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ABSTRACT Selection experiments and experimental evolution provide unique opportunities to study the genetics of adaptation
because the target and intensity of selection are known relatively precisely. In contrast to natural selection, where populations are
never strictly “replicated,” experimental evolution routinely includes replicate lines so that selection signatures—genomic regions
showing excessive differentiation between treatments—can be separated from possible founder effects, genetic drift, and multiple
adaptive solutions. We developed a mouse model with four lines within a high running (HR) selection treatment and four nonselected
controls (C). At generation 61, we sampled 10 mice of each line and used the Mega Mouse Universal Genotyping Array to obtain single
nucleotide polymorphism (SNP) data for 25,318 SNPs for each individual. Using an advanced mixed model procedure developed in this
study, we identified 152 markers that were significantly different in frequency between the two selection treatments. They occurred on all
chromosomes except 1, 2, 8, 13, and 19, and showed a variety of patterns in terms of fixation (or the lack thereof) in the four HR and four
C lines. Importantly, none were fixed for alternative alleles between the two selection treatments. The current state-of-the-art regularized
F test applied after pooling DNA samples for each line failed to detect any markers. We conclude that when SNP or sequence data are
available from individuals, the mixed model methodology is recommended for selection signature detection. As sequencing at the
individual level becomes increasingly feasible, the new methodology may be routinely applied for detection of selection.
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Complex traits, such as most behaviors, are affected by
alleles segregating at multiple loci. Mapping quantitative

trait loci (QTL) for such traits canbe difficult, often requiring a
large sample. Ingeneral, twoapproachesareused tomapQTL,
involving the use of a designed line cross experiment (Lander
and Botstein 1989) or selectively bred populations
(Wurschum 2012; Cui et al. 2015). Use of a line cross exper-
iment requires a large sample to avoid the Beavis effect
(Beavis 1994; Xu 2003), in which reported QTL effects are
often biased and the amount of bias is inversely proportional
to the sample size. Moreover, the inference space of QTL
parameters is narrow, only applicable to the lines initiating

the cross, and the result cannot be extended to crosses de-
rived from other lines (Xu 1996). Using selectively bred pop-
ulations for QTL mapping takes advantage of existing
resources with no need to create a line cross (Chan et al.
2012; Lo et al. 2016). It is also possible to use selected lines
to make a mapping cross. QTL detected from a set of selected
populations can be directly applied to the same populations
to further improve breeding efficiency (Wurschum 2012),
and results can also be applied to the original starting (base)
population from which the selected lines were derived. An-
other advantage of using selected populations for QTL map-
ping is that the sample size does not have to be very large
because allelic data are used instead of the phenotypic values
of a selected trait (Cui et al. 2015). The reason for this is that
mapping QTL in selected populations takes advantage of the
shifts of allele frequencies away from expected Mendelian
ratios, i.e., equivalent to detection of segregation distortion,
which does not require large sample sizes (Luo and Xu 2003;
Luo et al. 2005).
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Statistical methods for QTL mapping in selected popula-
tions often involve a x2 test. When replicated lines of a selec-
tion experiment are available, a t-test or F test can be used to
detect QTL via comparison of allele frequencies of the se-
lected population with expected allele frequencies, an ap-
proach called detection of segregation distortion (Vogl and
Xu 2000; Luo and Xu 2003; Luo et al. 2005). If multiple
selected populations are involved, then allele frequencies
among the populations may be compared, which is called
population differential analysis (Weir and Cockerham
1984; Balding and Nichols 1995).

Differential analysis is an important area in population
genetics and molecular evolution. Wright (1950) proposed
three F statistics to describe population differentiation, where
a whole population is subdivided into two or more subpopu-
lations. The F statistics (not the F tests) describe the correla-
tion of alleles at different levels in the population. For
example, the correlation coefficient between two alleles from
the same individual is called the inbreeding coefficient (FIT),
the correlation coefficient between two alleles from different
individuals in the same subpopulation is called FST, and the
correlation coefficient between the two alleles from the same
individual within the same subpopulation is called FIS. In
Cockerham andWeir’s (Cockerham 1969;Weir and Cockerham
1984) notation, FIT ¼ F; FST ¼ u, and FIS ¼ f : The three F
statistics are related by 12 F ¼ ð12 uÞð12 f Þ: The key pa-
rameter in population differentiation analysis is u: Wright
(1950) only proposed the concept of F statistics and did not
address how to estimate them from samples. It was Weir and
Cockerham (1984) who developed a systematic approach to
estimate these F statistics—ANOVA—by treating the binary
indicator (0 or 1) of a reference allele as the response vari-
able. Prior to Weir and Cockerham (1984), much confusion
surrounded the relationship between the F statistics and cor-
relation coefficients of alleles at different levels of the pop-
ulation hierarchy. Cockerham (1969) discovered that these
F statistics can actually be expressed as various intraclass
correlations (variance ratios) from the ANOVA. More impor-
tantly, one can perform a statistical test for the significance of
u using a nonparametric method, such as the Jackknife, the
bootstrap, or the permutation test (Weir and Cockerham
1984). An estimated u significantly different from that
expected from neutrality means that the population differen-
tiation may be caused by some sort of evolutionary forces
beyond random genetic drift, e.g., selection. When markers
of the entire genome are tested this way, selection signatures
can be detected, where a selection signature is defined as
a genomic region subject to selection (Brookfield 2001).
Conventionally, detection of selection signatures is con-
ducted via population differentiation analysis, and rarely
have these applications included replicated lines within
the differentiated populations. Without replications, it is
difficult to separate selection from drift, and thus false
positives may be high.

An alternative and more effective way to investigate se-
lection acting at particular locus is through experimental

evolution (Garland and Rose 2009; Baldwin-Brown et al.
2014; Schlotterer et al. 2015; Franssen et al. 2017), in which
a replicated bidirectional selection experiment or a unidirec-
tional selection experiment with nonselected control(s) is
conducted. In experimental evolution, each treatment popu-
lation often has multiple replicated lines that allow separa-
tion of selection effects from genetic drift, and thus reduce
false positives. Although the F statistic approach can be ap-
plied to selection signature detection from experimental
populations, each population represents a treatment level pur-
posely chosen by investigators and is not a randomly selected
level out of a large pool of populations. As a result, the F
statistics that are based on random selection of populations
may not be appropriate. Instead, a mixed model approach
may be more appropriate by treating the selection (treatment)
effects as fixed (e.g., high-selected, control, or low-selected)
and effects of replicated lines (subpopulations) as random.
Such a mixed model analysis may be more powerful than
the F statistics. The purpose of the present study is to develop
such a mixed model for detection of selection signatures using
genome-wide markers in selected and control populations
with multiple replicated lines within each population.

