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ABSTRACT Retrotransposons (RTs) can rapidly increase in copy number due to periodic bursts of transposition. Such bursts are mutagenic
and thus potentially deleterious. However, certain transposition-induced gain-of-function or regulatory mutations may be of selective
advantage. How an optimal balance between these opposing effects arises is not well characterized. Here, we studied transposition bursts of
a heat-activated retrotransposon family in Arabidopsis. We recorded a high inter and intraplant variation in the number and chromosomal
position of new insertions, which usually did not affect plant fertility and were equally well transmitted through male and female gametes,
even though 90% of them were within active genes. We found that a highly heterogeneous distribution of these new retroelement copies
result from a combination of two mechanisms, of which the first prevents multiple transposition bursts in a given somatic cell lineage that
later contributes to differentiation of gametes, and the second restricts the regulatory influence of new insertions toward neighboring
chromosomal DNA. As a whole, such regulatory characteristics of this family of RTs ensure its rapid but stepwise accumulation in plant

populations experiencing transposition bursts accompanied by high diversity of chromosomal sites harboring new RT insertions.
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RANSPOSABLE elements (TEs) are an integral part of

most prokaryotic and eukaryotic genomes. They are mostly
transcriptionally silent and their transgenerational transmission
uses host mechanisms propagating chromosomal DNA. However,
sporadic TE-specific replication/transposition cycles increase
their copy number through new chromosomal insertions. Past
bursts of such TE activity can be studied and dated according to
the degree of divergence of TE sequences due to gradual accu-
mulation of mutations (Wicker and Keller 2007). It is evident
that historical bursts of transposition have shaped chromosomal
architecture and contributed to various activities of the genome
(Lisch 2013). However, studies of ancient transpositions cannot
reveal the physiological and environmental circumstances under
which the bursts occurred and how these were controlled.

Copyright © 2017 Gaubert et al.

doi: https:/doi.org/10.1534/genetics.117.300103

Manuscript received February 23, 2017; accepted for publication August 1, 2017,
published Early Online August 3, 2017.

Available freely online through the author-supported open access option.

This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (http:/creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Supplemental material is available online at www.genetics.org/lookup/suppl/doi: 10.
1534/genetics.117.300103/-/DC1.

"These authors contributed equally to this work.

2Corresponding author: The Sainsbury Laboratory, University of Cambridge,
47 Bateman St., CB2 1LR Cambridge, UK. E-mail: jerzy.paszkowski@slcu.cam.ac.uk

Transposition of the two main classes of TEs, retrotrans-
posons (RTs) and DNA transposons, is by “copy-paste” and
“cut-paste” mechanisms, respectively. Copy-paste involves
transposon transcription, RNA-directed synthesis of extra-
chromosomal DNA (ecDNA), and subsequent chromosomal
integration (Lisch 2009). Due to this replicative mode of
transposition, RTs rapidly increase in copy number. As a
consequence, this class of TEs is very abundant and widely
distributed in nature, especially in plants (Sabot and
Schulman 2006). Of the plant RTs, the most plentiful
are a subclass with long terminal repeats (LTR) marking
the ends. For example, >85% of the maize genome is com-
prised of TEs, of which over 75% are RTs that can be classified
mostly as LTR-containing retrotransposons (LTR_RTs) (Tenaillon
et al. 2010).

Despite the abundance of plant LTR_RTs, and of well-
documented historical transposition bursts (Wicker and Keller
2007), only a few LTR_RT movements have been recorded in
real time (Grandbastien et al. 1989; Hirochika et al. 1996;
Mirouze et al. 2009; Tsukahara et al. 2009; Ito et al. 2011),
and these mostly due to purely serendipitous detection of retro-
transposition through forward mutations resulting from new RT
insertions. Optimally, these should cause phenotypic changes
that can be subsequently characterized at the molecular level
(Miyao et al. 2007; Piffanelli et al. 2007; Lisch 2013). Thus,
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studies of LTR_RT activities are often restricted to the detection
of transcripts or extrachromosomal DNA copies (Cavrak et al.
2014).

