The hurdle models were superior at 

predicting zero counts because of their truncated structure.

DISCUSSION

The aim of this analysis was to explore different methods to analyze campylobacteriosis case 

counts ascertained by FoodNet surveillance sites at a finer geographic level, to evaluate the 

effect on incidence of covariates that may vary geographically, and examine the 

characteristics of zero counts in FoodNet Campylobacter data. The subgroups selected for 

analysis represented demographic and geographic variables known to influence incidence of 

Campylobacter infections (Ailes et al., 2008). Although a disproportionate number of 

observations were zero, zero inflation was not apparent, and the negative binomial model 

with inclusion of demographic and seasonal variables significantly increased the fit of the 

model (see Table 1, NB.Plus) compared with the model with only year and state included 

(NB in Table 1). Our findings suggest that the incidence of Campylobacter infection varies 

substantially among the FoodNet counties, making it worthwhile to explore differences in 

surveillance populations, exposures, laboratory practices, or other factors that differ among 

sites.

Zero-augmented modifications (zero-inflated, hurdle) of the regression models were used to 

examine a possible separation of observational and structural zeros. We anticipated that a 

significant proportion of zero case counts were observational; differences in county size and 

population demographics among the FoodNet surveillance sites result in very small 

subpopulation sizes among counties and a high probability that no cases will be observed 

among many counties. Our finding that the hurdle models did not fit the data well supports 

this assumption. Although we hypothesized that several surveillance and epidemiologic 

factors may contribute to structural zeros in the data, our analysis suggests that zero inflation 

is not apparent at the level of disaggregation of demographic covariates we studied; this 

finding is supported by the observation that inclusion of zero-augmentation mixing fractions 

did not improve the models’ fit.

Although zero inflation was not present in the dataset, zero-augmented modeling techniques 

are likely to be important for future analyses including modeling of other pathogens under 

FoodNet surveillance. Our models included only data ascertained by FoodNet active 

surveillance activities, and it is likely that inclusion of data from sites conducting passive 

surveillance, as well as data obtained from other sources, such as household income and 

access to healthcare, would contribute to the presence of structural zeros in the modeled 

data. The differences in data collection associated with different surveillance systems and 

data sources would likely result in excess zero case counts where at least a portion 

(structural zeros) arise from a process different from the positive counts. Although both 
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hurdle and zero-inflated models may be used to model this type of data, it is likely best 

modeled by a zero-inflated model because the zeros are modeled as a mixture of both 

observational and structural zeros.

We removed the California observations because there were no zero case counts in any 

county subgroup, complicating our exploration of models for zero case counts. Removal of 

the California data eliminated convergence issues and allowed exploration of the effect of 

zero inflation. Removing the California data decreased the dataset’s variance but 

overdispersion was still prominent. A negative binomial distribution helped in modeling the 

overdispersed data; however, there were still case counts that were outside the expected 

distribution. These case counts may be associated with undetected outbreaks (i.e., clusters of 

cases originating from a common exposure) which were not excluded from the analysis. 

Further exploration of these outliers, using compound distributions, would help better 

characterize them and might yield more information on risk factors of potential outbreaks 

(Hinde, 1982).

CONCLUSIONS

The addition of the demographic and seasonal variables when modeling Campylobacter 
counts accounted for more variability and resulted in improved goodness of fit compared 

with models that only included a state factor. However, the complexity and variation in the 

epidemiology of Campylobacter was still not fully addressed, suggesting that differences in 

surveillance populations among the FoodNet sites or other epidemiological factors vary 

geographically. For example, the models did not fully account for the incidence variation 

among counties and states as illustrated in Figure 1. County-level variation associated with 

differences in county geographic size, population and other unmeasured factors could result 

in additional sources of structural zeros in case counts. Although we investigated structural 

zeros at the state level, the possibility for structural zeros to vary by county was not 

examined. Potentially, the level of aggregation and the count distribution could be adjusted 

per site to better fit the data and further explore structural zeros. Therefore, future steps 

should focus on individual sites.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Observed county incidence per 100000 in A) Minnesota, B) Georgia, C) New Mexico and 

D) Oregon in 2011. Counties are shaded based on the quartiles of county annual incidence 

per 100000.
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Figure 2. 
Count frequency of Campylobacter cases in FoodNet (bars) with normal negative binomial 

curve overlay (number of observations= 92736, mean = 0.434, theta = 0.213). Y axis is 

shown using a square root scale.
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Figure 3. 
Residual boxplot of negative binomial model with demographic covariates (NB.Plus)
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