To distinguish population differentiation analysis from
selection signature detection in experimental evolution, we
now use “selection treatments” to represent “populations”
and use “replicated lines”within each treatment to represent
“subpopulations.” When only two levels of selection treat-
ments (selection and control) are available for comparison,
Baldwin-Brown et al. (2014) proposed a regularized t-test to
compare their allele frequencies. Because this approach re-
quires pooled DNA sequences, it was also called “evolve and
resequence,” initially proposed by Turner et al. (2011) and
then by Baldwin-Brown et al. (2014). The method depends
on replicated lines within each selection treatment to correct
allele frequency variation caused by genetic drift (or possibly
founder effects). The idea was very simple, using the allele
frequency of each replicated line as the original observed
data point to test the mean difference in allele frequency
between the two levels of selection treatments. Their main
contribution was the addition of a regularization factor to the
test to prevent some unexpected behavior of the test (see
Discussion). The regularized factor is particularly useful when
the number of replicated lines within each selection treat-
ment is small because, by chance, the variances of allele fre-
quency among replicates may be extremely small, leading to
false detection of small difference in allele frequency be-
tween selection treatments. Many other methods are also
available for detecting selection signatures, as reviewed by
Schlotterer et al. (2015), but the regularized t-test is the
state-of-the-art method for replicated selection experiments.
The Cochran–Mantel–Haenszel test (Mantel 1963) is optimal
for a replicated 23 2 x2 test with replication (stratification),
but not suitable for replications within each level of the treat-
ments. If DNA sequences are available at the individual
level, then using pooled allele frequency data may lead to
loss of essential information and reduced power of detecting
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causally-related single nucleotide polymorphisms (SNPs). In-
formation on the allelic composition of individual organisms
in the population hierarchy may be very important in boost-
ing the statistical power, and incorporation of such informa-
tion into the selection model is the main goal of the present
study. Although the F statistics (Weir and Cockerham 1984)
already deal with genes at the level of individual organisms, a
mixed model approach to detecting selection signatures in
artificially manipulated populations may be more appropri-
ate. In this study, we propose to use the minimum variance
quadratic unbiased estimation (MIVQUE) procedure (Rao
1971b) for mixed models to estimate variance components
and test differentiation among selection treatments that con-
tain replicate lines.

To validate the efficacy of the mixed model methodology,
we used mouse populations under long-term artificial selec-
tion for high amounts of voluntary wheel-running behavior
(Swallow et al. 1998; Careau et al. 2013). The selection ex-
periment includes two treatments, selection for high running
(HR) and unselected control (C), each treatment with four
replicate lines. These lines were developed as a model system
to study correlated evolution and coadaptation of behavior
(exercise) physiology (Wallace and Garland 2016). They are
also viewed as relevant to human voluntary exercise behav-
ior, which is very important in human health (Garland et al.
2011b). Detected selection signatures from this study will
indicate that these genomic regions harbor genes responsible
for voluntary wheel running. In subsequent reports, the bi-
ological functions of the identified genomic regions will
be considered in detail, but that is beyond the scope of the
present study.

While preparing this manuscript, we found a very similar
study in rats to detect selection signatures for alcohol prefer-
ence (Lo et al. 2016). That experiment included bidirectional
selection for high- and low-alcohol preference,with each treat-
ment replicated twice (four lines in total; no nonselected con-
trol lines). They collected 10 rats from each line at generation
60, where the first 30 generations were continuously selected
and the last 30 generations were relaxed (no selection ap-
plied). Although their sample size was only 40 rats, they were
able to detect many regions harboring genes that may be
causally related to alcohol preference. Lo et al. (2016) di-
rectly estimated the u (FST) parameters under the random
model methodology and used a permutation test to detect
u that significantly deviated from the null model. Results
from our mouse selection experiment are expected to be
more powerful because of the larger number of lines (eight),
larger sample size (80), and the use of the mixed model
methodology.

Materials and Methods

Experimental material

As described in the original publication (Swallow et al. 1998,
2009), replicated within-family selection for increased vol-

untary wheel running in outbred laboratory house mice (Mus
domesticus; Hsd:ICR strain: base population was 112 males
and 112 females) was applied with four high-selected (HR)
and four nonselected control (C) lines (10 families/line were
carried forward each generation, with average litter size at
weaning of �10 pups). As young adults, mice were housed
individually with access to activity wheels for a period of
6 days, and selection was based on the mean number of
revolutions run on days 5 and 6. Animal model analyses in-
dicated that at least three of the four HR lines reached pla-
teaus between generations 17 and 27 of the selection
experiment, depending on sex and line. At the apparent se-
lection limits, mice from the HR lines ran approximately
threefold more than did those from the control lines
(Careau et al. 2013). Various correlated responses to selection
have been observed, including reduced body mass and body
length, decreased body fat as a percentage of total mass,
increased endurance at maximal aerobic capacity, and var-
ious alterations related to neurobiology, motivation, and
brain reward system, as reviewed in (Rhodes and Kawecki
2009; Swallow et al. 2009; Garland et al. 2011a; Wallace
and Garland 2016).

As outlined elsewhere (Swallow et al. 1998; Carter et al.
1999), the outbred Hsd:ICRmice used as the base population
were originally bred from Swiss–Webster albino house mice
in the early 1950s, including a period during which they were
selected for large litters and perfect weaning success
(Hauschka and Mirand 1973). Our mice were purchased
from the Indianapolis, IN facility of Harlan Sprague Dawley.
Levels of allozyme variation in Hsd:ICR mice are similar to
those reported in wild populations of house mice [Carter
et al. (1999) and references therein].

The selection experiment has been ongoing for almost
80 generations. For the present analyses, we collected DNA
samples from 80 female mice at generation 61, 10 mice from
each replicate line. Lines 1, 2, 4, and 5were the nonselected C
lines and lines 3, 6, 7, and 8were the HR-selected lines. Given
that the HR lines had been at selection limits (Careau et al.
2013) for many generations at the time of sampling, random
genetic drift is likely to have caused further differentiation
that may have obscured many SNPs affected by the selection
protocol. In the future, we plan to analyze earlier generations
by use of historical tissue samples, as described in Didion
et al. (2016). Thus, the present data should be viewed as
an exemplar to illustrate the utility of the proposed new sta-
tistical methods, not definitive with respect to signatures of
selection in this particular selection experiment.

We used the Mega Mouse Universal Genotyping Array,
which provides up to 77,800 single SNP markers and is built
on the Illumina Infinium platform (Morgan et al. 2016). The
SNP markers are distributed throughout the mouse genome
(average spacing of 33 kb) and with a slight excess of probes
in the telomeric regions of each autosome to facilitate detec-
tion of recombination events throughout the chromosomes.
Eight mice were eliminated from the analysis because of low-
quality SNP callings (one from line 2, one from line 5, two
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from line 3, one from line 6, and three from line 8). Of the
77,808 SNPs in the panel, 52,490 SNPs (7137 SNPs with at
least one missing genotype, 45,339 monomorphic SNPs, and
14 SNPs on P and M elements) were deleted. After this qual-
ity control, the data set subject to analysis has 72 female mice
with 25,318 SNPs. In contrast to genome-wide association
studies (GWAS), population differentiation analysis does
not use minor allele frequency and Hardy–Weinberg disequi-
librium as criteria for quality control. The 25,318 selected
SNPs in the analysis were evenly distributed across 19 auto-
somes and the X chromosome. The SNP alleles were numer-
ically coded as 1 for the reference allele and 0 for the
alternative allele. As a result, there were 723 2 ¼ 144 obser-
vations (one per allele) for each locus analyzed.

Mixed model analysis

The allelic model: We first introduce the random model
methodology for the F statistic (Weir and Cockerham
1984). As the response variable is the allelic value repre-
sented by a binary variable, the maximum likelihood method
is not appropriate, unless a generalized linear mixed model
(GLMM) is used (discussed later). Instead, we used the MIV-
QUE, denoted by MIVQUE(0), for variance component
estimation (Rao 1971b). The basic idea is to construct a hi-
erarchical model to perform ANOVA using allelic indicator
(0 or 1) as the response variable and the hierarchical struc-
tures of selection treatments and replicate lines within treat-
ments as the designmatrices, where the hierarchical structure is
represented by alleles within individuals, individuals with rep-
licate lines, and lines within selection treatments. When the
data are balanced, MIVQUE(0) generates equivalent results to
ANOVA (Rao 1971b). We now consider two selection treat-
ments only, one being the control treatment and the other the
HR selection treatment. In this experiment, the number of treat-
ments was two, the number of replicate lines within each treat-
ment was four, the number of individuals within each line was
10 (but varied after deletion of eight mice with low-quality SNP
callings), and the number of alleles within each individual was
two (diploid organism).