It has been reported recently that the retrotransposition
cycles of LTR_RTs in Arabidopsis and in rice are controlled by
particular host mechanisms. Notably, rice retrotransposon
Tos17 initially induced for transposition by tissue culture
(Hirochika et al. 1996), is suppressed in planta by DNA meth-
ylation (Cheng et al. 2015). It has been revealed in Arabidopsis
that particular phases of the LTR_RT life cycle can be linked to
specific epigenetic, developmental, or environmental factors
that interfere with LTR_RT transcription, reverse-transcription,
and/or chromosomal integration. This amounts to regula-
tion at the transcriptional and post-transcriptional levels
specific for a particular LTR_RT family (Mirouze et al. 2009;
Ito et al. 2011). For example, the transcription of LTR RT
Evadé is restricted by DNA methylation, and can occur only
when the Evadé locus becomes hypomethylated. The synthesis
of Evadé ecDNA is limited by the activity of histone methyltrans-
ferase, which dimethylates histone 3 at lysine 9 (H3K9me2),
and/or by the activity of the plant-specific RNA polymerase IV
involved in the biogenesis of small RNAs (Mirouze et al. 2009).
Once the ecDNA of Evadé is synthesized, it is still the subject of
activity restricting its chromosomal integration; this originates
from the maternal parent but is not well understood (Reinders
et al 2013).

Very different to Evadé is the regulation of the life cycle of
the related LTR_RT Onsen (Ito et al. 2011). Onsen is activated
by elevated temperature in both wild-type Arabidopsis and in
mutants deficient in the biogenesis of small RNAs. In both
types of plants, Onsen synthesizes its ecDNA but transposition
occurs only in heat-stressed plants deficient in the biogenesis
of small RNAs, and not in the stressed wild type. Moreover,
plants stressed as small seedlings instantly accumulate
ecDNA of Onsen, which decays during subsequent growth,
and seems to be at a very low level at flowering when Onsen
transposition takes place (Ito et al. 2011). This implies de-
velopmental propagation of stress memory in plants deficient
in small RNAs until they reach a specific developmental win-
dow permissive for Onsen retrotransposition (Ito et al. 2011).
Such multi-level and transposon-specific regulation of
LTR_RT life cycles suggests that extrapolation of regulatory
mechanisms, from the observed efficiencies of initial steps,
such as transcription and reverse-transcription, to the final
step of LTR_RT transposition, may be superficial and poten-
tially misleading.

Here, we provide insights into previously overlooked reg-
ulatory steps governing Onsen retrotransposition. We have
observed that Onsen movement is constrained to single bursts
that result in multiple new insertions in a given lineage of
germline progenitor cells. Once such a retrotransposition
burst occurs, subsequent secondary transposition bursts in
progenitor cells appear to be inhibited. This unexpected ret-
rotransposon self-restriction, or possible developmental in-
hibitory effects of the host, generates a high degree of intra
and interplant variation in the chromosomal distribution of

814 H. Gaubert et al.

new transposon insertions and limits the number of new
transposon copies per individual progeny plant in a given
plant population. In addition, the new transposon insertions
seem to have mostly short distance regulatory influences to-
ward neighboring host genes, and these influences are
largely dependent on the arrangement of the pre-existing
transcriptional units at the insertion sites.

Materials and Methods
Plant material and experimental conditions

Seeds were surfaced-sterilized and sown in Petri dishes with
agarified (0.8% Bacto Agar, Becton Dickinson) 0.5X MS me-
dium (Duchefa), containing 1% sucrose and 0.05% MES at
pH 5.7. After stratification for 3 days at 4°, plants were
grown in a CU-22L growth chamber (Percival) under strict
temperature control and a 12/12 hr (day/night) light cycle.
Typically, 7-day-old plants grown at 21° were used and treated
further at different temperatures according to the exper-
imental design described below. For the heat-stress-induction
of Onsen transposition in nrpdI-3, a prechilling step was per-
formed to increase the relative activation. Seedlings were
first placed at 4° for 24 hr on a built-in chilling platform
within the growth chamber (controlled by an external mini-
chiller), but with the chamber temperature set to 6°. This
chilling pretreatment was followed by 24 hr with the chamber
set to 37° for the heat-stressed plants; control plants were
moved to 21°. The same experimental design was applied for
the transcriptome experiments, where pools of ~50 progeny
seedlings from two independent biological replicates of
nrpd1-3 and nrpd1-3 plant 2L were collected directly after
heat-stress or control treatments.

