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ABSTRACT Today, genomic prediction (GP) is an established technology in plant and animal breeding programs. Current standard
methods are purely based on statistical considerations but do not make use of the abundant biological knowledge, which is easily
available from public databases. Major questions that have to be answered before biological prior information can be used routinely in
GP approaches are which types of information can be used, and at which points they can be incorporated into prediction methods. In
this study, we propose a novel strategy to incorporate gene annotation into GP of complex phenotypes by defining haploblocks
according to gene positions. Haplotype effects are then modeled as categorical or as numerical allele dosage variables. The underlying
concept of this approach is to build the statistical model on variables representing the biologically functional units. We evaluate the
new methods with data from a heterogeneous stock mouse population, the Drosophila Genetic Reference Panel (DGRP), and a rice
breeding population from the Rice Diversity Panel. Our results show that using gene annotation to define haploblocks often leads to a
comparable, but for some traits to a higher, predictive ability compared to SNP-based models or to haplotype models that do not use
gene annotation information. Modeling gene interaction effects can further improve predictive ability. We also illustrate that the
additional use of markers that have not been mapped to any gene in a second separate relatedness matrix does in many cases not lead
to a relevant additional increase in predictive ability when the first matrix is based on haploblocks defined with gene annotation data,
suggesting that intergenic markers only provide redundant information on the considered data sets. Therefore, gene annotation
information seems to be appropriate to perceive the importance of DNA segments. Finally, we discuss the effects of gene annotation
quality, marker density, and linkage disequilibrium on the performance of the new methods. To our knowledge, this is the first work
that incorporates epistatic interaction or gene annotation into haplotype-based prediction approaches.
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IN recent years, the superiority of genomic prediction (GP)
(Meuwissen et al. 2001) over pedigree-based best linear

unbiased prediction (Henderson 1984) and marker-assisted
selection has been demonstrated (Crossa et al. 2010;
Albrecht et al. 2011). GP has been applied to many different
organisms, including humans (de los Campos et al. 2013),

model species such as Drosophila melanogaster (Ober et al.
2012), plants (Jannink et al. 2010; Hayes et al. 2013), do-
mestic animals (Hayes and Goddard 2010), and aquaculture
species (Sonesson and Meuwissen 2009). Accompanied by
the fast development of genotyping and sequencing technol-
ogies in the last decades, a huge number of different methods
for GP have been established (Gianola 2013; de Vlaming and
Groenen 2015; Misztal and Legarra 2017). Among these
methods, the current standard method is ridge regression
best linear unbiased prediction (rrBLUP), which uses single
nucleotide polymorphisms (SNPs) as predictor variables. It
has been shown that this marker effect ridge regression
model can be translated into a relationship-matrix-based
approach (GBLUP) (Habier et al. 2007), and this corre-
spondence between marker effect and relationship matrix
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models allows us to use the classical methodology that has
been developed for the pedigree BLUP for GP.

Most of the established GP methods are based on purely
statistical considerations and disregard existing biological
knowledge. A remarkable difference exists between the often
mechanistically simplistic structure of statistical models de-
scribing the phenotype and the complexity of the biological
processes underlying the phenotypic expression. Only re-
cently, researchers started to work on bridging the gap
between mathematical models and underlying biological
mechanisms. Encouragingly, several recent studies have
shown that integrating biological information in proper ways
improves predictive ability under certain circumstances. For
instance, it has been shown that GP accuracies can be im-
proved by incorporating results from genome-wide associa-
tion studies, either fromdatabases (Zhang et al.2014) or from
the data set on hand (de los Campos et al. 2013; Gao et al.
2015; Ramstein et al. 2016). Other types of biological in-
formation, which are easily available from public databases,
include gene annotation, information on biochemical in-
teractions, and gene expression networks. In some of the
latest publications, different types of biological knowledge
were incorporated by partitioning markers into classes based
on their functional annotation (Morota et al. 2014; Do et al.
2015; Abdollahi-Arpanahi et al. 2016; MacLeod et al. 2016)
or gene ontology categories (Edwards et al. 2016). After the
partitioning, one approach is to assign different prior distri-
butions to the different classes of SNPs and then to use all
markers for prediction (MacLeod et al. 2016). Another way is
performing GP with each class separately and then selecting
classes that give the best predictive ability for further predic-
tions (Morota et al. 2014; Do et al. 2015; Abdollahi-Arpanahi
et al. 2016; Edwards et al. 2016). It has been demonstrated
that these approaches for incorporating biological knowledge
improve the predictive ability in some cases.

At the same time, it is suggested to alter the structure of the
standard models using alternative predictor variables, for
instance haplotypes or interactions terms (Su et al. 2012;
Jiang and Reif 2015; Martini et al. 2016). Whereas standard
models are based on individual SNP markers, several new
approaches are built on haplotypes (Calus et al. 2008;
Cuyabano et al. 2014, 2015; Meuwissen et al. 2014; Yang
2015), that is, on tuples of SNPs. The basic underlying as-
sumption for models based on individual markers is that,
at a sufficiently high density, at least one marker is in link-
age disequilibrium (LD) with each quantitative trait locus
(QTL). However, if more than two alleles of a gene exist in a
population, multi-allelic haplotypes are expected to capture
the state of a QTL better than single markers (Calus et al.
2008; Meuwissen et al. 2014). For this reason, haplotypes
instead of single markers were used as predictor variables
in several recent publications (Cuyabano et al. 2014, 2015;
Meuwissen et al. 2014; Yang 2015). In these studies, for each
haploblock, pseudomarkers were created by counting the
number of copies of the respective allele carried by a certain
individual (Meuwissen et al. 2014). Thus, the pseudomarker

matrix had the entries {0,1,2} and the haplotype-based re-
latedness matrix was constructed as the dot products of the
rows of this pseudomarker matrix. The relatedness matrix
was further scaled by the number of haploblocks.

Here we propose several new approaches of using gene
annotation to definehaplotypes in bothnumerical dosage and
categorical effect models. To bridge the gap between the
mathematical models and biology, the first step is to describe
the biological system using a mathematical model on its
biologically functioning units. As a first attempt, we consider
the protein-coding genes (and thus the corresponding pro-
teins) including their regulatory regions as biologically acting
units, hoping to capture some characteristics of the biology of
complex phenotypes. In addition, we extend the haplotype-
based categorical effect models to epistasis models and show
how all these approaches can be translated into relatedness
matrices. We then test the prediction performance of our
approaches with several data sets with different genetic back-
ground and discuss the similarities and relatedness of the
different approaches.

Materials and Methods

To incorporategeneannotation intoGP,wefirstmappedSNPs
to genes according to their relative positions and defined
haploblocks using the phased SNP data (detailed description
below). Gene-based haplotypes were coded using both nu-
merical and categorical approaches. Numeric coding refers to
adosagemodel inwhich the assumption of intralocus additive
allele effects is made (Calus et al. 2008; Cuyabano et al. 2014,
2015; Meuwissen et al. 2014; Yang 2015). With A denoting
the reference allele in a diploid population, intralocus addi-
tivity means, for instance, for the SNP-marker-based GBLUP
that the marker state AA (¼̂2) at locus i has twice the effect of
AB (¼̂1). The categorical coding does not assume this intra-
locus additivity, but models the effect of a haplotype allele
being present twice, independent of the effect when being
present once. For instance, the effect of configuration AA
in Table 1 is assumed to be independent from AB. Thus,
the categorical model can capture dominance (Martini et al.
2017). We then constructed relatedness matrices for both
types of models. The following sections give a detailed de-
scription of these steps.

