
1SCIENTIfIC REPOrTS | 7: 12706  | DOI:10.1038/s41598-017-10661-y

www.nature.com/scientificreports

Low-Temperature Growth of 
Hydrogenated Amorphous Silicon 
Carbide Solar Cell by Inductively 
Coupled Plasma Deposition Toward 
High Conversion Efficiency in 
Indoor Lighting
Ming-Hsuan Kao1, Chang-Hong Shen3, Pei-chen Yu1, Wen-Hsien Huang3, Yu-Lun Chueh   2 & 
Jia-Min Shieh1,3

A p-a-SiC:H window layer was used in amorphous Si thin film solar cells to boost the conversion 
efficiency in an indoor lighting of 500 lx. The p-a-SiC:H window layer/p-a-Si:H buffer layer scheme 
moderates the abrupt band bending across the p/i interface for the enhancement of VOC, JSC and FF in 
the solar spectra of short wavelengths. The optimized thickness of i-a-Si:H absorber layer is 400 nm 
to achieve the conversion efficiency of ~9.58% in an AM1.5 G solar spectrum. However, the optimized 
thickness of the absorber layer can be changed from 400 to 600 nm in the indoor lighting of 500 lx, 
exhibiting the maximum output power of 25.56 μW/cm2. Furthermore, various durability tests with 
excellent performance were investigated, which are significantly beneficial to harvest the indoor lights 
for applications in the self-powered internet of thing (IoT).

Self-powered Internet of Thing (IoT) chip recently has attracted much attention because the driving power of 
IoT chip can be harvested from environmental sources, such as indoor lighting, enabling a battery-less chip1. 
Therefore, a development of efficient energy-harvester is a key role toward the self-powered IoT chip. Among 
all energy-harvesters, solar cells are the most efficient energy harvesting devices, which generate the highest 
output powers of over 10 mA/cm2 and 100 μA/cm2 in outdoor and indoor environments, compared with other 
energy-harvesting devices, such as thermoelectric and piezoelectric devices1–3. For the indoor lights, compact 
fluorescent lamp (CFL) and light emitting diode (LED), which emit wavelengths of lighting from 300 to 800 nm 
with different intensities ranging from 400 to 1000 lx, are common lighting sources used in the world. Therefore, 
the selection of materials as a solar cell to harvest indoor lights plays a key role.

Up to date, dye-sensitized solar cell (DSSC), perovskite solar cell and hydrogenated amorphous silicon 
(a-Si:H) thin film solar cell, which have all light absorption windows of 300 nm to 800 nm, are commonly used for 
harvesting of indoor lighting with the best energy conversion efficiency. However, a major concern of DSSC is the 
use of the liquid electrolyte, containing volatile organic solvents, which is not very stable because the electrolyte 
will be frozen or expanded at a low or high temperature, leading to a physical damage4. In addition, toxic chemical 
components containing lead (Pb), which is quite unstable in harsh environments such as a high-temperature con-
dition, make perovskite solar cells still far away from the industrial applications5. Therefore, the intrinsic hydro-
genated amorphous silicon (i-a-Si:H) absorber layer with a wide band-gap behavior, which enables the strong 
absorption at short wavelengths in a solar spectrum with the high built-in potential between the p/n junction, is 
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the best material choice as the solar cell for the energy-harvester of the indoor lighting. To further enhance the 
energy conversion efficiency of the indoor lighting, a p-type hydrogenated amorphous silicon combined with car-
bide, namely SiC (p-a-SiC:H), is a promising window layer to increase the light absorption at short wavelengths 
ranging from 2.0 to 2.5 eV6. Although the incorporation of carbon atoms into the p-a-Si:H film has been demon-
strated to increases the VOC, the insufficient concentrations of carbon doped in the p-a-SiC:H film may result in 
a narrow band-gap, leading to the less light coupling into the absorber layer7. However, the excessive amount 
of carbon atoms in the p-a-SiC:H layer will further increase defects in the p-a-SiC:H layer and at the interface 
of the p-a-SiC:H/i-a-Si:H, impeding the growth of the low defect-density i-a-Si:H absorber layer with the poor 
collection of photo-generated carriers8. In addition, an abrupt or discontinuous band bending occurred at the 
interface of the p-a-SiC:H/i-a-Si:H can result in the degradation of fill factor (FF)8–10. Therefore, the p-a-SiC:H 
layer with the low defect density and the optimized band-gap alignment enables the efficient energy harvesting of 
the indoor lighting. Inductively coupled plasma chemical vapor deposition (ICP-CVD) has been demonstrated 
for the growth of the a-Si:H thin films with the low defect density, leading to a high conversion efficiency with the 
improved light-soaking stability and the less thermal stress11,12.