Let yijkl be the indicator variable (0 or 1) for the lth allele
of the kth individual from the jth line within the ith treat-
ment, where l ¼ 1; 2 for the two alleles of each individual,
k ¼ 1; :::; 10 for the 10 individuals within each line,
j ¼ 1; 2; 3; 4 for the four lines within each treatment, and
i ¼ 1; 2 for the two treatments. Let A1 be the reference allele
and A2 be the alternative allele of a locus under consider-
ation. Denote the whole population frequency of A1 by p:
The allelic indicator variable for reference allele A1 is

yijkl ¼
�
1 for A1
0 for A2

; (5)

which is a Bernoulli variable, and thus the expectation is
identical to the frequency of the reference allele. We now
use Cockerham’s (1969) linear model to describe yijkl;

yijkl ¼ mþ ai þ bðiÞj þ gðijÞk þ eðijkÞl; (6)

where m ¼ p is the overall mean (frequency of A1 for the
whole experimental population), ai ¼ pi 2 p is the allele fre-
quency of treatment i expressed as deviation from that of the
whole population, bðiÞj ¼ pij 2 pi is the allele frequency of the
jth line expressed as deviation from the ith treatment,
gðijÞk ¼ pijk 2 pij is the allele frequency of the kth individual
expressed as deviation from the jth line within the ith treat-
ment, and eðijkÞl ¼ yijkl 2 pijk is the residual error. Note that
the allele frequency of an individual is defined as
pijk ¼ ðyijk1 þ yijk2Þ=2;which only takes three possible values,
0, 0.5, and 1. The two selection treatments were not ran-
domly sampled but designed by the investigators prior to
the experiment. Therefore, ai should be treated as a fixed
effect. However, the Cockerham’s model is random and thus
we will take the random model approach as review of the
background of population differentiation. The model con-
tains only one fixed effect (m) and thus it is called the random
model. All other effects are random with mean zero and
different variances. The variances are denoted by s2

a for ef-
fectai; s

2
b for effect bðiÞj; s2

g for effect gðijÞk, and s2
e for residual

eðijkÞl: The expectation of yijkl is EðyijklÞ ¼ m and the variance of
yijkl is

var
�
yijkl

�
¼ s2

a þ s2
b þ s2

g þ s2
e : (7)

Cockerham (1969) defined threeWright’s F statistics (Wright
1951) based on these variance components. For the four-
level hierarchical model, there are four F statistics, which
are defined as described in Yang (1998),

FIT ¼ s2
a þ s2

b þ s2
g

s2
a þ s2

b þ s2
g þ s2

e
; (8)

FTRT ¼ s2
a

s2
a þ s2

b þ s2
g þ s2

e
; (9)

FLINE ¼ s2
b

s2
b þ s2

g þ s2
e
; (10)

FIS ¼ s2
g

s2
g þ s2

e
: (11)

These F statistics are different from the F statistics developed
byWeir and Cockerham (1984) but they have a nice property
of

ð12 FITÞ ¼ ð12 FTRTÞð12 FLINEÞð12 FISÞ (12)

Ifwe ignore the treatments by treating all lines as populations,
then we have

ð12 FSTÞ ¼ ð12 FTRTÞð12 FLINEÞ;
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which leads to

FST ¼ s2
a þ s2

b

s2
a þ s2

b þ s2
g þ s2

e
: (13)

This is the typical FST in the three-level hierarchical popula-
tion subdivision model, where all lines are promoted to pop-
ulations and s2

a þ s2
b represents the variance of the promoted

populations.
As the two levels of treatmentswere not randomly sampled

from a universe of all possible selection treatments, it is more
appropriate to treat ai as a fixed effect. Therefore, the model
defined in Equation 6 is a mixed model, under which the
expectation of yijkl is

E
�
yijkl

�
¼ mþ ai (14)

and the variance of yijkl is

var
�
yijl

�
¼ s2

b þ s2
g þ s2

e : (15)

Our purpose of detecting selection signals is to test the null
hypothesis

H0 : a1 ¼ a2; (16)

which does not require the F statistics but needs the original
variance components to facilitate the hypothesis test. We pro-
posed to use the MIVQUE(0) method of Rao (1971b) to
estimate the variance components because normal distribu-
tions of the random effects and the residual errors are not
required with MIVQUE(0).

It is much more convenient to use a matrix notation to
derive the MIVQUE(0) procedure, as shown below:

y ¼ Xmmþ Xaaþ Zbbþ Zgg þ e; (17)

where Xm is an n3 1 vector of unity, Xa is an n3 1 vector
whose elements are 1 for individuals in HR and 21 for indi-
viduals in C, a ¼ a1 2a2 is the difference of allele frequen-
cies between C and HR, Zb is an n3 8 incidence matrix
representing the eight replicate lines, b is a 83 1 vector of
allele frequencies for the eight lines, Zg is an n3 72 incidence
matrix for the 72 mice (38 from C and 34 from HR), g is an
723 1 vector for individual effects, and e is an 1443 1 vector
of residuals. All random effects have expectations of zero and
a variance s2

b for b; a variance s2
g for g, and a variance s2

e

for e:
The expectation and variance of the model are

EðyÞ ¼ Xmmþ Xaa (18)

and

varðyÞ ¼ V ¼ ZbZTbs
2
b þ ZgZTgs

2
g þ Is2

e : (19)

The MIVQUE of the three variance components
u ¼ fs2

b;s
2
g;s

2
e g are obtained using the following linear

equation system H33 3u33 1 ¼ Q331; the details of which are

2
4Hbb Hbg Hbe

Hgb Hgg Hge

Heb Heg Hee

3
5
2
64s2

b

s2
g

s2
e

3
75 ¼

2
4Qb

Qg

Qe

3
5; (20)

where the right hand sides of the equations are various
quadratic forms of y and the left hand sides are the expec-
tations of the quadratic forms. Let us define X ¼ ½Xm

��Xa�
as column bind of the two matrices in the brackets
and h ¼ ½m a �T as the fixed effects. Further define
P ¼ I2XðXTXÞ2XT ; Vb ¼ PZb; Vg ¼ PZg, and Ve ¼ PI ¼ P:
The six unique elements of the H matrix are:

Hbb ¼ tr
�
VbVT

bVbV
T
b

�
;

Hbg ¼ tr
�
VbVT

bVgV
T
g

�
;

Hge ¼ tr
�
VgVT

gVeV
T
e

�
¼ tr

�
VgVT

g

�
;

Hgg ¼ tr
�
VgVT

gVgV
T
g

�
;

Hge ¼ tr
�
VgVT

gVeV
T
e

�
¼ tr

�
VgVT

g

�
; and

Hee ¼ tr
�
VeVT

e VeV
T
e

�
¼ n2 1:

The remaining three elements of H take the three corre-
sponding elements with flipping subscripts because the ma-
trix is symmetrical. The three elements of the Q matrix are

Qb ¼ yTVbVT
by

Qg ¼ yTVgVT
g y

Qe ¼ yTVeVT
e y ¼ yTPy

:

TheMIVQUE estimate of the parameter vector u is bu ¼ H21Q:
Note that the MIVQUE estimate of a variance component can
be negative because of the unbiased nature of the estimate. If
that happens, it is simply set to zero.