SNP mapping and gene-based haploblock derivation

The latest version of the gene annotation of each consid-
ered species was downloaded from Ensemble (http://www.
ensembl.org) using the biomaRt package (Durinck et al.
2005, 2009) of the statistical platform R (R Development
Core Team 2016) (Table 3). Only genes indicated as “pro-
tein_coding” by the “gene_biotype” attribute were consid-
ered. Gene boundaries were extended by 5 kb in both
upstream and downstream flanking regions to include possi-
ble regulatory elements. Then SNPs were mapped to these
genic regions based on their corresponding genomic posi-
tions. After the SNP mapping step, SNP sets were formed
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for genes with at least one mapped marker. For genes with
only one mapped SNP, the corresponding haploblock existed
of only this marker. For genes with more than one mapped
SNP, phased alleles of the corresponding SNPs were com-
bined into haplotypes with the approach described by
Meuwissen et al. (2014). Briefly, haplotypes were built via
the following steps:

Initialization: for each gene, start with the first SNP j ¼ 1:
Step 1: include SNP jþ 1 into the haploblock.
Step 2: determine the number of alleles of the haploblock

defined by these jþ 1 markers across the whole popu-
lation.

Step 3: repeat step 1 and step 2 if the number of alleles
remains below a previously chosen threshold restricting
the number of alleles of a haploblock [we used 10 as
proposed by Meuwissen et al. (2014)]. Otherwise, if the
number of alleles exceeds this threshold, the lastly added
SNP is excluded from the current haploblock and is used
as the starting position of the next haploblock. Return the
alleles of the current haploblock and go to the initializa-
tion step with the lastly added SNP to define the next
haploblock. Repeat this procedure until all SNPs of the
currently considered gene are processed.

This approach produces one or more haploblocks with at
least twohaplotype alleles per block for each gene. The effects
of haplotypes were then coded in two different ways:

1. Numerical (allele dosage) coding: For each haploblock,
artificial SNPs are created for each haplotype allele, and
these “SNPs” are coded as the number of copies ({0,1,2})
present in the respective individual. The sum over all al-
leles of a certain autosomal haploblock must be two for
each individual when diploid species are considered.

2. Categorical coding: Haplotype variants are coded by the
haplotype allele configurations (genotypes). Each allele
combination has its own independent effect in the cate-
gorical coding strategy.

Table 1 contrasts the different codings of a haploblock
with four alleles A, B, C, and D.

The genomic prediction models

We compared the predictive ability of the proposed ap-
proaches to the standard GBLUP (VanRaden 2008). The ge-
nomic prediction model can be expressed as:

y ¼ 1nmþ g þ e; (1)

where y is the vector of precorrected phenotypes; 1n is an
n3 1 vector with entries equal to one; m is the overall mean;
g � Nð0;Ks2

gÞ is a vector of genetic values and K is the re-
latedness matrix of the respective models (Table 2); s2

g is the
genetic variance; e � Nð0; Is2

e Þ is a vector of residuals and s2
e

is the model residual variance.
For GBLUP; the relatedness matrix was calculated accord-

ing to VanRaden (2008). Briefly, let pk denote the minor al-
lele frequency (MAF) of marker k, M denote the {0,1,2}
coded genotypes, and Z denote the MAF adjusted marker
matrix with entries (022pk), (122pk), and (22 2pk) for
genotypes AA, AB, and BB, respectively. The relatedness ma-
trix is calculated as G ¼ ZZ9=2

Pm
k¼1pkð12 pkÞ: The “ex-

tended GBLUP” (EGBLUP) (Su et al. 2012; Jiang and Reif
2015;Martini et al. 2016), whose epistasis relatedness matrix
is EG ¼ G#G; was also calculated for comparison. Here, #
denotes the Hadamard product. In EGBLUP;we onlymodeled
the interaction effect and ignored the additive SNP effects,
since additive effects can be expressed as the sum of their
interactions. Moreover, we saw in previous studies that the
predictive ability of the model including both matrices—the
additive and the pairwise interaction matrix—will usually
tend to the predictive ability of the model with only the ma-
trix with higher predictive ability. Thus, a small potential gain
faces the disadvantage of potentially causing numerical prob-
lems in the estimation of the variance components, due to the
very similar structure of the matrices G and EG.

For the SNP-based categorical model (CM; Martini
et al. 2017), the relatedness matrix S has the entries
Sij ¼

Pm
k¼1fijk=m; where fijk is scored 1 if individual i and j

share the same genotype at marker k, otherwise fijk is scored
0, and m is the number of SNPs. For data sets of completely
inbred lines without heterozygous markers, the CM model has
been shown to be equivalent to GBLUP (Martini et al. 2017).
The first order epistasis among markers can be modeled by
extending CM to the CE (categorical epistasis) model, where
the genotype combinations of each pair of loci are treated as
categorical variables and the relatedness of two individuals is
measured by counting the number of pairs of markers in the
same state. The relatedness matrix of CE can be expressed as
E ¼ 0:53mS#ðmSþ 1n3 nÞ=m2 (Martini et al. 2017).

Analogously, we also used these two types of models for
gene-annotation-based variables (see above). In the numer-
ical allele dosage coding, pseudomarkers are created and the
haplotype-based, intralocus additive genetic relatedness ma-
trix is constructed as the dot product of the haplotype allele
matrix (MHGA). The intralocus additive relatedness matrix is
expressed as GHGA ¼ MHGAM

9
HGA

=Q; where MHGA is a matrix of
pseudomarkers with values 0, 1, and 2 representing the

Table 1 Categorical and numerical codings of a haploblock with
four alleles

Allele dosage

Allele 1 Allele 2 Haplotype categories A B C D

A A AA 2 0 0 0
A B AB 1 1 0 0
A C AC 1 0 1 0
A D AD 1 0 0 1
B B BB 0 2 0 0
B C BC 0 1 1 0
B D BD 0 1 0 1
C C CC 0 0 2 0
C D CD 0 0 1 1
D D DD 0 0 0 2

A, B, C, and D are four alleles of the same haploblock.
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number of copies of each haplotype allele being present and
where Q is the number of haploblocks. We call this model
haplotype-based genomic best linear unbiased prediction
given gene annotation (GHBLUPjGA). For comparison, the
haplotype-based model without gene annotation (GHBLUP)
was also calculated. Here the haplotype-based relatedness
matrix is GH ¼ MHM9

H=Q (Meuwissen et al. 2014). Haplo-
types are built here for each chromosome separately (starting
with the first marker and following their physical order).