Molecular biology

Total RNA and DNA were isolated using the Plant-RNeasy kit
(Invitrogen) and the DNeasy Plant Mini Kit (Qiagen), respec-
tively. Transposon display was performed as described pre-
viously (Ito et al. 2011) based on the Genome Walker
Universal kit (Clontech). Briefly, genomic DNA was digested
with Dral restriction enzyme and purified with the QIAquick
DNA Purification Kit (Qiagen). DNA was ligated with genome
walker adaptors, diluted, and used as template for PCR reac-
tions carried out using a primer specific for the adaptor
(GenWalk AP1) and a primer specific for Onsen (ONS_312).
PCR conditions were 5 min at 95° followed by 33 cycles of
30 sec at 94°, 30 sec at 58°, 1 min at 72°; and a final elon-
gation. A list of primers used is available in Supplemental
Material, Table S4.

Next-generation sequencing (NGS)

For RNAseq analyses, 50-70 seedlings (per biological repeat)
were pooled for RNA extraction. Strand-specific libraries
were prepared with 2 pg of RNA using the TruSeq Stranded
mRNA Sample Prep Kit (Illumina), following the provider’s
instructions. For whole-genome-resequencing, at least five
plants arising from seeds of the same silique of heat-induced


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300103/-/DC1/TableS4.xlsx

nrpd1-3 mutant plants were pooled and DNA-extracted. Li-
brary preparation used 1 g of DNA with the TruSeq DNA
PCR-Free Library Prep kit (Illumina), following the provider’s
instructions. NGS was performed with a Next-Sequation
500 (Illumina) platform reporting 150-bp and 75-bp
paired-end reads for RNAseq and DNAseq, respectively. Each
sample was resequenced to an average depth of at least
17-fold. Analysis of sequencing data were conducted with
standard open-source software. Trimming was performed
with Trimmomatic (Bolger et al. 2014), applying ILLUMINA-
CLIP parameters:2:10:5:1. For transcript level analysis, reads
were mapped with TopHat (Trapnell et al. 2009) on the Arab-
idopsis TAIR10 assembly (www.arabidopsis.org); using pa-
rameters—-max-multihits 1-read-realign-edit-dist 0—no-mixed.
Mapped reads were subsequently counted using htseq-count
(Anders et al. 2015) with parameters—-order name-type =
exon-stranded = no. We applied a stringent presence-call fil-
ter, restricting the analysis to those annotated genes with more
than five counts-per-million in at least two biological repli-
cates. Differential expression was assessed with edgeR
(Robinson et al. 2010), using as thresholds 1 Log?2 fold change
and a Benjamini-Hochberg’s FDR < 0.05. Bowtie2 (Langmead
and Salzberg 2012) was employed for mapping DNA se-
quencing reads with parameters—very-sensitive -X 1000—
non-deterministic. Further handling of NGS reads was
carried out with SAMtools (Li et al. 2009) and Picard
(http://picard.sourceforge.net.). Custom-made workflows,
available at https://github.com/diegohernansanchez/,
were developed inhouse for efficient detection of new Onsen
insertions, using SAMtools (Li et al. 2009), BEDtools (Quinlan
and Hall 2010), and Python scripts (www.python.org). We
applied a combined strategy based on finding discordant
paired-end reads and junction reads around insertion points.
In a first step, pair-end reads were first mapped on an Onsen-
masked genome, recovering those in which one mate mapped
to a chromosomal location but the other remained unmapped.
We then filtered for those in which the second mate mapped to
Onsen’s LTR. In a second step, we recovered all junction reads
between the genome and Onsen, by recognizing unmapped
reads blasting to Onsen’s LTR 5’ and 3’ extremities and trim-
ming away the transposon sequence. We remapped these
short sequences using ‘soft clipped’ Bowtie2 mapping, thus
accounting for tandem-site-duplications, with parameters—
local-very-sensitive-local-score-min L,5,0-np 0. Chromosomal
mapped reads from the first and second steps accumulated
around Onsen members and putative new insertions. Finally,
manual assessment was used to confidently define new inser-
tion’s genomic coordinates, ruling out false positives by com-
paring sequenced nrpd1-3 and wild-type backgrounds. For
validation, we selected 21 individual new insertions, and, in
all cases, they were corroborated by standard PCR in genomic
DNA (Figure S2 in File S1). A list of primers used is available
in Table S4. Raw data were deposited in ArrayExpress (www.
ebi.ac.uk/arrayexpress/) under accession numbers E-MTAB-
5883 and E-MTAB-5884; and materials are available upon
request.