The estimated variance components, denoted bybu ¼ fbsb
2; bsg

2; bse
2g; are then used to estimate the fixed effects

and perform hypothesis tests. The estimated variance matrix
of y is

varðyÞ ¼ bV ¼ Z
b
ZT
b
bs
b
2 þ ZgZ

T
gbsg

2 þ Ibse
2: (21)

The best linear unbiased estimate (BLUE) of the fixed effect is

bh ¼ �
XTbV21

X
�21

XTbV21
y; (22)

and the variance matrix of this estimate is
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varðbhÞ ¼ Vh ¼ �
XTbV21

X
�21

: (23)

Note that

bh ¼
� bmba

	
  and  Vh ¼

�
varðbmÞ covðbm; baÞ

covðba; bmÞ varðbaÞ :

	

The F test for H0 : a ¼ 0 is

F ¼ ba2

varðbaÞ (24)

with d.f. 1 (numerator) and 6 (denominator). The P-value is
calculated using

p ¼ 12 Prð f1;6 , FÞ; (25)

where f1;6 is a random variable of F distribution with 1 and
6 d.f. The P-value is then converted into 2log10(p), which is
used in the Manhattan plots.

The genotypic model: Our interest here is not to estimate the
F statistics; rather, we are interested in a statistical test for the
difference between HR and C. Therefore, we can use a model
that takes individual genotypes as input data. Such amodel is
called the genotypic model, in which the response variable
for each individual mouse is the average of the two allelic
values (assuming the entire population only includes two
alleles at each locus). If there are more than two alleles in
the experimental population, then the biallelic model still
applies by treating all nonreference alleles as the “other”
allele, as suggested by Weir (1996). Let yijk be the numeri-
cally coded genotypic value for the kth individual within the
jth line within the ith treatment and it is defined as

yijk ¼
8<
:

0 for A2A2
0:5 for A1A2
1 for A1A1

: (26)

The genotypic model is

yijk ¼ mþ ai þ bðiÞj þ eðijÞk; (27)

where eðijÞk ¼ gðijÞk þ eðijkÞ is the residual effect with variance
s2
e ¼ s2

g þ s2
e =2; where s2

g and s2
e are variances defined in

the allelic model. Under the mixed model, the expectation of
yijk is

E
�
yijk

�
¼ mþ ai (28)

and the variance of yijk is

var
�
yijl

�
¼ s2

b þ s2
e : (29)

This genotypic model has reduced the model size by half and
only involves two variance components. Therefore, it is com-

putationally much more efficient than the allelic model.
Parameter estimation and significance test are the same as
theallelicmodel, except that the sample sizehasbeen reduced
by half.

The gene frequency model

Baldwin-Brown, Long, and Thornton’s regularized F test:
Baldwin-Brown et al. (2014) recently developed a regular-
ized t-test for detecting loci responsible for the phenotypic
response to artificial selection or in experimentally evolved
populations. The square of the regularized t-test is the regu-
larized F test. The test uses arcsine square root-transformed
allele frequency data. The test statistic is defined as

F ¼ ðx12x2Þ2
ð12vÞðv1 þ v2Þ=rþ 2v�v=r

; (30)

where

v ¼ 0:1 is a coefficient of regularization set by the investigator
(0.1 is the default value),

r ¼ 4 is the number of lines within each treatment,
x1 ¼ bp1 ¼ �y1... ¼ 1

80

P4
j¼1

P10
k¼1

P2
l¼1y1jkl is the allele frequency

of the HR population,
x2 ¼ bp2 ¼ �y2... ¼ 1

80

P4
j¼1

P10
k¼1

P2
l¼1y2jkl is the allele frequency

of the C population,
v1 ¼ 1

42 1

P4
j¼1ð�y1j::2�y1...Þ2 is the variance of the allele fre-

quencies over the four selected lines,
v2 ¼ 1

42 1

P4
j¼1ð�y2j::2�y2...Þ2 is the variance of the allele fre-

quencies over the four control lines,
and �v ¼ 1

2m

Pm
s¼1ðv1s þ v2sÞ is the average within treatment

variance in allele frequency averaged over the two treat-
ments and over all m loci.

When v ¼ 0 is set, the method is the usual F test without
regularization. The second term in the denominator of the
test, 2v�v=r; borrows information from all loci under investi-
gation. Baldwin-Brown et al. (2014) interpreted �v as an em-
pirically motivated Bayesian prior on allowable variances in
allele frequencies and has the effect of stabilizing the denom-
inator of the F test. They claimed that such a regularization
is important in experimental evolution studies in which a
SNP could differentially fix in the experimental vs. control
replicates purely due to drift alone, and thus be associated
with a traditional F test of infinity. Under the null model,
the regularized F test follows an F distribution with 1 and
2ðr2 1Þ ¼ 6 d.f.

Regularized F test using linear regression: The regularized
F test can be achieved using a general linear model (regres-
sion analysis). The general linear model has an advantage of
being able to handle multiple treatments. For example, if
there are three selection treatments and multiple replicated
lines are available within each treatment, then the regular-
ized F test cannot test the difference among the three selec-
tion treatments. In the present study, we extend the
regularized F test using a general linear model approach.
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The response variable (y) is the arc-sine square root-
transformed allele frequency with eight observations for
the mouse data. The linear model is

y ¼ X0b0 þ X1b1 þ e; (31)

where X0 is an 831 vector of unity, b0 is the intercept, X1 an
83 1 vector coded as 21 for C and 1 for HR, b1 is the re-
gression coefficient representing the difference in allele fre-
quencies between the two selection treatments, and e is an
83 1 vector of residual errors with an unknown variance s2:

Let b ¼ ½b0==b1� be the row bind of b0 and b1 X ¼ ½X0kX1� be
the column bind of X0 and X1: The estimated parameters are

bb ¼ �
XTX

�21
XTy (32)

and

bs2 ¼ 1
82 2

�
y2Xbb�T�y2Xbb�: (33)

Incorporating the regularized parameter, the variance matrix
of bb is

var
�bb� ¼ �

XTX
�21

h
ð12vÞbs2 þ v�v

i
; (34)

where v ¼ 0:1 and �v is the average estimated s2 across all
loci in the neighborhood of the current locus or in the entire
genome. The variance varðbbÞ is a 23 2 matrix with elements
defined as

var
�bb� ¼ �

var
�bb0

�
cov

�bb0; bb1
�

cov
�bb1; bb0

�
var

�bb1
� 	

(35)

The regularized F test from this regression analysis is

F ¼
bb1
2

var
�bb1

�: (36)

One can verify that b1 is the difference of the allele frequen-
cies between the two selection treatments and varðbb1Þ is
identical to the denominator of Equation 30 if bs2

is replaced
by ðv1 þ v2Þ=2; the average within-population variance of the
current locus.

Permutation test

As the response variable in the mixed model analysis is a
binary variable, the F test statistic does not follow the
expected F distribution. In addition, multiple tests were in-
volved in the analysis and the nominal 0.05 criterion of Type
1 error for the P-value cannot be used. To control the ge-
nome-wide Type 1 error at 0.05, we used the permutation
test (Churchill and Doerge 1994) by randomly shuffling the
mouse identification numbers so that any association of a
locus with the treatment label would be a false positive. For
each permuted data set, all 25,318 SNPs were analyzed, and
the single largest F statistic was recorded. The permutation

was replicated 1000 times and then the 95th percentile of the
empirical distribution of F statistics from permuted data were
compared with the 25,318 real F tests to determine the sig-
nificance for each SNP. Any SNPs for which the F test was
greater than the 95th percentile of the empirical distribution
of F from the permuted data were considered significant at
P , 0.05. This procedure thus controls the genome-wide
Type 1 error rate at 5%. In the Manhattan plot, we presented
the 2log(p) test statistics of all loci against the genome po-
sitions. The empirical critical value of the F statistic was con-
verted into an empirical critical value of p using d.f. of 1 and
6, which reflects the experimental design with one fixed ef-
fect (selection) and four replicate lines (random effects
(nested within linetype). That empirical critical value in p
was further converted into the empirical critical value in
the 2log(p) scale. This critical value is sample-specific, and
thus is more appropriate than the Bonferroni correction,
which is often too conservative (Gao et al. 2010).