In the categorical coding, we count the number of haplo-
blocks that are in the same state between pairs of individuals,
and the relatedness is measured as the ratio between the
number of haploblocks with identical state and the total
number of haploblocks. In an equation form, the relatedness
matrix can be expressed as ~S with entries ~Sij ¼

PQ
q¼1fijq=Q

representing the relatedness between individuals i and j.
Moreover, fijq is scored 1 if individual i and j have the same
state on haploblock q, otherwise fijq is scored 0. We call this
model haplotype-based categorical model given gene anno-
tation (CHMjGA). Similar to the SNP version of the categor-
ical model, we can build a relatedness matrix for modeling
the first order epistasis among haploblocks in the form
~E ¼ 0:53Q~S#ðQ~Sþ 1n3 nÞ=Q2: We call this model the hap-
lotype-based categorical epistasis model given gene annota-
tion (CHEjGA). For comparison, a categorical haplotype
model based on the haploblocks suggested by Meuwissen
et al. (2014) (without the use of gene annotation) was con-
structed as well. We denote the categorical version of this
haplotype model as CHM: A corresponding epistatic version
that models the first order epistasis among haploblocks was
developed and denoted as CHE:

In the GHBLUPGA; CHMjGA; and CHEjGA models, only
SNPs that have been mapped to genes are included. There-
fore, we evaluated a broadened model:

y ¼ 1nmþ g þ gu þ e; (2)

including unmapped markers as well. The model terms
here are the same as those defined in model 1, except for
the additional term gu � Nð0;Kus

2
guÞ, which models the

effects captured by unmapped SNPs. Here, Ku and s2
gu de-

note the relatedness matrix calculated with unmapped
SNPs and the corresponding variance component. We in-
troduced the notationGHBLUPjGA*; CHMjGA*; and CHEjGA*
for the broadened versions, respectively. In GHBLUPjGA*;
Ku ¼ ZuZ9

u=2
Pm9

k¼1pkð12 pkÞ; where Zu is the matrix
containing the MAF-adjusted genotypes of unmapped
SNPs and where m9 is the number of unmapped SNPs.
In CHMjGA*;Ku ¼ Su ¼ ðPm9

k¼1fijk=m9Þi;j :  In  CHEjGA*;Ku ¼
Eu ¼ 0:53 m9Su#ðm9Su þ 1n3nÞ=m92:

In both models 1 and 2, variance components were esti-
mated using average information restricted maximum likeli-
hood (AI-REML) (Jensen et al. 1997) via the regress (Clifford
and McCullagh 2014) package for the R statistical platform
(R Development Core Team 2016). Given the dispersion ma-
trices and the variance components, predictions of genetic
values were obtained by solving the mixed model equations
(Henderson 1975, 1984).

Data

For all data sets used for model evaluation, SNPs with a call
rate of,95% or MAF smaller than 0.01 and individuals with
a call rate of ,95% were excluded. Missing genotypes were
imputed and phased simultaneously using Beagle (version
4.1) (Browning and Browning 2008), which was embedded
in the synbreed R package (version 0.11; Wimmer et al.
2012), using the default parameter settings. Important char-
acteristics of the data sets after quality control are described
in Table 3.

Mouse data: The heterogeneous stock (HS) mice data were
generated by the Wellcome Trust Centre for Human Genetics
(Valdar et al. 2006a). Genotypes and phenotype records were

Table 2 Relatedness matrices in corresponding models (see text for definition of the variables)

Models Relatedness matrices (K) Description

GBLUP G ¼ ZZ9

2
Pm

k¼1
pkð12pkÞ

Genomic best linear unbiased prediction

EGBLUP EG ¼ G#G Extended (epistatic) GBLUP

GHBLUP GH ¼ MHM9
H

QH
Haplotype-based GBLUP

GHBLUPjGA GHGA ¼
MHGA

M9
HGA

Q Haplotype-based GBLUP given gene annotation

CM S ¼
 Pm

k¼1
fijk

m

!
ij

Categorical marker effect model

CE E ¼ 0:53mS#ðmSþ1n3nÞ
m2 Categorical epistasis model

CHM SH ¼
 PQH

q¼1
fijq

QH

!
ij

Haplotype-based CM

CHE EH ¼ 0:53QHSH#ðQHSHþ1n3nÞ
Q2
H

Haplotype-based CE

CHMjGA ~S ¼
 PQ

q¼1
fijq

Q

!
ij

Haplotype-based CM given gene annotation

CHEjGA ~E ¼ 0:53Q~S#ðQ~Sþ1n3nÞ
Q2 Haplotype-based CE given gene annotation

# means Hadamard product.
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available at http://mtweb.cs.ucl.ac.uk/mus/www/mouse/
HS/index.shtml. In total, 9266 SNPs and 1940 individuals
remained after quality control steps. For computational
simplicity, we used the precorrected phenotypes provided
by Valdar et al. (2006b). Physical positions of SNPs were
mapped to the latest version of the mouse genome (Mus
musculus, assembly GRCm38.p4) with the biomaRt (Durinck
et al. 2005, 2009) R package. Only SNPs mapped to the
GRCm38.p4 were used for further analysis. Gene boundaries
were downloaded from Ensemble with the biomaRt (Durinck
et al. 2005, 2009) R package. Sixteen phenotypic traits re-
lated to growth, obesity, and immunology were used in this
study to compare the performance of our models.

D. melanogaster data: The Drosophila Genetic Reference
Panel (DGRP) is a population consisting of 205 inbred lines
derived from the Raleigh, USA population (Mackay et al.
2012). Genetic variants called from whole genome sequenc-
ing data were downloaded from the DGRP2 website (http://
dgrp2.gnets.ncsu.edu/). In total, 2,863,909 SNPs remained
after quality control steps. The gene annotation information
of the latest version of the D. melanogaster genome (Drosoph-
ila melanogaster, assembly Release 6) was downloaded from
Ensemble via the biomaRt (Durinck et al. 2005, 2009) R pack-
age (Table 3). We used two adaptive traits (Mackay et al.
2012), one food intake trait (Garlapow et al. 2015), two
alcohol sensitivity traits (Morozova et al. 2015), and twelve
olfactory behavior traits (Arya et al. 2015) to evaluate the
models. The line means (males and females independently)
of all traits were adjusted for the effects of a Wolbachia
infection and five major inversions [In(2L)t, In(2R)NS,
In(3R)K, In(3R)P, and In(3R)Mo] using a mixed model
�Y ¼ Xbþ uþ e: �Y is a vector of line means; X is a design
matrix assigning the fixed effects b to the lines. The random
line effects were modeled u � Nð0;Gs2

u), where G is the
marker-derived genomic relationship matrix according to
VanRaden (2008); e � Nð0; Is2

e Þ is a vector of model resid-
uals. Variance components were estimated using the regress
(Clifford and McCullagh 2014) R package. The adjusted phe-
notypes �Y2X~b, without any weight, were used for model
evaluation.

Rice data: The genotypes and phenotypes of the rice breed-
ing population were downloaded from the Rice Diversity
Panel (https://ricediversity.org; Begum et al. 2015; Spindel
et al. 2015). In total, 315 elite rice breeding lines from the

International Rice Research Institute irrigated rice breed-
ing program were included in this data set. Several traits
such as plant height (PH), flowering time (FLW), and grain
yield (YLD) were recorded in both the dry (DS) and the wet
season (WS) for the years 2009–2012. The means of the
phenotypes across years for DS or WS for each line were
used as response variable (provided by Spindel et al. 2015).
In total, 58,227 SNPs passed the quality control steps
and remained for further analysis. The gene annotation in-
formation of the latest version of the rice genome (Oryza
sativa Japonica Group, Build 4.0) was downloaded from
Ensemble via the biomaRt (Durinck et al. 2005, 2009) R
package.