Statistical assessment of chromosomal distribution for
Onsen new insertions

To statistically assess whether new Onsen insertions are ran-
domly distributed, we first divided the genome into euchro-
matic and heterochromatic regions, defined using H3K9me2
methylation data obtained from GSE37075 (Deleris et al.
2012), and visualized the enrichment value per 60 bp tile
for each chromosome. In a next step, we applied smoothing
as moving average with 100 tiles period and filtered for re-
gions above the moving average trend line of 1.5 (conserva-
tive threshold), rounding the coordinates to closest 100 kbp.
Next, we randomly sampled 338 loci with the same lengths
and same chromosomal locations as the 338 new Onsen in-
sertions, and counted, for each 1 Mbp sliding window (fo-
cusing on euchromatin with 332 insertions), how frequently
they appeared across sliding windows (Figure S3 in File S1).
To statistically test the variance of insertion counts we also
randomly sampled 332 loci in 1000 independent permuta-
tion runs. A gamma distribution was fitted to the histogram of
these 1000 variances of randomly sampled loci, and moment
matching estimators were used to estimate the shape and
scale parameters of the gamma distribution. We used this
gamma distribution to report the probability of exceeding
the observed variance of real Onsen insertions as P-value
(shown in Figure S3 in File S1). Computationally reproduc-
ible scripts for these analyses can be found at https://github.
com/HajkD/.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

We previously documented efficient retrotransposition of
Onsen in flowers of nrpd1 plants heat-stressed as 7-day-old
seedlings (Ito et al. 2011). Multiple new insertions of Onsen
were reproducibly recorded in the progeny of these plants.
Remarkably, the number and distribution of new insertions
differed not only between different plants but also between
different flowers of the same plant (Ito et al. 2011). These
results suggested the existence of a particular developmental
window during flowering of plants defective in siRNA in
which heat-stress-activated Onsen transposes. Moreover,
new Onsen insertions are well transmitted to the progeny,
thus they persist during female and/or male meiosis, the de-
velopment of at least one of the gametophytes, and during
fertilization and embryogenesis.

To examine in more detail possible regulatory mechanisms
associated with Onsen transposition, we asked whether trans-
position competence and the efficiency of transgenerational
transmission of newly inserted copies of Onsen differ between
male and female germlines. For example, it is possible that
paternal and maternal germ cell lineages differ in permissive-
ness for Onsen movement and/or the transgenerational
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propagation of new insertions. In this case, it would be
expected that reciprocal crosses of the same flower would
result in different patterns of insertions. To examine whether
or not patterns of Onsen insertion are affected by the parent
of origin, we performed transposon display of the progeny
from reciprocal back-crossing of single flowers of nrpdl
plants subjected to heat stress (Figure 1A). As revealed by
transposon displays, new Onsen insertions were equally pre-
sent and inherited through heat-treated nrpd1 paternal and
maternal gametes, regardless of the direction of the cross
(Figure 1B). Thus, there was no indication of parental influ-
ence on the frequency of Onsen transposition or transgenera-
tional transmission of new insertions.

Next, in an attempt to identify a possible developmental
window permitting transposition, we examined whether the
developmental position of flowers influences the efficiency
and pattern of new Onsen insertions. Seeds from the earliest
and latest emerging siliques (i.e., derived from the first and
the last flower developing on the same flowering stem) of five
heat-stressed nrpd1 plants (Figure 2A) were harvested sepa-
rately. In addition, from one of the plants we also harvested
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two neighboring late-emerging siliques (nrpd1 plant 5). We
isolated DNA from five progeny seedlings representing each
silique (in total 11 siliques). Using whole-genome sequenc-
ing, we determined the number and positions of all new
Onsen insertions in this material, a total of 338. To validate
the genomic positions of insertions arising from the whole
genome sequencing, we performed PCR for randomly chosen
neo-insertions using genomic DNA. In all cases, this con-
firmed the presence of a newly inserted copy of Onsen (Figure
S1 in File S1).