In summary,we have presented fourmethods for detection
of selection signatures. The mixed model approach under the
allelic model (ALLELIC MODEL), the mixed model under the
genotypic model (GENOTYPIC MODEL), the regularized F
test using allele frequency (REGULARIZED F TEST), and
the regularized F test using regression (REGRESSION F
TEST). Except the REGULARIZED F TEST, all other models
can handle more than two treatment levels. All four methods
were used to analyze the SNP data of the selection experi-
ment. A working example is provided in Supplemental Mate-
rial, Note S1 in File S1, using data presented in File S8, File
S9, and File S10. The R code for each method is provided in
Note S2 in File S1. Users familiar with SAS programs can
directly call PROC MIXED with the Method = MIVQUE0 op-
tion to perform the mixed model analysis. However, if the
number of markers is large, looping over all markers in SAS
can be extremely slow.

Data availability

All data are included as supplementary files. File S2 shows a
marker map of the 25,318 SNPs used in the mouse data anal-
ysis. File S3 outlines mouse population information including
treatments (0 and 1), lines (1, 2, 4, 5, 3, 6, 7, and 8), mouse
ID (1, 2, . . ., 72), and allele (1 and 2). File S4 presents allelic
data of 144 alleles from 72 mice for 25,318 SNP loci, where
1 and 0 represent the presence and absence of the reference
allele. File S5 shows genotypic data of 72 mice for 25,318
SNP loci, where each genotypic value takes one of the three
values: 0, 0.5, and 1. File S6 gives gene frequencies of eight
lines (p1, p2, . . ., p8) of the mouse population for 25,318 SNP
loci, where yi is the count of the reference alleles and ni is the
total number of alleles for the ith line. File S7 presents the
significant loci and their test statistics, where the column
with header “Mixed” shows the 152 significant loci identified
by the permutation test of the mixed model procedure. File
S8 shows allelic information for SNP UNC2173488 used in
the working example. File S9 provides genotypic information
for SNP UNC2173488 used in the working example. File S10
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outlines gene frequencies of the eight lines for SNP
UNC2173488 used in the working example.

Results

Mouse data analysis

The geneticmapof 25,318markers and informationabout the
mouse populations are provided in File S2 and File S3, re-
spectively. The SNP data coded as binary allelic states are
provided in File S4. The corresponding SNP data coded as
genotypic values are provided in File S5. Each SNP data set
has 25,318 rows (one row permarker), but the allelic data set
has 144 columns (one column per allele) and the genotypic
data set has 72 columns (one column per mouse). The data
have no missing values and the number of individuals per
line varied due to deletion of eight mice with low-quality
SNP callings. The mice in the population information file
and the mice in the allelic and genotypic data files are
arranged in the same order. The allele frequency data
taken by the regularized F test are given in File S6 with
25,318 rows and eight columns (one column per line). The
average heterozygosities across loci are 0.1404 for C and
0.1382 for HR, and the difference has a P-value of 0.01
from a paired t-test.

All four approaches described in theMaterials andMethods
section (allelic model, genotypic model, regularized model,
and regression model) were used for the data analysis. The
first two methods are mixed model-based methods (new
methods) and collectively named MIVQUE(0), while the last
two are based on gene frequencies (existing methods) and
collectively named REGULAR (regularized F test). The Man-
hattan plots of the2log(p) test statistics are shown in Figure
1 for all four methods. The critical value of 2log10(p) from
1000 permutation analyses is 2.4644 for the allelic model,
2.6405 for the genotypic model, and 4.95 for the two meth-
ods using gene frequency data. These critical values are
shown in Figure 1 as the blue dashed horizontal lines. The
allelic and the genotypic models are visually indistinguish-
able (Figure 1, A and B). The regularized F test and the re-
gression F test are identical (Figure 1, C and D). Compared to
the permutation-generated thresholds, MIVQUE(0) identi-
fied 152 markers, but REGULAR failed to identify any
markers. The 152 loci and their test statistics are listed in File
S7, where the column with header “Mixed” shows the signif-
icant loci identified by the permutation test of the mixed
model procedure. The more stringent threshold calculated
from Bonferroni correction is 2log(0.05/25318) = 5.70. If
we had used this threshold, MIVQUE(0) would still detect
21 markers in the middle of chromosome 9. These observa-
tions imply that MIVQUE(0) is more powerful than REGU-
LAR (see result of simulation studies). Figure 2 shows
qq-plots of the four methods, where a qq-plot is the plot of
the observed test statistics against the expected test statistic
calculated under the null model. The allelic and genotypic
models (both are mixed models) behave as expected; the

majority of markers fall on the diagonal lines and some
markers deviate from the diagonal (Figure 2, A and B). The
regularized and regression models (both use frequency data)
show that all markers are around the diagonal lines (Figure 2,
C and D).

From one permuted sample, we generated Manhattan
plots (Figure S1 in File S1) for the four methods. None of
the markers shows any extreme values of the test statistic for
the mixed models, but many markers show very large test
statistics for the frequency models. This explains why the
permutation-generated critical values for the frequency mod-
els are high. Detail is provided in the Discussion section. For
the same permuted sample, we drew qq-plots (Figure S2 in
File S1) and observed that the test statistics of the mixed
model approaches do not fall on the expected diagonal lines,
whereas the frequency models behave as expected. The F
tests from the mixed models do not follow the expected F
distribution; therefore, if one relied on the standard F distri-
bution, the tests would be too conservative. However, the F
tests of the arc-sine square root-transformed frequency data
do follow the expected F distribution.

Although the regularized F test failed to identify any
markers, the2log10(p) test statistic is highly correlated with
that of the mixed model (rxy ¼ 0:96), as illustrated in Figure
3A, which shows that the test statistic of MIVQUE(0) is
higher than that of REGULAR. From a single permuted sam-
ple, the correlation is 0.95 (Figure 3B) and REGULAR has a
higher statistic than MIVQUE(0) (i.e., the behavior is oppo-
site to the real data analysis). We then selected the top
152 markers from REGULAR to see how many of them over-
lap with the 152 detected marker from MIVQUE(0). We
assume that the top 152 markers from REGULAR are
“significant.” We found that 118 markers overlapped (de-
tected by both methods) and 34 markers were uniquely iden-
tified by one of the two methods. The 152 + 34 = 186
markers detected by both methods are listed in File S7 along
with the test statistics and allele frequencies for each of
the eight lines. Except chromosomes 2, 8, 13, and 19, each
chromosome (including chromosome X) caries at least one
significant marker.

The 152 significant markers occurred on all chromosomes
except 2, 8, and 19, and show a variety of patterns in terms of
fixation (or the lack thereof) in the four HR and four C lines
(File S7). Although a number of alleles were fixed within
lines, none were fixed between the two selection treatments.
For example, marker UNC10025993 on chromosome 5 had
frequencies of 1, 1, 0.55, and 1 in HR lines 3, 6, 7, and 8,
respectively, vs. zero in all four C lines. In contrast, marker
UNC12559756 on chromosome 7 had frequencies of zero in
all HR lines vs. 0.45, 0.667, 0.65, and 0.389 in the C lines.
Others showed intermediate frequencies, such as UNC24564099
on chromosome 14, with frequencies of 0.1875, 0.2222, 0,
and 0.2857 in the HR lines vs. 0.65, 0.5556, 0.75, and 1 in
the C lines.