In this regard, we demonstrate the growth of the p-a-SiC:H solar cell with the optimized carbon concentra-
tion in the p-a-SiC:H window layer and the low defect density of 2.56 × 1015 cm−3 in the i-a-Si:H absorber layer. 
The p-a-Si:H buffer layer provides graded-band profiling and acts as the diffusion barrier to stop the diffusion 
of carbon atoms into the following deposited i-a-Si:H layer with low defects, exhibiting the improved JSC and 
VOC, yielding a high output conversion efficiency and powers of 9.58% and 25.56 μW/cm2 under the AM1.5 G 
solar spectrum and the indoor lighting of 500 lx, respectively. The effect of the thicknesses of i-a-Si:H layers on 
cell performance under an AM1.5 G solar spectrum and indoor lighting has also been investigated in detail. The 
decrease in the fill factor under the indoor lighting is less prominent than that under the an AM1.5 G solar spec-
trum once the thickness of the i-a-Si:H layer increases because degradation of electric field influenced by carriers 
and recombination via dangling bonds are less pronounced under the indoor lighting because of a low intensity. 
Consequently, the ideal thickness of the i-a-Si:H absorber layer increases from 400 to 600 nm to achieve the max-
imum output power of 25.56 μW/cm2 under the indoor lighting of 500 lx without any light-soaking degradation.