We observed that number of new insertions significantly
varied between progenies of five parental plants, and ranged
from 27 to 75 new Onsen insertions (Figure 2B). Since all the
parental plants were grown and heat-stress-treated in paral-
lel, such variation in the number of new insertion indicates
highly variable permissiveness of different individuals for
Onsen transposition. However, the new insertions were uni-
formly distributed between all five chromosomes, varying
only between 2.6 and 3.2 insertions per Mb, an average of
2.8 new insertions per Mb (Table 1). This is consistent with
the absence of “hot” or “cold” chromosomal areas for Onsen
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Figure 2 Developmental restriction of Onsen retrotransposition. (A)
Schematics of the experimental design: progeny of heat-treated nrpd7
plants from “early” or “late” siliques were screened for new Onsen
insertions by whole genome sequencing. (B) Interplant variation in num-
ber of new insertions. The count of new Onsen insertions is shown for
progeny of both “early” (E) and “late” (L) siliques in all five heat-treated
nrpd1 lines analyzed. (C) Schematic representation of chromosome Il of
nrpd1 plant 2 and nrpd1 plant 5 progeny (E, early silique; L, late siliques)
with new Onsen insertions (marked as red vertical lines). Note that for
nrpd1 plant 2, all new insertions in 2E-2L are identical, but silique 2L
acquired two additional insertions (one showed here for chromosome Il
as blue vertical line with a triangle), which is consistent with a single
retrotransposition burst in the progenitor cell lineage of the two flowers.
In nrpd1 plant 5, patterns of new insertions differ between early and late
siliques (5E/5L1 and 5L2), suggesting two independent retrotransposition
bursts; the two late siliques 5L1 and 5L2 share identical new insertions,
consistent with a single retrotransposition in the progenitor cell lineage of
the two late flowers. These data are consistent with two developmental
windows for transpositional competency.

insertion (Figure S2 in File S1 and Table 1). However, when
we partitioned the Arabidopsis genome into euchromatin and
heterochromatin, we found that 332 Onsen insertions were
present in 109 Mbp of euchromatin and only 6 in 16 Mbp
of heterochromatin, which is a statistically significant enrich-
ment of Onsen insertions in euchromatic regions (P = 5.9e—06;
Fisher’s exact test for count data). We also found that Onsen
insertions in euchromatic chromosomal regions have a larger
distribution variance than would be expected for random

Table 1 Number of independent Onsen neo-insertions found in
each line and chromosome from “early-late” siliques experiment

Chr. | Chr. 1. Chr. Il Chr. IV Chr. V Total
1E 12 5 7 8 9 41
1L 9 4 8 7 14 42
2E-2L (common) 23 1 12 15 12 73
2L-specific 1 1 2
3E 6 3 2 5 5 21
3L 7 8 8 5 6 34
4E 7 5 7 5 5 29
4L 7 5 6 4 4 26
SE 13 15 6 6 10 50
5L1-5L2 3 2 6 4 5 20
Total 88 58 63 59 70 338
Neo-insertions/Mb 2.9 2.9 2.7 3.2 2.6 2.8

insertions (P = 1.012e—06; permutation test; Figure S3 in File
S1). Therefore, possible preferences of particular chromo-
somal targeting in euchromatin cannot be excluded, and only
future analyses of many more new Onsen insertions could re-
solve this issue.