Intuitively, if this region is under selection due to the
artificial selection protocol, then populations with such small
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sizes after 61 generations of selection should have some loci
that are completely fixed in all four HR lines. The lack of this
pattern for this region may be in part related to the within-
family selection scheme (Swallow et al. 1998), which is
known to slow the fixation process (Falconer and Mackay
1996).

Interestingly, a total of 21 loci in themiddle of chromosome
9 were detected even using the most stringent Bonferroni
correction criterion. These loci are within a 901-kb region on
chromosome 9. The P-values from the allelic model and the
allele frequencies of the eight lines are given in Table 1. Three
lines in C and one line in HR were completely fixed in allele
frequency for all loci in this region. There appeared to be two
recombination breakpoints taking place within this region.

Power analysis from a simple simulation study

We mimicked the mouse experiment with eight lines and
10 mice in each line to examine the statistical power of the
methods. We simulated 10 independently-segregating loci
to investigate the powers using 10 independent neutral loci
to control the Type 1 error. We used two b distributions to
simulate the allele frequencies of the eight lines. For the four
control lines, the b distribution was Betaða0;b0Þ where

a0 ¼ 20 and b0 ¼ 30; leading to an average allele frequency
of a0=ða0 þ b0Þ ¼ 0:4: For the four HR lines, the allele fre-
quencies were generated from Betaða1;b1Þ; where a1 ¼ 30
and b1 ¼ 20; leading to an average allele frequency of
a1=ða1 þ b1Þ ¼ 0:6: Therefore, the average difference in al-
lele frequency between the HR and C populations was 0.2.
Once the allele frequencies were simulated for all lines, we
then simulated the allele of each line from a Bernoulli distri-
bution with the simulated allele frequency as the parameter.
The actual count data (allele presences) for each line were
drawn from a b-Binomial distribution. Such a simulation was
replicated 1000 times. The number of loci detected over the
total number of loci simulated was the empirical power for
the methods compared. The criterion of a locus being de-
tectedwas determined from another 1000 simulated samples
under the null model where the allele frequencies of all lines
from the C and HR selection treatments were generated
from Betaða;bÞ; where a ¼ b ¼ 25: The critical value of
the 2log10(p) test statistics under the Type 1 error of 0.05
from the 1000 null samples was 0.83 for the mixed model
and 1.23 for the regularized F test. Based on these critical
values, the empirical power was 0.5541 for the mixed model
method and 0.4465 for the regularized F test. The new

Figure 1 Manhattan plots of genome-wide
selection signals from the mouse selection
experiment (Swallow et al. 1998) at gener-
ation 61 using four different methods. The
top two panels are the mixed model ap-
proach under the allelic model (A) and the
genotypic model (B). The bottom two pan-
els show the plot from the regularized F test
(Baldwin-Brown et al. 2014) (C) and the re-
gression model (D). The dashed horizontal
line (blue) is the empirical threshold
obtained from analysis of 1000 permuted
samples.
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method was indeed more powerful than the regularized F
test (see Figure 4). We then changed the Type 1 error and
monitored the change of the empirical statistical power from
the 23 1000 simulated samples to perform a sensitivity anal-
ysis. The receiver operating characteristic curves of the two
methods are shown in Figure 4. The curve of themixedmodel
is consistently higher than that of the regularized F test
method, indicating that the power of MIVQUE(0) is always
higher than the power of REGULAR F for all levels of Type
1 error.

It is difficult to relate the 0.55 2 0.45 = 0.10 power in-
crease to the 152 more significant markers detected. The
simulations were merely to demonstrate that the MIVQUE
(0) method is qualitatively more powerful than the regular-
ized F test, but there is no quantitative comparison. Among
the 152 detected markers, we do not know how many are
true and how many are false.

Discussion

When the two selection treatments are treated as random
effects, there are four variance components for each locus: s2

a

for treatments (TRT), s2
b for lines (LINE) within treatments,

s2
g for individuals within lines within treatments, and s2

e for
residuals. We estimated these variance components for all
loci and took the ratios to obtain the F statistics for each of
the 25,318 loci. We then pooled the variance components
over loci and obtained overall F statistics (over all loci) using
the following equations (Weir 1996),

FIT ¼

Pm
k¼1

�
s2
a þ s2

b þ s2
g

�
Pm
k¼1

�
s2
a þ s2

b þ s2
g þ s2

e

� (1)

FTRT ¼

Pm
k¼1

s2
a

Pm
k¼1

�
s2
a þ s2

b þ s2
g þ s2

e

� (2)

FLINE ¼

Pm
k¼1

s2
b

Pm
k¼1

�
s2
b þ s2

g þ s2
e

� (3)

FIS ¼

Pm
k¼1

s2
g

Pm
k¼1

�
s2
g þ s2

e

�: (4)

The four genome-wide F statistics for the mouse populations
are FIT ¼ 0:6314; FTRT ¼ 0:0058; FLINE ¼ 0:6406, and
FIS ¼ 0:0316: Thus, the two selection treatments were not
differentiated, but the eight lines were significantly differ-
entiated, which may be caused by random genetic drift and
possibly also by different adaptive responses, called multi-
ple solutions (Garland et al. 2011a), in the HR lines. The
average inbreeding coefficient within lines (0.0316) was

Figure 2 QQ-plots of genome-wide loci of the mouse
selection experiment using four different methods. In
each qq-plot, the y-axis is the observed test statistic
and the x-axis is the expected test statistic under the null
model. The upper two panels are the mixed model ap-
proach under the allelic model (A) and the genotypic
model (B). The lower two panels show the plots from
the regularized F test (C) and the regression model (D).
Both of the mixed model approaches show more data
points deviating from the diagonal lines than the other
approaches, thus indicating higher statistical power.
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very small due to the use of within-family selection
scheme.

The regularized F test proposed by Baldwin-Brown et al.
(2014) is the state-of-the-art method for the detection of
selection signatures in selection experiments with multiple
replicated lines. The method is extremely simple, yet per-
forms very well based on their simulation studies. The key
issues addressed in that study are (i) replications and (ii)
regularization. (i) Replications mean that there must be rep-
licated lines within each selection treatment to separate the
effect of selection from genetic drift. However, replications
per se rarely happen in natural populations [for notable ex-
ceptions, both involving natural parallel adaptations of fish,
see Rogers and Bernatchez (2005) and Jones et al. (2012)],
and thus detection of selection signatures from natural pop-

ulations is more difficult because of the confounding effect
between selection, possible multiple solutions, and drift
(Muir 1986). (ii) Regularization refers to a process in which
a small positive number is added to the denominator of the F
test statistic. Regularization is an intelligent way to deal with
a special case where the within-population variances of allele
frequencies are extremely small (e.g., due to drift), so that the
F test is severely inflated even if the difference in allele fre-
quency between selection treatments is small. The regular-
ized F test borrows the average within-treatment variance
from other loci and incorporates it into the within-treatment
variance of the current locus to smooth the test statistics and
thus prevents such an inflation in test statistics. The regula-
rization procedure can also prevent reckless changes in test
statistic between consecutive loci.

Of the 25,318 loci analyzed in the mouse data, 69 have
allele frequency of exactly 0.5 for each of the eight lines. The
usual F test (without regularization) statistic is not defined
for these loci because the denominator is zero. The fact that
the numerator of the test for these loci is also zero means that
the test statistics should be zero (the two selection treatments
are not different in allele frequency). The regularized F test
correctly gives a zero test statistic value for all the 69 loci.
Another example comes from marker UNC30702889 on
chromosome X. The allele frequencies of the four C lines
are 0.45, 0.4444, 0.45, and 0.4444, while the allele frequen-
cies of the four HR lines are all 0.5. Although the difference in
allele frequency between C and HR is very small (�0.05), the
unregularized F test is 1075.95 with a P-value of 5.36E208
and a 2log10(p) = 7.2712, which is the highest test value
across the entire genome. This test statistic is severely
inflated due to the extremely small variance within treat-
ments. However, the regularized F test gives a test statistic
of 0.2012 with a P-value of 0.6695 and a 2log10(p) of
0.1743. Thus, as desired, the regularization factor has cor-
rected such an inflation.