Predictive ability evaluation

Weused 20 replicates of a fivefold random cross-validation to
assess the predictive ability of the different approaches. The
variance components were estimated within the training set.
Phenotypes of the validation setwere treated as unknownand
genetic values were predicted based on models 1 and 2,
respectively. The predictive abilitywas calculated as Pearson’s
correlation between the predicted genetic values and the
(precorrected) phenotypes of the validation population. Pre-
dictive abilities of other models were compared to GBLUP
(allele dosage models) or CM (categorical models) via a
two-sided t-test. Moreover, for Figure 1, the relative predic-
tive abilities were calculated as the ratio between the mean
predictive ability of the alternativemodels and that ofGBLUP:
The models were clustered based on these relative predictive
abilities using the pheatmap R package, where the hierarchi-
cal clustering is performed according to the euclidean dis-
tance of the vectors of relative predictive abilities for all traits.

Data availability

The mouse data used in this study is available at http://
mtweb.cs.ucl.ac.uk/mus/www/mouse/HS/index.shtml.
The D. melanogaster data is available at http://dgrp2.gnets.
ncsu.edu/. The rice breeding population data is available at
https://ricediversity.org.

Results

Predictive abilities on the considered data sets

In this work, we considered marker-based and (gene anno-
tation guided) haplotype-based models. We built the models

Table 3 Data sets description

Data sets
No. of

individuals No. of markers Reference genome
No. of mapped

SNPs
No. of represented

genes No. of haploblocks

Mice 1940 9,266 Mus musculus (GRCm38.p4) 5,036 4,100 4,119
DGRP 205 2,863,909 Drosophila melanogaster

(assembly Release 6)
2,467,249 12,586 725,520

Rice 315 58,227 Oryza sativa Japonica Group
(Build 4.0)

44,831 22,509 25,453
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on numerical allele dosage or on categorical variables, and
incorporated epistasis. In the following, we will compare the
predictive ability of the different models on three data sets.
The results are summarized in Figure 1, Table 4, and Table 5.
Additional results for the Drosophila data set, which are not
included in these tables, can be found in Supplemental Ma-
terial, Table S1.

Mouse data: Let us consider the predictive abilities of the
different models for the growth-related traits body weight at
6–10 weeks (W6W, W7W, W8W, W10W) and the growth
slope from 6 to 10 weeks (GSL). Here, we observe consistent
patterns for certain changes of numerical dosage and cate-
gorical models (Figure 1). The step from GBLUP to GHBLUP
improves predictive ability by 426%;which can similarly be
observed from CM to CHM: The improvement from marker-
based models to the gene-annotation-guided haplotype-
based models is less than from marker-based models to the
ordinary haplotype models without the use of gene annota-
tion. Moreover, the incorporation of epistasis improves the
predictive ability consistently from GBLUP to EGBLUP; from
CM to CE; from CHM to CHE; and from CHMjGA to CHEjGA:
Overall, CHE shows the highest predictive ability for these
traits, and the differences between jGA models and those in-
corporating the unmappedmarkers in a secondmatrix (jGA*)
are small.

For the obesity-related traits, body mass index (BMI) and
body length (BL), all categorical models and EGBLUP are
outperformed by GBLUP (Table 4 and Table 5). For the nu-
merical dosage models, we see that the predictive ability of
GBLUP is increased by the step to GHBLUP; which again is
improved by using gene annotation in GHBLUPjGA: Analo-
gously, the predictive ability of CM is similar to that of
CHM; which is improved by incorporating gene annotation
information in CHMjGA: The same stepwise improvement is
true for CE; CHE; and CHEjGA: Comparing the epistasis mod-
els to the additive effect models, we observe an increase in
predictive ability for all categorical models. The predictive

ability of CE is higher than that of CM;which can analogously
be observed comparing CHM to CHE; and CHMjGA to CHEjGA:
The use of a second relatedness matrix constructed with un-
mapped markers does not lead to a relevant increase in pre-
dictive ability (Figure 1, Table 4, and Table 5). Overall, due to
the relative low performance of the categorical models,
GHBLUPjGA and GHBLUPjGA* perform best for BMI and BL,
respectively.

For the immunology traits except CD8Intensity,weobserve
a relatively homogeneous predictive ability across all models
(Table 4 and Table 5). The performance of EGBLUP is con-
stantly low on these traits. For the traits CD8+, CD4+/CD3+,
CD8+/CD3+, and CD4+/CD8+, we see that the categori-
cal gene-annotation-based haplotype models CHMjGA and
CHEjGA perform notably better than the other models. The
epistasis variant CHEjGA improves the predictive ability
slightly, compared to CHMjGA:

Drosophila data: In the DGRP population, we analyzed
17 phenotypic traits (34 trait–sex combinations) related to
adaptation, food intake, alcohol sensitivity, and olfactory be-
havior (Table S1). Overall, gene-annotation-based models
improve or maintain the predictive ability in 13 out of 34 sce-
narios compared to SNP-based models (Table S1). GBLUP
performs best in 15 scenarios. Predictive ability of CM is
omitted since it is similar toGBLUP (identical in 21 scenarios)
due to the extremely rare occurrence of heterozygotes
(0.39%) in the DGRP population. Table 4 and Table 5 show
the two traits for which gene-annotation-based models
show a considerable improvement. In one of the alcohol
sensitivity traits, which was measured as alcohol knock-
down time (Mean Elution Time, MET) in an “inebriometer”
after a second exposure (E2) following a 2-hr recovery period
(Morozova et al. 2015), GHBLUPjGA improves the predictive
ability in females from 0.202 to 0.225 compared to GBLUP:
However, the predictive ability for E2 inmales is close to zero.
In the olfactory behavior trait “1-hexanol,” predictive ability
is improved by GHBLUPjGA from 0.185 (0.235) in GBLUP to

Figure 1 Comparison of the predictive ability
of different models. Rows are different models
and columns are traits from three data sets. For
each trait, relative predictive ability is calculated
by setting GBLUP as reference (mean accura-
cies divided by that of GBLUP). For the DGRP,
only traits where gene-annotation-based mod-
els give extra predictive accuracy are presented.
Trait “E2” of male lines in the DGRP data were
also removed due to the extremely low predic-
tive ability. W6W–W10W: body weight at 6 to
8 and 10 weeks; GSL: growth slope between
6 and 10 weeks of age; BMI, body mass index;
BL, body length; %B220+, percentage of B220
cells; %CD3+, percentage of CD3 cells; %CD4+,
percentage of CD4 cells; %CD8+, percentage of
CD8 cells; %CD4+/CD3+, percentage of CD4 and
CD3 cells; %CD8+/CD3+, percentage of CD8 and

CD3 cells; CD4+/CD8+, ratio of CD4 to CD8 cells; CD4Intensity, CD4inCD3XGeoMean; CD8Intensity, CD8inCD3YGeoMean. F, female; M, male. DS, dry season;
WS, wet season; PH, plant height; FLW, flower time; YLD, grain yield.
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0.223 (0.254) for females (males). For both traits E2 and
1-hexanol, for which GHBLUPjGA and CHMjGA have the same
performance, neither modeling epistasis nor including un-
mapped SNPs in a second relatedness matrix leads to an
additional improvement.