Results and Discussion
Figure 1(a) shows a schematic of the solar cell structure and the corresponding TEM image of a pin-type solar 
cell with a structure of Asahi substrate/p-a-SiC:H window layer (10 nm)/p-a-Si:H buffer layer (2 nm)/i-a-Si:H 
(400 nm)/n-a-Si:H layer (20 nm)/indium-tin-oxide (200 nm)/Al (150 nm) and area of 0.25 cm2. To shed light on 
the controllability of bandgap engineering of a-SiC:H layers, Tauc plots on p-a-Si:H and p-a-SiC:H layers as 
a function of gas precursor rates (CH4) from 5 to 20 sccm were plotted from absorption spectra as shown in 
Fig. 1(b). Clearly, a bandgap of 1.7 eV of the p-a-Si:H layer was confirmed while the bandgaps of p-a-SiC:H 
layers are controllable and increased from 2.01 to 2.28 eV due to an increase in the carbon concentration as 
the gas flow rate of CH4 increases. Furthermore, X-ray photoelectron spectroscopy (XPS) depth profiles reveal 
that the C/Si ratios increase from 13 to 34% as the gas flow rates of CH4 increase from 5 to 20 sccm as shown 
in Fig. 1(c). The large bandgap of the p-a-SiC:H exhibits a better absorption ability at the short wavelengths of 
the solar spectrum. Furthermore, we measured the I-V characteristics of the p-a-SiC:H-based solar cells inte-
grated with various types of window layers illuminated under the AM1.5 G solar spectrum as shown in Fig. 1(d) 
where the a-Si:H solar cell without the p-a-SiC:H layer was used as a reference cell, with which open circuit 
voltage (VOC), short circuit current, fill factor (FF) and conversion efficiency (η) were listed in Table 1. Note 
that a 150-nm-thick indium tin oxide (ITO) and a 100-nm-thick Al metal layers were deposited on the a-Si:H 
p-i-n multilayer as the back-electrode. The p-a-Si:H cell shows a VOC of 0.82 V, a JSC of 14.21 mA/cm2, yielding a 
conversion efficiency of 8.51% with a FF of 73.0%. When the p-a-Si:H layer was replaced by the p-a-SiC:H win-
dow layer, VOC increases from ~0.83 to ~0.86 V as the gas flow rate of CH4 increases from 5 to 10 sccm, which 
can be attributed to the higher built-in potential resulted from the enlarged bandgap of the p-a-SiC:H layer. 
Thanks to the increased photons with short wavelengths penetrating into the i-a-Si:H absorber layer through the 
p-a-SiC:H window layer as compared with the p-a-Si:H window layer, the JSC raises from 14.41 mA/cm2 at the 
CH4 = 5 sccm to 15.45 mA/cm2 at the CH4 = 10 sccm while the FF only shows a slight decay between p-a-Si:H 
and p-a-SiCCH4 = 10:H solar cells where the p-a-SiCCH4 = 10:H denotes as the deposition of the p-a-SiC:H layer at 
the CH4 flow rate of 10 sccm since the p-a-Si:H buffer layer moderates the discontinuous and abrupt band bend-
ing.18 Furthermore, the p-a-SiC:H window layer prevents an internal diffusion of carbon atoms into the i-a-Si:H 
absorber layer, which leads to the low defective density in the i-a-Si:H absorber layer after the ICP-CVD, resulting 
in a beneficial for the collection of photo-generated carriers. Thus, the p-a-SiCCH4 = 10:H solar cell has the highest 
conversion efficiency of ~9.58%. However, the further increase in carbon concentrations leads to degraded per-
formance, especially for the p-a-SiCCH4 = 20:H solar cell, which suffers from low VOC (0.81 V), JSC (12.42 mA/cm2)  
and FF (61.1%), yielding a poor conversion efficiency of ~6.15%. The reason can be explained that the excess 
carbon atoms in the p-a-SiCCH4 = 20:H window layer diffuse into the i-a-Si:H absorber layer with sufficiently high 
interfacial defects, leading to the high recombination of the photo-generated carriers in the i-a-Si:H absorber 
layer. Figure 1(e) shows the external quantum efficiency (EQE) of all cells, including the a-Si:H and p-a-SiC:H 
solar cells at different gas flow rates of CH4, respectively. Compared to the p-a-Si:H solar cell, the collection effi-
ciency of p-a-SiCCH4 = 10:H solar cell shows the dramatically enhancement at short wavelengths of the solar spectra 
while the EQE decreases at the gas flow rate of CH4 over 10 sccm. To further understand the photo-generated 
carriers trapped across the interface of p-a-SiC/i-a-Si:H layers and inside the i-a-Si:H absorber layer, the reverse 
bias quantum efficiency was measured where a negative electric field enables trapped carriers across the interface 
as shown in Fig. 1(f) where the EQEloss is defined by the ratios of EQE at a negative bias of −1 V and without bias 
(0 V) at different wavelengths. Obviously, the p-a-SiCCH4 = 10:H window layer shows the EQEloss < 1.1 in the blue 
light region, which is comparable with the p-a-Si:H layer, suggesting the fairly low defects across the interface of 
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p-a-SiC/i-a-Si:H layers and inside the i-a-Si:H layer. However, the EQEloss becomes severe when the gas flow rate 
of CH4 exceeding 10 sccm. This is due to high carbon concentration is prone to diffuse into the i-a-Si:H absorber 
layer, forming as the recombination centers. The higher EQEloss of the p-a-SiCCH4 = 20:H solar cell indicates the 
severe carbon diffusion from the p-a-SiC:H window layer to the i-a-Si:H absorber layer, which is consistent with 
degraded results found in EQE measurements (Fig. 1e). To confirm the film quality of the i-a-Si:H absorber layer, 

Figure 1.  (a) A schematic of solar cell configuration and TEM image of a-Si:H thin film solar cells with a p-a-
SiC:H window layer (abbreviated p-a-SiC:H solar cell). (b) Tauc’s plots and (c) the depth profiles of atomic ratio 
between C and Si for p-a-SiC:H window layers with various CH4 flow rates. (d) I-V characteristics of p-a-Si:H 
and p-a-SiC:H solar cells under the AM1.5 G solar spectrum (e) EQE and (f) Normalized EQEloss (QE(−1 V)/
QE(0 V)) of p-a-Si:H and p-a-SiC:H solar cells, respectively. (Inset shows the depth profile of bulk-defect 
densities in the i-a-Si:H layer retrieved from DLCP measurements for p-a-SiCCH4 = 10:H PV).