Themost obvious advantage of the regularized F test is that
it takes pooled DNA samples as input data. Each pooled DNA
sample represents a replicate line within a given selection
treatment. For the eight replicate lines in the mouse selection
experiment, only eight pooled samples are required to per-
form tests. This represents a tremendous cost saving. Unfor-
tunately, such an advantage can turn into a disadvantage if
DNAs are sequenced at the individual level because this F test
cannot handle allelic data. Clearly, if all individuals are se-
quenced, and individual variation within lines exists, then
pooling the DNA samples will lead to information loss. This
is the very reason for us to develop themixedmodel approach
when DNAs from multiple individuals are separately se-
quenced in a selection experiment.

The higher empirical threshold value for the test statistic of
the regularized F test caused the lower power of this method
compared with MIVQUE(0). Here is a tentative explanation
for the high critical value. The regularized F test is very sen-
sitive to the variance of allele frequencies between replicates
within treatment, ðv1 þ v2Þ=4; defined in the text, where v1 is

Figure 3 Comparison of the 2log10(p) test statistics of MIVQUE(0) (min-
imum variance quadratic unbiased estimation) with REGULAR (regular-
ized F test) from the real data analysis (A) and from the analysis of a
permuted sample (B). The Pearson correlation coefficients between the
test statistics of the two methods are represented by rxy : These plots
demonstrate that the test statistic of the mixed model is highly correlated
with the test statistic of the regularized F test, but the patterns are dif-
ferent for the real data and the permuted data.
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the variance of the allele frequencies of the four replicates
in the control and v2 is the variance of the allele frequencies
of the four replicates in the treatment. In the original data
(25,318 loci), the average value of ðv1 þ v2Þ=4 across loci was
0.1389, but it was 0.0144 in a randomly permuted sample.
Permutation randomly shuffled the individual labels so that
an individual from one subpopulation could shift to another
subpopulation. This is why the variance between replicates
within treatments (control and selection) has shrunken so
much. Since this (and only this) variance appeared in the
denominator of the regularized F test statistic, its reduction
has increased the test statistics genome-wide. This explains
why the test statistic under the null model becomes high for
the regularized F test. However, the MIVQUE(0) method im-
plicitly uses two (genotypic model) or three (allelic model)
variance components in the test statistic. For example, in the
genotypic model, the two variance components are s2

b and
s2
e : Both variance components are involved in the test statis-

tic in the MIVQUE(0) method. For example, in the original
data analysis for the MIVQUE(0) method, the average s2

b

across loci is 0.1203 and the average s2
e across loci is

0.0323, leading the sum of the two of 0.1526. For the partic-
ular permuted sample presented in the text, the correspond-
ing values are 0.0017 and 0.1351, respectively, with a sum of
0.1368. The sums of the two variances in the original sample
and the permuted sample are very close to each other. There-
fore, the critical value for the MIVQUE(0) method is not
sensitive to s2

b because both s2
b and s2

e contribute to the test
statistic.

The regularized F test in the current form can only test the
difference in allele frequency between two treatment levels

because it is a squared t-test, which is only suitable for com-
paring two groups. We have extended this method to handle
multiple treatment levels using a general linear model ap-
proach (regression method). When applied to two treat-
ments, the regularized regression method and the
regularized t square method generate identical results (see
Figure 1, C and D). The regression method has an option to
incorporate the sample size information of replicated lines
into the model. For example, the sample sizes (n) were 10,
9, 10, 9, 8, 9, 10, and 7, respectively, for lines 1, 2, 4, and
5 (C) and 3, 6, 7, and 8 (HR). Such information can be easily
incorporated into the regression model through a weight var-
iable that is defined as the total number of alleles (two times
the sample size) of that line. The exact weight value for each
line should be the inverse of pq/(2n). However, when bp ¼ 0
or bp ¼ 1; the weight is infinity. Therefore, simply using 2n as
the weight is justifiable. The regularized regression analysis
conducted here is not the weighted method because we
wanted to demonstrate the equivalence of this method to
the regularized t square test.

Current DNA sequencing technology is sufficiently inex-
pensive so that sequencing can be easily conducted at the
individual level. When individuals are sequenced, pooling
DNA sequences of all individuals within a line may represent
a tremendous information loss. In this study, the difference
between selection treatments is treated as a fixed effect, and
effects of replicate lines within treatments are treated as
random. There are two versions of the mixed models: the
allelicmodel and the genotypicmodel. The allelicmodel is the
classical model of Weir and Cockerham (1984), where each
entry of the response variable is an allele. The hierarchical

Table 1 Markers detected on chromosome 9 of the mouse genome that show significant differentiation between the C and HR-selected
lines

Ca C C C HR HR HR HR
Marker (Chr 9) Position (bp) P-Value p1 p2 p4 p5 p3 p6 p7 p8

UNC16231229 41,246,129 6.24E207 0 0 0 0 0.8125 1 0.9 0.857143
JAX00170437 41,266,019 6.24E207 0 0 0 0 0.8125 1 0.9 0.857143
UNC16231874 41,301,221 6.24E207 0 0 0 0 0.8125 1 0.9 0.857143
UNC16232212 41,326,208 6.24E207 0 0 0 0 0.8125 1 0.9 0.857143
UNC16232585 41,353,991 6.24E207 0 0 0 0 0.8125 1 0.9 0.857143
UNC16232919 41,381,162 6.24E207 0 0 0 0 0.8125 1 0.9 0.857143
JAX00691456 41,473,757 6.24E207 0 0 0 0 0.8125 1 0.9 0.857143
UNC16235286 41,547,967 6.24E207 0 0 0 0 0.8125 1 0.9 0.857143
JAX00170461 41,592,916 6.24E-07 0 0 0 0 0.8125 1 0.9 0.857143
UNC16236699 41,636,184 1.73E207 0 0 0 0 0.875 1 0.9 0.857143
UNC16237066 41,656,313 1.73E207 0 0 0 0 0.875 1 0.9 0.857143
UNC16237562 41,689,627 1.73E207 0 0 0 0 0.875 1 0.9 0.857143
UNC16238010 41,729,317 3.98E206 0 0 0 0.166667 0.875 1 0.9 0.857143
UNC16238418 41,767,394 1.73E207 0 0 0 0 0.875 1 0.9 0.857143
UNC16240425 41,877,786 1.73E207 0 0 0 0 0.875 1 0.9 0.857143
UNC16241644 41,948,973 3.98E206 0 0 0 0.166667 0.875 1 0.9 0.857143
UNC16242398 41,992,897 9.28E206 1 1 1 0.777778 0 0 0 0.142857
UNC16242829 42,013,727 9.28E206 1 1 1 0.777778 0 0 0 0.142857
UNC090061659 42,067,067 9.28E206 1 1 1 0.777778 0 0 0 0.142857
UNC16243882 42,070,360 9.28E206 1 1 1 0.777778 0 0 0 0.142857
UNC16244740 42,147,771 6.38E208 0 0 0 0 1 1 1 0.857143

Chr, chromosome; C, control; HR, high running.
a The last eight columns are the allele frequencies of the eight lines (four from C and four from HR).
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structure of the alleles is preserved and such a test captures
maximum information from the populations. The genotypic
model simply takes the “allele frequencies of individuals” as
the response variable. Given that every diploid individual
only carries two alleles, the “allele frequency” of an individ-
ual only takes three possible values: 0, 0.5, and 1. No infor-
mation is lost by pooling the two alleles of each individual
together. Therefore, the genotypic model generates identical
results as the allelic model (see Figure 1, A and D). The
genotypic model is computationally much more effective
than the allelic model because the number of entries has been
reduced to half. Hence, the genotypic model is recommended
for GWAS for selection signatures.