Rice data: With the rice data, we observe a systematic
improvement using models built on gene-annotation-based
haplotypes. Whereas the performance of GHBLUP is on aver-
age very similar to that of GBLUP across traits, GHBLUPjGA
systematically outperforms other numerical dosage models
on five out of six traits (Table 4). The categorical models CM;

CHM; and CHMjGA (Table 5) perform very similarly to their
numerical allele dosage counterparts, which meets our ex-
pectations on the similarity of GBLUP and CM on data with a
low heterozygosity rate. For the categorical epistasis models,
we observe a systematic improvement of predictive ability
from CE to CHE and to CHEjGA: For the incorporation of epis-
tasis, we see a consistent tendency across traits. Thus, CE
tends to perform better than CM; CHE better than CHM; and
CHEjGA better than CHMjGA: However, the transition from
the additive to the epistasis model does not improve predic-
tive ability of numerical allele dosage models on the traits

plant height and flowering time (from GBLUP to EGBLUP).
Overall, for plant height, flowering time, and grain yield,
predictive abilities were improved by CHEjGA by 6.4%
(8.1%), 6.7% (9.9%), and 17.6% (21.7%), respectively, in
dry season (wet season) compared to GBLUP: An inclusion
of unmapped SNPs in a second relatedness matrix did not
improve predictive ability for any trait/model combination
for the rice data.

Predictive ability vs. unexplained variance

To highlight the difference between explained variance and
predictive ability, we plotted the unexplained error variance
for each model and trait against the predictive ability (Figure
2). Here, we excluded the CHEmodel, because its relatedness
matrix has very small off-diagonal elements for the mouse
data set. This leads to a situation in which the covariance
matrix is more similar to the identity matrix than usual. Con-
sequently, a certain part of the variance can be assigned to
either the error or to the relatedness matrix, which causes
extreme estimates for the variance components for some
traits on the mouse data. Considering Figure 2, we see that
there is a negative correlation between the error variance and
predictive ability for most of the traits, which indicates that a

Table 4 Predictive ability in allele dosage models (mean 6 SE)

Data sets Traits GBLUP EGBLUP GHBLUP GHBLUPjGA GHBLUPjGA*
Mouse W6W 0.494 6 0.001 0.534 6 0.002 0.521 6 0.001 0.496 6 0.002 0.498 6 0.001

W7W 0.495 6 0.002 0.537 6 0.002 0.527 6 0.002 0.502 6 0.002 0.503 6 0.002
W8W 0.510 6 0.001 0.523 6 0.001 0.531 6 0.001 0.518 6 0.001 0.517 6 0.001
W10W 0.481 6 0.001 0.491 6 0.002 0.507 6 0.001 0.487 6 0.001 0.486 6 0.001
GSL 0.389 6 0.001 0.405 6 0.002 0.405 6 0.001 0.388 6 0.001 0.392 6 0.001
BMI 0.224 6 0.002 0.206 6 0.002 0.228 6 0.002 0.234 6 0.002 0.231 6 0.002
BL 0.264 6 0.002 0.255 6 0.002 0.268 6 0.002 0.272 6 0.002 0.273 6 0.002

%B220+ 0.546 6 0.002 0.541 6 0.001 0.549 6 0.002 0.543 6 0.002 0.547 6 0.002
%CD3+ 0.522 6 0.002 0.495 6 0.002 0.531 6 0.002 0.517 6 0.002 0.523 6 0.002
%CD4+ 0.481 6 0.002 0.454 6 0.001 0.481 6 0.001 0.473 6 0.002 0.482 6 0.002
%CD8+ 0.702 6 0.001 0.668 6 0.001 0.701 6 0.001 0.706 6 0.001 0.707 6 0.001

%CD4+/CD3+ 0.638 6 0.001 0.617 6 0.001 0.633 6 0.001 0.641 6 0.001 0.642 6 0.001
%CD8+/CD3+ 0.676 6 0.001 0.636 6 0.002 0.670 6 0.002 0.680 6 0.001 0.680 6 0.001
CD4+/CD8+ 0.671 6 0.001 0.636 6 0.001 0.665 6 0.001 0.674 6 0.001 0.675 6 0.001
CD4Intensity 0.573 6 0.002 0.550 6 0.002 0.569 6 0.002 0.570 6 0.002 0.574 6 0.002
CD8Intensity 0.388 6 0.002 0.489 6 0.002 0.404 6 0.002 0.379 6 0.002 0.382 6 0.002

DGRP E2 (F) 0.202 6 0.010 0.110 6 0.012 0.210 6 0.010 0.225 6 0.010 0.208 6 0.010
E2 (M) 0.026 6 0.010 0.038 6 0.008 0.039 6 0.010 0.045 6 0.009 0.041 6 0.011

1-hexanol (F) 0.185 6 0.010 0.209 6 0.010 0.193 6 0.009 0.223 6 0.009 0.220 6 0.010
1-hexanol (M) 0.235 6 0.009 0.225 6 0.009 0.236 6 0.009 0.254 6 0.008 0.254 6 0.008

Rice DS_PH 0.486 6 0.007 0.383 6 0.006 0.499 6 0.007 0.522 6 0.007 0.522 6 0.007
DS_FLW 0.534 6 0.005 0.405 6 0.006 0.556 6 0.005 0.568 6 0.005 0.568 6 0.005
DS_YLD 0.289 6 0.006 0.298 6 0.008 0.285 6 0.006 0.323 6 0.005 0.323 6 0.005
WS_PH 0.482 6 0.006 0.448 6 0.007 0.496 6 0.005 0.516 6 0.005 0.516 6 0.005
WS_FLW 0.467 6 0.007 0.412 6 0.008 0.487 6 0.006 0.502 6 0.006 0.501 6 0.006
WS_YLD 0.258 6 0.007 0.299 6 0.008 0.242 6 0.007 0.276 6 0.008 0.276 6 0.008

Mean accuracy 0.431 0.418 0.440 0.444 0.444

For the DGRP data set, two traits for which the gene-annotation-based models show improved predictive ability are presented. W6W–W10W, body weight at 6–8 and
10 weeks; GSL, growth slope between 6 and 10 weeks of age; BMI, body mass index; BL, body length; %B220+, percentage of B220 cells; %CD3+, percentage of CD3 cells;
%CD4+, percentage of CD4 cells; %CD8+, percentage of CD8 cells; %CD4+/CD3+, percentage of CD4 and CD3 cells; %CD8+/CD3+, percentage of CD8 and CD3 cells;
CD4+/CD8+, ratio of CD4 to CD8 cells; CD4Intensity, CD4inCD3XGeoMean; CD8Intensity, CD8inCD3YGeoMean. F, female; M, male. DS, dry season; WS, wet season; PH,
plant height; FLW, flower time; YLD, grain yield. For each trait (row), the values in boldface indicate the best prediction among all models and values in italic are those
significantly higher than GBLUP (P , 0.05, pairwise t-test).
* Indicates models including gene-based haplotypes and unmapped SNPs simultaneously.
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model explaining the variance better also gives a higher pre-
dictive ability. However, this correlation is not 21 and has a
high variation across traits. For some traits, it is even positive
for the considered models. Moreover, we see also that
EGBLUP has the tendency to be perceived as an “outlier” in
several traits, which has already been seenwith the results on
predictive ability alone.