Illumination condition Cell type VOC (volt) JSC (mA/cm2) FF (%) Efficiency (%)

AM1.5 G solar spectrum

P-a-Si:H 0.82 14.21 73.0 8.51

P-a-SiCCH4 = 5:H 0.83 14.41 72.5 8.67

P-a-SiCCH4 = 10:H 0.86 15.45 72.1 9.58

P-a-SiCCH4 = 15:H 0.82 13.58 66.0 7.35

P-a-SiCCH4 = 20:H 0.81 12.42 61.1 6.15

Table 1.  Performances of p-a-Si:H, p-a-SiCCH4 = 5:H, p-a-SiCCH4 = 10:H, p-a-SiCCH4 = 15:H and p-a-SiCCH4 = 20:H 
solar cells under the AM1.5 G solar spectrum where the cell area of 0.25 cm2 was used.
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we determined the integrated defect density of the p-a-SiCCH4 = 10:H solar cell as a function of the depth from 
the top of the p-i-n active layer by drive-level capacitance profiling (DLCP) measurement as shown in inset of 
Fig. 1(f). The p-a-SiCCH4 = 10:H solar cell exhibits the extremely low bulk-defect density of 2.56×1015 cm−3 in the 
i-a-Si:H layer, which is comparable with our previous work12.

To investigate electrical behaviors of a-Si:H solar cells under the indoor lighting environments, the I-V char-
acteristics of all solar cells illuminated by the indoor lighting of 500 lx, which is approximately of 162 μW/cm2, 
were measured as shown in Fig. 2(a) and the corresponding VOC, Jsc, FF and conversion efficiency in term of 
output power in an unit of µW/cm2 were tabulated in Table 2. Clearly, all solar cells show the reduced VOC and JSC 
but the enhanced FF under the indoor lighting of 500 lx compared with that illuminated under an AM1.5 G solar 
spectrum. The enhanced FF can be explained due to the less light-induced metastable defects by the weak inten-
sity of the indoor lighting. The enhanced FF is contributed not only the less recombination centers from charged 
dangling bonds but also the less field deformation from trapped charges, which are proportional to free carriers 
under the low level of the indoor lighting. Conversely, a decrease in JSC results from the low intensity of lighting, 
accompanying with the reduction of VOC given by
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Where η, k, T and JS represent the ideal factor, the Boltzmann constant, the absolute temperature and the satu-
rated current, respectively. It is beneficial for utilizing the indoor lighting sources by introducing a wide band-gap 

Figure 2.  (a) I-V characteristics of p-a-Si:H and p-a-SiC:H solar cells under the indoor lighting of 500 lx (white 
FCL illumination). (b) EQE of p-a-SiCCH4 = 10:H solar cells as a function of the thickness of absorber intrinsic 
layers (di). (c) and (d) I-V characteristics of the p-a-SiCCH4 = 10:H solar cell as a function of di under the AM1.5 G 
solar spectrum and the indoor lighting of 500 lx (white FCL illumination).

Illumination condition Cell type VOC (volt) JSC (μA/cm2) FF (%) Output power (μW/cm2)