An interesting feature of the mixed model approach (both
the allelic and genotypic models) is that no regularization
is required in the test. For example, the SNP named
UNC30702889 on chromosome X discussed early in this
section requires regularization for the F test because the
within-treatment variance is too small. However, the allelic
model without any regularization gives a test statistic of
0.2134, a P-value of 0.6604, and a 2log10(p) of 0.1802,
which are comparable to the regularized F test.

The fact that the response variable of the mixed model
analysis is the allelic state (binary) may challenge the validity
of the mixed model methodology and lead someone to think
that a GLMM may be more appropriate. However, there are
two justifications for the current mixed model methodology.
(1) When the response variable is the allelic state (binary
variable), different variance components and variance ratios

have special biological meanings, covariance and correlation
between alleles at different levels of the hierarchy (various
types of inbreeding coefficients). Such a treatment also pre-
serves the original natures of Wright’s F statistics. (2) The
mixed model analysis with the allelic state as the response
variable is computationally more effective than the GLMM
analysis, which requires iterations and often faces conver-
gence issues. If the purpose of the analysis is just to test the
difference between two populations, the GLMM analysis may
be considered if computational complexity is not a concern.
Following the suggestion from one reviewer, we did perform
GLMM analysis with the logit link function and the binary
distribution using both the glmer() function in the lme4 pack-
age of R and the GLIMMIX procedure of SAS Institute Inc.
(2009). The likelihood function under GLMM was approxi-
mated using the Laplace algorithm in both R and SAS. Man-
hattan and qq-plots of the GLMM analyses are shown in
Figure S3 and Figure S4, respectively, in File S1. To our sur-
prise, the GLMM results are not very appealing. The bad news
is that the results of SAS and R are not consistent. The worst
news is that, of all the 25318 loci, the programs failed to
converge for 4405 loci. The SAS and R do have one thing
in common, they all failed for exactly the same 4405 loci. In
addition, both R and SAS were extremely slow for the GLMM
analysis. For example, it took over 2 hr to scan all 25318 loci
for R and half a day to complete the analysis for SAS. With
such a slow speed, it was too difficult to perform permutation
analysis with 1000 shuffled samples to draw empirical critical
values for the test statistics. We examined some of the loci
that failed to converge and found that many of them have a
pattern like “all 72 individuals, except one or two, are het-
erozygotes.” These loci typically would fail in the t-test and
thus require the regularized t-test to generate a meaningful
result. However, the MIVQUE(0) method developed here
worked smoothly without any problems for these loci. We
set the test statistics of these problematic loci to zero and
drew Manhattan plots for GLMM(R) and GLMM(SAS) along
withMIVQUE(0) and REGUALR for comparison (Figure S3 in
File S1). If the critical value from MIVQUE(0) were used
here, GLMM(R) would detect seven significant loci, one of
which is the major one detected by MIVQUE(0) on chromo-
some 9 (C of Figure S3 in File S1). The remaining six loci have
all been detected by MIVQUE(0). Using the same critical
value, GLMM(SAS) would detect 137 significant loci (D of
Figure S3 in File S1). Some of the loci overlap with the ones
detected by MIVQUE(0), but others do not. Interestingly, the
one on chromosome 9 was also detected. Since the critical
values are not known, we are not certain about these de-
tected loci by the GLMMmethods. If the Bonferroni-corrected
threshold (5.7) were used, GLMM(R) would detect none but
GLMM(SAS) would detect four loci (including the one on
chromosome 9). We also drew qq-plots for the GLMM anal-
yses in comparison with MIVQUE(0) and REGULAR (Figure
S4 in File S1). Contrary to our common belief, the test sta-
tistics of GLMM(R) and GLMM(SAS) do not show the usual
behaviors of test statistics observed in MIVQUE(0) and

Figure 4 Comparison of the receiver operating characteristic (ROC)
curves of the mixed model method [MIVQUE(0) (minimum variance qua-
dratic unbiased estimation)] and the regularized F test (REGULAR). The
x-axis is the Type 1 error and the y-axis is the statistical power. The curve
for the mixed model is consistently higher than that of the regularized F
test method, indicating that power of the former is always higher than or
equivalent to the power of the latter for all levels of Type I error. Distance
(0.552820.4495 = 0.1033) between the two points on the plot repre-
sents the gain in statistical power of the mixed model (0.5528) over the
regularized F test (0.4495) when the Type 1 error is set at 0.05.
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REGULAR. No points of the qq-plots for the GLMM methods
fall on the diagonal line, indicating that the test statistics do
not have the expected F distribution, probably due to the
failure in convergence of many SNPs for the GLMMmethods.
The GLMMmethods perhaps require large samples to gener-
ate meaningful results. The sample sizes in experimental evo-
lutions are often too small to meet the requirement.

Although GLMM automatically complies with the natural
boundaries in the data [0,1], out of boundaries for the pro-
posed MIVQUE(0) is not our concern because we do not
predict the response variable. The estimated variance com-
ponents have no such boundaries except that theymust not be
negative. TheMIVQUE(0)method is equivalent to theANOVA
for estimation of variance components when the data are
balanced (Rao 1971a,b). The ANOVA with binary allelic in-
dicator as the response variable has been used for more than
half a century (Cockerham 1969), and has never been ques-
tioned for its validity. We originally hoped to show some
advantages of GLMM over the seemingly ad hoc MIVQUE
(0). Unfortunately, we failed to demonstrate any advantages
of GLMM over MIVQUE(0). We would be surprised if other
people had not tried to use GLMM to analyze allelic data.
They might have found the same problems as we did here
and just never reported the undesirable results.

The mixed model analysis of GWAS studies for selection
signature detection is similar to the GWAS for quantitative
trait analysis (Hirschhorn and Daly 2005; Yu et al. 2006),
except that there is no specific trait associated with the ge-
netic analysis. Therefore, this method is also called GWAS
without traits (Lo et al. 2016). Unlike the regular quantitative
trait GWAS, where we can control the polygenic background
by incorporating a marker-inferred kinship matrix into the
covariance structure, GWAS for selection signature detection
does not have an obvious way to control the polygenic back-
ground. Therefore, the Type 1 error may not be controlled
properly. To mimic GWAS in quantitative trait analysis, we
may treat the population structure as the response variable
and the allelic state as an independent variable. This treat-
ment may be easily modified to incorporate the “polygenic
effect” into the model, just like the regular mixed model
GWAS (Yu et al. 2006). It is straightforward to do so if there
are only two populations, where the response variable is bi-
nary. For multiple populations, a multinomial response may
be used to indicate the population entries. However, hierar-
chical population structures may not be easily handled this
way. GWAS and QTL mapping for selection signatures is a
relatively new area, with large room for improvement. The
present study is one of the first attempts to merge quantita-
tive genetics, selection experiments, and genetic information
in the genomic era [for other examples with rodent models,
see Chan et al. (201), Ren et al. (2013), Konczal et al. (2016),
and Lo et al. (2016)]. We have adopted the mixed model in
our selection signature detection but have not yet incorpo-
rated the kinship matrix into the selection model. A complete
unification of GWAS and selection is possible but still has a
long way to go. In future studies, it will also be important to

identify the presumably smaller number of haplotypes that
contain the statistically significantly differentiated SNPs an-
alyzed herein, but doing so accurately will likely require
whole-genome sequence data.
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