Discussion

The concept of gene-annotation-based
haplotype models

The prediction methods used in this work are all built on the
classical standard assumption of the genetic values (and the
error terms) being multivariate Gaussian distributed. Differ-
ent concepts of defining matrices reflecting genomic related-
nesswereappliedand thewell-knownmixedmodel equations
(Henderson 1984) were used for the prediction of genetic
values. Implicitly, each protocol of constructing a relatedness
matrix is based on prior assumptions on how the multivariate
Gaussian distributed genetic values are generated. For in-
stance, for the GBLUPmodel these assumptions are that each
marker has an intralocus additive dosage effect, and that
all these marker effects are independent realizations from
the same 1-dimensional Gaussian distribution. Clearly, in a

situation in which the number of markers (predictor vari-
ables) is much higher than the number of individuals, and
without penalization of effect sizes, any fit of the data that is
generated by one of the presented models can also be
obtained by an intralocus additive marker model. However,
the regularization implemented by the shrinkage of effect
sizes in the ridge regression approach pushes the estimated
effects towards the framework defined by the prior assump-
tions. Thus, prior assumptions reflecting underlying biolog-
ical processes may improve the estimation of the effects of
the predictor variables. In this work, these prior assump-
tions were set by building the model on predictor variables
defined by protein-coding genes. Not every marker has an
effect, but rather the biological unit “gene.” More specific
knowledge, for instance on the biology of the respective
trait, has not been used. With this conceptually simple mod-
ification, the epistatic CHEjGAmodel had a higher predictive
ability than GBLUP for all traits of the rice and the mouse
data, except for BMI and BL (Figure 1, Table 4, and Table 5).
For the Drosophila data set, GBLUP remained the best model
on average (Table S1).

Predictive abilities and model clusters

The predictive abilities of the different models are shown
relative to the predictive ability of GBLUP in Figure 1. This

Figure 2 Error variance vs. predictive ability. Description of traits and models: see text and Figure 1.
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relative performance gives four main clusters (based on the
predictive abilities for the data presented in Figure 1; an
extended pattern based on the data including all traits of
the Drosophila data set can be found in Figure S1).

The first cluster consists of EGBLUP only, whose relative
predictive ability varies substantially across traits. The reason
for being distinct from all other models can be seen in the
centering by allele frequencies, which had been applied to
the additive GBLUPmatrix, before the Hadamard square was
calculated. Since the epistatic effects aremodeled as products
of the centered matrix entries, this EGBLUP version is built on
allele-frequency-dependent parametric models for the inter-
action effects, which means that each pair of marker has its
own interaction model, which may lead to the strong varia-
tion of the performance across traits (Martini et al. 2017).

The second cluster consists of the four categorical epistasis
models, of which CHEjGA* shows the highest average pre-
dictive ability across traits. CE is more similar to CHE than
to CHEjGAð*Þ;which is in linewith the conceptual structure of
the models. In CHE; consecutive SNPs are combined into hap-
loblocks but no external information is used to define them.
CHEjGAð*Þ uses the gene annotation information addition-
ally. In the rice data in particular, these conceptual construc-
tion steps also translate into predictive ability, where CE is
outperformed by CHE; whose predictive ability is further im-
proved by CHEjGAð*Þ for all traits.

The third cluster contains GHBLUPjGA and CHMjGA; both
of which are built upon gene annotation–based haplotypes.
Even though the underlying variables are more complex than
single markers, their behavior relative to each other is very
similar to the comparison of the marker-based numerical
dosage model GBLUP and the categorical marker model CM
(Figure 1).

The fourth cluster consists of GBLUP; GHBLUP; CM; and
CHM: Except for the traits BMI, BL, and CD8Intensity, the
performance of CM is very similar to that of GBLUP: Indeed,
both methods are also theoretically identical in the case that
each predictor variable has only two possible states, for in-
stance due to complete homozygosity (Martini et al. 2017).
However, their performances on the mouse data set illustrate
that the mean predictive ability of CM and GBLUP can also be
very similar for data in which the two homozygous and the
heterozygous states are well represented (56.06, 34.40, and
9.53% of 0, 1, and 2, respectively). The two models perform
very similarly for the majority of the considered traits, and
their difference is only visible for BMI, BL, and CD8Intensity.
The fact that GBLUP is more similar to its haplotype analog
GHBLUP than to the categorical marker model CM is most
probably a result of the difference in predictive ability for
these traits. Indeed, if the additional traits of the Drosophila
data set are included, GBLUP and CM are closest (Figure S1),
which may be a result of the high frequency of homozygous
markers in the DGRP data set (84.10, 0.39, and 15.51% of 0,
1, and 2, respectively) and of the two models consequently
being almost identical for all additional traits that have not
been included in Figure 1.

Overall, the clusters based on predictive abilities are in line
with the conceptual construction of the models. Our results
show that accounting for gene locationswhen defining haplo-
blocks can improve the predictive ability, using intralocus
additive or categorical models. Across the traits of Figure 1,
the categorical epistasis model CHEjGA shows the highest
predictive ability on average. For the rice data, CHEjGA has
the highest predictive ability for five of six traits. The trait
plant height in dry season is predicted best by CHMjGA: Add-
ing a second relatedness matrix defined by SNPs that have
not been mapped to genes (indicated by an *) does not sys-
tematically improve the predictive ability for most of the con-
sidered traits, indicating that unmapped SNPs do not contain
sufficient additional information.

Factors affecting the performance of the gene-
annotation-based haplotype models

As previously argued, the jGA approaches are based on the
concept of defining biologically functional units as predictor
variables and by this constructing a statistical framework
that reflects the underlying biological processes. In addition
to general factors affecting the performance of GP, such as
the training set size, the number of markers, the genetic
distance between training and test set, and the genetic ar-
chitecture of the trait of interest (Shengqiang et al. 2009;
Daetwyler et al. 2010), there are other important factors
influencing the performance of gene-annotation-based pre-
diction methods.

Evidently, a reference genome and the annotation infor-
mationmust be available for the target species. The quality of
the annotation information will have an important impact on
the number of predictor variables, on the set and the number
ofmarkers that aremapped to genes, and on how themarkers
are clustered.Generally,withadecreasingnumberofmarkers,
the average predictive ability will decrease (Ober et al. 2012).
However, in our results the addition of a second relatedness
matrix based on unmapped markers did not overall rele-
vantly improve predictive ability. Thus, the marker reduction
does not seem to be a critical point for the data sets used in
this work.

Addressing the percentage of genes represented by haplo-
blocks, in themouse data set only 18.4% (4100out of 22,225)
of all genes were represented by SNPs (Table 3). For the rice
data set, for which the jGA models improved the predictive
ability strongly, 63.1% (22,509 out of 35,679) of the genes
were modeled by at least one haploblock, whereas for the
Drosophila data, 90.4% (12,586 out of 13,918) of the genes
were included in the model. Even though the latter had the
highest percentage of represented genes, the use of gene
annotation did not lead to a systematic improvement, but
GBLUP outperformed the other models for the majority of
the traits (Table S1). Besides other factors, this may in part
be a result of the small population size and of theway that the
phenotypes were corrected. The correction already included
the G matrix and may have slightly adapted the remaining
variance to this matrix. Nevertheless, we used this approach
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of correction since a correction for fixed effects was necessary
and this type of correction has already been used previously
(Edwards et al. 2016).

Concerning this genotype–phenotypemapping, the results
on the mouse data, where all categorical models are outper-
formed by GBLUP for the traits BMI and BL, illustrate again
that a crucial point is the trait-specific architecture. The fact
that the CMmodel, which has an advantagewhen dominance
structures are present (Martini et al. 2017), is significantly
outperformed by GBLUP can be seen as an indicator for the
absence of statistical dominance. However, the observation of
a reduced predictive ability of categorical models, which in-
corporate dominance, should be interpreted with caution
since such global quantities may not be directly linked to
a biological genetic architecture of the trait (Huang and
Mackay 2016).