500 lx white FCL

P-a-Si:H 0.61 44.81 75.2 20.56

P-a-SiCCH4 = 5 0.62 45.81 75.1 21.33

P-a-SiCCH4 = 10 0.64 51.90 74.9 24.88

P-a-SiCCH4 = 15 0.61 43.65 72.6 19.33

P-a-SiCCH4 = 20 0.60 39.86 70.5 16.86

Table 2.  Performances of p-a-Si:H, p-a-SiCCH4 = 5:H, p-a-SiCCH4 = 10:H, p-a-SiCCH4 = 15:H and p-a-SiCCH4 = 20:H 
solar cells under the indoor lighting of 500 lx by white FCL.
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p-SiC:H window layer to improve the JSC and VOC. Accordingly, compared cell performance with the a-Si:H solar 
cell, the p-a-SiCCH4 = 10:H solar cell shows a VOC of 0.64 V, a JSC of 51.90 μA/cm2, a FF of 74.9%, and an output 
power of 24.88 μW/cm2. Furthermore, the different thicknesses of i-a-Si:H absorber layers from 400 to 1000 nm 
were also optimized in order to reduce the formation of light-induced defects in the i-a-Si:H layers under the 
indoor lighting of 500 lx. Figure 2(b) shows the dependence of EQE spectra of the p-a-SiCCH4 = 10:H solar cell with 
different i-a-Si:H thicknesses (di) from 400 to 1000 nm. The EQE responses shift toward a long wavelength region 
as the di increases. Figure 2(c) and (d) show I-V characteristics of the p-a-SiCCH4 = 10:H solar cell illuminated by 
the AM1.5 G solar spectrum and the indoor lighting of 500 lx, respectively. The corresponding VOC, JSC, FF and 
conversion efficiency with different di were tabulated in Tables 3 and 4, respectively. Under the AM1.5 G solar 
spectrum, the JSC increases as the di increases because of the improved absorption behaviors of photons in the 
i-a-Si:H absorber layer, achieving the maximum JSC in the 600 nm-thick i-a-Si:H solar cell. In contrast, the JSC 
and the VOC decrease while the di exceeds the thickness of 600 nm. This is because that the reduced VOC separates 
less photo-generated carriers, resulting in the decrease in JSC. In addition, the thick i-a-Si:H layer further induces 
more bulk-defects to reduce the parallel resistance, leading to poor FF. As a result, the optimized thickness of 
the i-a-SiC:H layer under the AM1.5 G solar spectrum to be at 400 nm. For the performance of solar cells under 
the indoor lighting of 500 lx, no significant variation tendency at VOC was found while the FF slightly decreases 
from 74.9 to 70.1% as di increases from 400 to 1000 nm, which is most likely attributed to less recombination 
centers and weak deformation caused by the internal electric field (Fig. 2d). High parallel resistance results from 
the less light-induced metastable defects, further extending the lifetime of solar cells applied in the indoor light-
ing environment. Consequently, the optimized thickness of the i-a-SiC:H film was found to be 600 nm with the 
highest VOC of 0.64 V, JSC of 54.18 μA/cm2 and FF of 73.7%, yielding a maximum output power of 25.56 μW/cm2, 
respectively.

To further shed light on the I-V behaviors of a-SiC:H solar cells under the indoor lights, EQE spectra of the 
p-a-SiCCH4 = 10:H solar cell with the optimized i-a-Si:H layer thickness of 600 nm under different indoor lights, 
including white/yellow compact fluorescent lamps (CFL) and light emitting diode (LED), were measured. The 
corresponding I-V characteristics are shown in Fig. 3(a) and (b) where VOC, JSC, FF and output power were tabu-
lated in Table 5, respectively. It is obvious that the spectra of all indoor lights are almost located at wavelengths of 
400–700 nm and matches well with the EQE response of the a-Si:H PV cell. Especially, the spectra of white FCL 
and LED show strong intensities at short wavelengths of 400–500 nm, which can be absorbed by the i-a-Si:H layer 
by incorporation of the p-a-SiCCH4 = 10sccm:H layer. The spectra of yellow FCL and LED exhibit prominent intensity 
at the long wavelengths of 550–700 nm, which can be absorbed by the 600-nm-thick i-a-Si:H absorbed layer. It 
is demonstrated that the optimized PV cell can provide the output power ranging from 22.11 to 25.56 μW/cm2 
under white/yellow FCL/LED, implying that this optimized structure is well suitable for the harvesting of the 
indoor lighting.