Another important characteristic may be the average
number of markers included in a haploblock, which is not
only influenced by the number of markers mapped to a gene,
but also by the LD pattern of the data. It is clear that in a data
set for which each haploblock consists of only one marker, a
haplotype model is identical to the corresponding marker
model. For the mouse data with 5036 mapped SNPs and
4119 haploblocks (Table 3), the majority of the haploblocks
consist of not more than two markers (on average 1.22
markers per haploblock). This explains partially why the
increase in predictive ability with gene-annotation-based
haplotypes is not on the same scale as for the rice data
(1.76 markers per haploblock). However, our results also
show that an increasing average number of markers per
haploblock does not necessarily make a model more different
from a marker-based model. This becomes clear by consid-
ering the fact that all haplotype models without the use of
gene annotation have a higher average number of markers
per haploblock than the jGA models, but are still clustered
closer to their respective marker model than the jGAmodels.
The average number of markers per haplotype was 7.28,
7.32, and 8.08 for the mouse, the DGRP, and rice data for
the models without gene annotation, which was reduced to
1.22, 3.4, and 1.76, respectively, for the jGA models. For
data sets with a rapid LD decay, adding markers to a haplo-
type block will rapidly increase the number of haplotype
alleles. With the “maximum number of alleles” method,
which we used for the construction of haplotypes, a lower
LD leads to fewer markers per haploblock, which may make
the haplotype-basedmodels more similar to the correspond-
ing SNP-based models. The DGRP population exhibits a
rapid LD decay (Mackay et al. 2012), which is also reflected
by the fact that the haploblocks in models without gene
annotation on average have a comparable number of
markers for the three data sets, even though the marker
density of the DGRP data is much higher. For the DGRP data,
the average number of markers per haploblock is the highest
of the three data sets (3.4) for the jGA models, which is a
consequence of the high number of markers mapped to
genes. This illustrates again that the interplay of multiple

factors makes pure and simple statements on the causes of
differences in the predictive ability difficult.

Conclusions

In this study, we proposed different ways to incorporate gene
annotation information into different haplotype-based geno-
mic prediction approaches, including categorical andepistasis
models. We used gene annotation information to point at the
DNAsegments that aremore likely to play an important role in
the biology of the trait and to define the model on the bi-
ologically functional unit “gene.” We validated the new
methods with several data sets representing different data
structures (with respect to marker density, extent of LD,
and diversity) and a wide range of traits. Our results show
that gene annotation can be beneficial in the construction of
haplotype-basedmodels if some prerequirements, such as the
availability of a reference genome and sufficiently accurate
gene annotation information, are fulfilled. The suggested
strategy allows us to measure the pairwise individual simi-
larity on the gene level and provides a novel option for in-
corporating gene annotation into GP.

Acknowledgments

N.G. thanks China Scholarship Council (CSC) for the finan-
cial support of his study in Germany. J.W.R. Martini thanks
KWS SAAT SE for financial support. We thank the colleagues
who have generated the data used in the present study for
making them openly accessible. This work is partly founded
by the earmarked fund for China Agriculture Research
System (CARS-35), National Natural Science Foundation of
China (31772556, 31371258), Basic Work of Science and
Technology Project (2014FY120800), Guangdong Sailing
Program (2014YT02H042), and Guangdong Natural Sci-
ence Foundation (2014A030313453).

Author contributions: N.G., J.W.R.M., and H.S. conceived
the study. N.G. and J.W.R.M. performed the analysis and
wrote the manuscript. Z.Z., X.Y., H.Z., H.S., and J.L. contrib-
uted to the manuscript. All authors have read and approved
the final manuscript. The authors declare that they have no
competing interests.

Literature Cited

Abdollahi-Arpanahi, R., G. Morota, B. D. Valente, A. Kranis, G. J.
Rosa et al., 2016 Differential contribution of genomic regions
to marked genetic variation and prediction of quantitative traits
in broiler chickens. Genet. Sel. Evol. 48: 10.

Albrecht, T., V. Wimmer, H.-J. Auinger, M. Erbe, C. Knaak et al.,
2011 Genome-based prediction of testcross values in maize.
Theor. Appl. Genet. 123: 339–350.

Arya, G. H., M. M. Magwire, W. Huang, Y. L. Serrano-Negron, T.
F. C. Mackay et al., 2015 The genetic basis for variation in
olfactory behavior in Drosophila melanogaster. Chem. Senses
40: 233–243.

Begum, H., J. E. Spindel, A. Lalusin, T. Borromeo, G. Gregorio et al.,
2015 Genome-wide association mapping for yield and other

Genome-Annotation-Guided Genomic Prediction 499



agronomic traits in an elite breeding population of tropical rice
(Oryza sativa). PLoS One 10: e0119873.

Browning, B. L., and S. R. Browning, 2008 A unified approach to ge-
notype imputation and haplotype-phase inference for large data sets
of trios and unrelated individuals. Am. J. Hum. Genet. 84: 210–223.

Calus, M. P. L., T. H. E. Meuwissen, A. P. W. De Roos, and R. F.
Veerkamp, 2008 Accuracy of genomic selection using different
methods to define haplotypes. Genetics 178: 553–561.

Clifford, D., and P. McCullagh, 2014 The regress package R pack-
age version 1.3–14.

Crossa, J., G. l. Campos, P. Pérez, D. Gianola, J. Burgueño et al.,
2010 Prediction of genetic values of quantitative traits in plant
breeding using pedigree and molecular markers. Genetics 186:
713–724.

Cuyabano, B. C., G. Su, and M. S. Lund, 2014 Genomic prediction
of genetic merit using LD-based haplotypes in the Nordic Hol-
stein population. BMC Genomics 15: 1171.

Cuyabano, B. C., G. Su, and M. S. Lund, 2015 Selection of hap-
lotype variables from a high-density marker map for genomic
prediction. Genet. Sel. Evol. 47: 61.

Daetwyler, H. D., R. Pong-Wong, B. Villanueva, and J. A. Woolliams,
2010 The impact of genetic architecture on genome-wide eval-
uation methods. Genetics 185: 1021–1031.

de los Campos, G., A. I. Vazquez, R. Fernando, Y. C. Klimentidis, and
D. Sorensen, 2013 Prediction of complex human traits using the
genomic best linear unbiased predictor. PLoS Genet. 9: e1003608.

de Vlaming, R., and P. J. F. Groenen, 2015 The current and future
use of ridge regression for prediction in quantitative genetics.
BioMed Res. Int. 2015: 143712.

Do, D. N., L. L. G. Janss, J. Jensen, and H. N. Kadarmideen,
2015 SNP annotation-based whole genomic prediction and se-
lection: an application to feed efficiency and its component
traits in pigs. J. Anim. Sci. 93: 2056–2063.

Durinck, S., Y. Moreau, A. Kasprzyk, S. Davis, B. De Moor et al.,
2005 BioMart and bioconductor: a powerful link between bi-
ological databases and microarray data analysis. Bioinformatics
21: 3439–3440.

Durinck, S., P. T. Spellman, E. Birney, and W. Huber, 2009 Mapping
identifiers for the integration of genomic datasets with the
R/Bioconductor package biomaRt. Nat. Protoc. 4: 1184–1191.