To qualify the stability and lifetime in a real application, the p-a-SiCCH4 = 10:H solar cell with the 
600 nm-thick-i-a-Si:H absorber layer is subject to various durability tests. Figure 4(a) shows the normalized effi-
ciency measurements under a water-resistant test as a function of the dipping time. The conversion efficiency 
remains to be unchanged after 360 mins in the water, demonstrating an excellent water-resistant capability. 
Figure 4(b) shows the angle-dependent measurements under the indoor lighting of 500 lx. Interestingly, the con-
version efficiency is not significantly changed by the incident angle of >40° where a ~5% degradation of the 
conversion efficiency was found. The ~15% degradation of the conversion efficiency occurs once the incident 
angle researches into 60°, which promises the wide-angle utilization of the incident lighting in the real practice. 
Figure 4(c) shows the thermal stress testes as a function of heating time at different heating temperatures of 50 to 
150 °C. A decrease by only ~28% after the thermal stress of 360 mins at the heating temperature of 150 °C was con-
firmed, clearly demonstrating the highly stable a-SiC:H-based solar cell operated in a high-temperature environ-
ment. Furthermore, an endurance test under the continuous exposure of six AM1.5 G solar spectra at a heating 

Illumination condition di thickness VOC (volt) JSC (μA/cm2) FF (%) Output power (μW/cm2)

AM1.5 G solar spectrum

400 nm 0.85 15.45 72.1 9.50

600 nm 0.85 16.19 68.2 9.40

800 nm 0.85 15.55 63.8 8.39

1000 nm 0.84 15.10 63.1 7.98

Table 3.  Performances of the p-a-SiCCH4 = 10:H solar cell with different di thicknesses of 400, 600, 800 and 
1000 nm under the AM1.5 G solar spectrum, respectively.

Illumination condition di thickness VOC (volt) JSC (μA/cm2) FF (%) Output power (μW/cm2)

500 lx white FCL

400 nm 0.64 51.9 74.9 24.88

600 nm 0.64 54.18 73.7 25.56

800 nm 0.64 50.97 71.5 23.37

1000 nm 0.64 48.6 70.1 21.84

Table 4.  Performances of the p-a-SiCCH4 = 10:H solar cells with different di thicknesses of 400, 600, 800 and 
1000 nm under the indoor lighting of 500 lx by the white FCL, respectively.
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temperature of 60 °C was conducted as shown in Fig. 4(d). The stabilized efficiency decreases by ~8.2% after the 
exposure of 10000 seconds. Such excellent performance can be explained by the excellent quality of the i-a-Si:H 
layer due to low defects in the p-a-SiC:H layer and the interface of the p-a-Si:H/i-a-Si:H layers where the p-a-Si:H 
layer acted as a buffer layer, eliminating carbon diffusion through the interface. The result is fairly consistent with 
the bias EQE measurements. Note that a solar cell with better light-soaking stability under the AM1.5 G solar 
spectrum responds to the lifetime of solar cell illuminated by the fluorescence lamp.

Conclusions
The introduce of p-a-SiC:H layer in the a-Si:H solar cell shows a high conversion efficiency of 9.58% and 
25.56 uW/cm2 under 1-Sun and 500 lx illumination, which results from the continuous band bending and low 
defect density of i-a-Si:H layer. When the ideal thickness of i-a-Si:H layer was changed from 400 to 600 nm, no 
light-soaking can be observed under the 500 lx illumination. The findings here provides a path for harvesting the 
indoor light for real application. The optimized solar cell with the light harvesting scheme at short wavelengths 
and high stability is well suited for commonly used future applications in self-powered IoTs under the indoor 
environment.

Methods
ICP CVD growth of A p-a-SiC:H and fabrication process Solar Cell.  For the fabrication of p-a-Si:H 
and p-a-SiC:H PV, the a-Si:H p-i-n multilayer with p-a-Si:H window layer (12 nm)/i-a-Si:H layer (400 nm)/n-
a-Si:H layer (20 nm) and p-a-SiC:H window layer (10 nm)/p-a-Si:H buffer layer (2 nm)/i-a-Si:H layer (400–
1000 nm)/n-a-Si:H layer (20 nm) were deposited on the Asahi substrates (SnO2:F/glass) by 13.56 MHz inductively 
coupled plasma chemical CVD (ICP-CVD) with different plasma power densities of 30~100 mW/cm2, which can 
produce a-Si:H thin films with low defects at a substrate temperature of 200 °C. For the p-a-SiC:H window layer, 
the gas flow rate of CH4 were varied from 5 to 20 sccm whereas the flow rate of Si2H6 and B2H6 were kept at 7 and 

Figure 3.  (a) Spectra of white/yellow FCL/LED lights with the lighting of 500 lx. (b) I-V characteristics of the 
p-a-SiCCH4 = 10:H solar cell with the di of 600 nm under white/yellow FCL/LED lights with the lighting of 500 lx.

Illumination condition di thickness VOC (volt) JSC (μA/cm2) FF (%) Output power (μW/cm2)

500 lx white FCL 600 nm 0.64 54.18 73.7 25.56

500 lx yellow FCL 600 nm 0.64 51.43 73.8 24.29

500 lx white LED 600 nm 0.64 52.36 73.7 24.70

500 lx yellow LED 600 nm 0.64 48.60 73.6 22.89

Table 5.  Performances of the p-a-SiCCH4 = 10:H solar cell with the di thickness of 600 nm under the indoor 
lighting of 500 lx by white/yellow FCL/LED.
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10 sccm, respectively. For the p-a-Si:H window layer, the flow rate of CH4 was kept at 0 sccm, whereas the flow 
rate of Si2H6 and B2H6 were remained the same as stated before. To minimize the defects at the p-a-SiC:H/i-a-Si:H 
interface, we have introduced a buffer layer between the p-a-SiC:H and the i-a-Si:H layers by grading the gas flow 
rate of CH4 from an initial value down to zero. The concentration of hydrogen inclusion and the microstructure 
parameter of the i-a-Si:H films were deduced from the integrated peak area of the 630 cm−1 peak and ratio of the 
spectral peaks I2070/(I2070 + I2000) of Fourier-transform infrared (FTIR) absorption spectra. Here, I2070 and I2000 
denote the integrated infrared absorption peak areas of stretching mode of Si-H bonds, locating at internal inter-
faces (2070 cm−1) and of the isolated Si-H bonds (2000 cm−1), respectively. We estimated the hydrogen content 
and microstructure parameter of the i-a-Si:H films to be about 10.1% and 0.08, implying a dense lattice network 
with a very low level of voids13. Afterward, reflective contacts of 150-nm-thick indium-tin-oxide (ITO) and a 
100-nm-thick-Al metal layers were then deposited by direct current sputtering on the back side. The ITO layers 
have high electrical conductivity (<1 × 10–3 Ωcm) and optical transmittance (>90%, 400–900 nm), which signif-
icantly improve the light collection and reduce the series resistance of the devices.

Characterizations.  I-V characteristics were measured under an AM1.5 G global sun simulator (Oriel Sol3A) 
with the light intensity of 1000 W/m2 irradiance. Fluorescent tubes and LED tubes with daylight white and warm 
white spectral distribution were the most common types of indoor lights. The measurement setup includes two 
fluorescent tubes (Philip TL5 14 W/6500 K and 14 W/3000 K) and two LED tubes (Everlight LED 10 W/6500 K 
and 10 W/3000 K). The illuminance of fluorescents tube and LED tubes were fixed at recommended office lighting 
levels of 500 lx by adjusting the distance between light source and PV devices. The illuminance and spectral distri-
bution of different lights were calibrated with lux meter and spectroradiometer. The light-soaking measurements 
were performed under the light irradiance of 6000 W/m2 (six AM1.5 G spectra). The device reached accordingly 
a steady-state temperature at 60 °C due to the irradiation, thereby accelerating photo-degradation of the device. 
High-resolved transmission electron microscopy (HR-TEM) images obtained by JEOL JEM-3000F FE-TEM with 
an accelerated bias of 300 kV with a point to point resolution of 0.17 nm was used to observe the device config-
uration. The p-a-SiC:H films were also deposited on corning 7059 glass and silicon substrates for measurements 
of n&k analyzer and X-ray photoelectron spectroscopy (XPS). The bandgap was determined by Tauc’s bandgap 
(extrapolation of (αE)1/2) from the evaluation of visible/UV transmission and reflection spectra.
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