Edwards, S. M., I. F. Sørensen, P. Sarup, T. F. C. Mackay, and P.
Sørensen, 2016 Genomic prediction for quantitative traits is
improved by mapping variants to gene ontology categories in
Drosophila melanogaster. Genetics 203: 1871–1883.

Gao, N., J. Li, J. He, G. Xiao, Y. Luo et al., 2015 Improving accu-
racy of genomic prediction by genetic architecture based priors
in a Bayesian model. BMC Genet. 16: 120.

Garlapow, M. E., W. Huang, M. T. Yarboro, K. R. Peterson, and T.
F. C. Mackay, 2015 Quantitative genetics of food intake in
Drosophila melanogaster. PLoS One 10: e0138129.

Gianola, D., 2013 Priors in whole-genome regression: the Bayes-
ian alphabet returns. Genetics 194: 573–596.

Habier, D., R. L. Fernando, and J. C. M. Dekkers, 2007 The impact
of genetic relationship information on genome assisted breeding
values. Genetics 177: 2389–2397.

Hayes, B., and M. Goddard, 2010 Genome-wide association and
genomic selection in animal breeding. Genome 53: 876–883.

Hayes, B. J., N. O. I. Cogan, L. W. Pembleton, M. E. Goddard, J.
Wang et al., 2013 Prospects for genomic selection in forage
plant species. Plant Breed. 132: 133–143.

Henderson, C. R., 1975 Best linear unbiased estimation and pre-
diction under a selection model. Biometrics 31: 423–447.

Henderson, C. R., 1984 Applications of Linear Models in Animal
Breeding. University of Guelph Press, Guelph, Canada.

Huang, W., and T. F. Mackay, 2016 The genetic architecture of
quantitative traits cannot be inferred from variance component
analysis. PLoS Genet. 12: e1006421.

Jannink, J.-L., A. J. Lorenz, and H. Iwata, 2010 Genomic selection
in plant breeding: from theory to practice. Brief. Funct. Geno-
mics 9: 166–177.

Jensen, J., E. A. Mantysaari, P. Madsen, and R. Thompson,
1997 Residual maximum likelihood estimation of (Co) vari-
ance components in multivariate mixed linear models using av-
erage information. J. Indian Soc. Agric. Stat. 49: 215–236.

Jiang, Y., and J. C. Reif, 2015 Modeling epistasis in genomic se-
lection. Genetics 201: 759–768.

Mackay, T. F. C., S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles
et al., 2012 The Drosophila melanogaster genetic reference
panel. Nature 482: 173–178.

MacLeod, I. M., P. J. Bowman, C. J. Vander Jagt, M. Haile-Mariam,
K. E. Kemper et al., 2016 Exploiting biological priors and se-
quence variants enhances QTL discovery and genomic predic-
tion of complex traits. BMC Genomics 17: 144.

Martini, J. W. R., V. Wimmer, M. Erbe, and H. Simianer,
2016 Epistasis and covariance: how gene interaction trans-
lates into genomic relationship. Theor. Appl. Genet. 129: 963–
976.

Martini, J. W. R., N. Gao, D. F. Cardoso, V. Wimmer, M. Erbe et al.,
2017 Genomic prediction with epistasis models: on the marker-
coding-dependent performance of the extended gblup and
properties of the categorical epistasis model (ce). BMC Bioinfor-
matics 18: 3.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard,
2001 Prediction of total genetic value using genome-wide
dense marker maps. Genetics 157: 1819–1829.

Meuwissen, T. H. E., J. Odegard, I. Andersen-Ranberg, and E.
Grindflek, 2014 On the distance of genetic relationships and
the accuracy of genomic prediction in pig breeding. Genet. Sel.
Evol. 46: 49.

Misztal, I., and A. Legarra, 2017 Invited review: efficient compu-
tation strategies in genomic selection. Animal 11: 731–736.

Morota, G., R. Abdollahi-Arpanahi, A. Kranis, and D. Gianola,
2014 Genome-enabled prediction of quantitative traits in
chickens using genomic annotation. BMC Genomics 15: 109.

Morozova, T. V., W. Huang, V. A. Pray, T. Whitham, R. R. H. Anholt
et al., 2015 Polymorphisms in early neurodevelopmental genes
affect natural variation in alcohol sensitivity in adult Drosophila.
BMC Genomics 16: 865.

Ober, U., J. F. Ayroles, E. A. Stone, S. Richards, D. Zhu et al.,
2012 Using whole-genome sequence data to predict quantita-
tive trait phenotypes in Drosophila melanogaster. PLoS Genet. 8:
e1002685.

Ramstein, G. P., J. Evans, S. M. Kappler, R. B. Mitchell, K. P. Vogel
et al., 2016 Accuracy of genomic prediction in switchgrass
(Panicum virgatum L.) improved by accounting for linkage dis-
equilibrium. G3 6: 1049–1062.

R Development Core Team, 2016 R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Comput-
ing, Vienna, Austria.

Shengqiang, Z., J. C. M. Dekkers, R. L. Fernando, and J. L. Jannink,
2009 Factors affecting accuracy from genomic selection in
populations derived from multiple inbred lines: a barley case
study. Genetics 182: 355–364.

Sonesson, A. K., and T. H. E. Meuwissen, 2009 Testing strategies
for genomic selection in aquaculture breeding programs. Genet.
Sel. Evol. 41: 37.

Spindel, J., H. Begum, D. Akdemir, P. Virk, B. Collard et al.,
2015 Genomic selection and association mapping in rice (Or-
yza sativa): effect of trait genetic architecture, training popula-
tion composition, marker number and statistical model on
accuracy of rice genomic selection in elite, tropical rice breeding
lines. PLoS Genet. 11: e1004982.

Su, G., O. F. Christensen, T. Ostersen, M. Henryon, and M. S. Lund,
2012 Estimating additive and non-additive genetic variances

500 N. Gao et al.



and predicting genetic merits using genome-wide dense single
nucleotide polymorphism markers. PLoS One 7: e45293.

Valdar, W., L. C. Solberg, D. Gauguier, S. Burnett, P. Klenerman
et al., 2006a Genome-wide genetic association of complex
traits in heterogeneous stock mice. Nat. Genet. 38: 879–
887.

Valdar, W., L. C. Solberg, D. Gauguier, W. O. Cookson, J. N. P.
Rawlins et al., 2006b Genetic and environmental effects on
complex traits in mice. Genetics 174: 959–984.

VanRaden, P. M., 2008 Efficient methods to compute genomic
predictions. J. Dairy Sci. 91: 4414–4423.

Wimmer, V., T. Albrecht, H.-J. Auinger, and C.-C. Schön,
2012 Synbreed: a framework for the analysis of genomic pre-
diction data using R. Bioinformatics 28: 2086–2087.

Yang, D., 2015 Multi-allelic haplotype model based on genetic
partition for genomic prediction and variance component esti-
mation using SNP markers. BMC Genet. 16: 144.

Zhang, Z., U. Ober, M. Erbe, H. Zhang, N. Gao et al., 2014 Improving
the accuracy of whole genome prediction for complex traits using the
results of genome wide association studies. PLoS One 9: e93017.

Communicating editor: E. Stone

Genome-Annotation-Guided Genomic Prediction 501