Importantly, there was a very strong tendency for insertions
into genes (almost 90% of new insertions). We performed an
enrichment analysis for count data based on hypergeometric
distributions, and confirmed that Onsen neo-insertions are
significantly over-represented in gene space compared to
TEs or intergenic spaces (P < 2.2e—16). Moreover, 80% of
new insertions were mapped to transcribed regions of genes
(Table 2); > 60% were found in exons (Table 2). These
findings suggest that chromatin properties of genic regions
and/or the presence of processed transcripts may attract rein-
sertion of Onsen. Interestingly, new insertions are found rela-
tively often in heat stress responsive genes as evaluated by
transcriptome analysis (see RNAseq profiles below). From
276 protein-coding-genes where Onsen inserted in the nrpdl
background, transcripts for ~47% were detected in nrpd1 seed-
lings, and ~33% were heat-responsive (either up or downregu-
lated compared to control condition, with = 1 Log2 fold change
and FDR < 0.05, Table S1). Although standard ontological
examination of genes attracting Onsen suggested preferential
insertions into genes related to defense responses (P < 0.01)
(Table S2), when this apparent enrichment was corrected for
the gene lengths with Onsen insertions, its significance became
insignificant (P = 0.5058; Pearson’s Chi-squared test).

Intriguing patterns were observed in the distribution of
new insertions between early and late siliques of the same
plant. In the majority of cases (four out of five), the distribu-
tions of new insertions in early and late siliques were entirely
different (nrpd1 plants 1, 3, 4 and 5; Figure S2 in File S1).
This is consistent with previous observations suggesting that
transposition bursts take place in different flowers indepen-
dently (Ito et al. 2011). Notably, we recorded almost identical
distribution (two additional reintegrations in the late silique)
of new Onsen insertions in early and late siliques of nrpdi
plant 2, and in the two late siliques of nrpd1 plant 5, respec-
tively (Figure 2C, Figure S2 in File S1, and Table 1).

Developmental Restriction of Retrotransposition 817
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Table 2 Genic and intergenic location of Onsen neo-insertions from “early-late” silique experiment

500 bp < Promoter Promoter Intergenic

Region < 1000 bp Region <500 bp 5'UTR Exon Intron 3'UTR >1000 bp TE
Number of insertions 9 17 11 211 42 12 19 17
Proportion of neo-insertions 2.7 5.0 3.3 62.4 12.4 3.6 5.6 5.0

in each domain (%)
81.7
86.7
89.3

These patterns suggested that, in these cases, transposition
bursts occurred prior to differentiation of the two flowers.
Therefore, the developmental window permissive for trans-
position bursts could be extended to include both “flower-
specific” and “preflower” bursts. It is remarkable that we did
not observe additive patterns indicative of “flower-specific” or
“preflower” bursts occurring consecutively in the same cell line-
ages, as would be expected given the two sequential develop-
mental windows permissive for transposition. The observed
exclusivity of one of the two developmental windows suggests
that when a “preflower” burst occurs, this inhibits a later addi-
tional “flower-specific” burst. In other words, it appears that a
retrotransposition burst inhibits subsequent bursts in the same
cell lineages, which are germline progenitors. However, when
the cell lineages are separated (e.g., to form different flowers)
prior to transposition burst, independent bursts of retroelement
movement can occur in each of them. This observation would
imply some type of feedback inhibition of Onsen retrotranspo-
sition bursts, restricting retrotransposition to only one burst
that is passed to the progeny, although isolated individual in-
sertions may still occur (nrpd1 plant 2; Figure S2 in File S1 and
Table 1). However, it cannot be excluded that independent
bursts in several flower progenitor cells of the inflorescence
meristem could also contribute to the observed variability in
chromosomal distribution of insertions documented for differ-
ent flowers.

It was documented previously that genes adjacent to new
insertions of Onsen acquire transcriptional response to heat
stress (Ito et al. 2011). However, it was not clear how far from
insertions the influence of an Onsen prevails, and to which
extent genomic features neighboring new Onsen insertions
would modulate its regulatory impacts. Therefore, we deter-
mined heat-stress-induced transcript levels of chromosomal
sequences flanking new insertions. For that we performed
transcriptional profiling (RNAseq) of control and heat-stressed
plants of nrpd1 plant 2L, for which we mapped 75 new inser-
tions (Figure 3 and Table 1). The transcript levels were com-
pared to the same region in the original nrpdl mutant that
lacked insertions (Figure 3 and Figure S5 in File S1).

Insertions were found in both sense and antisense orien-
tations in relation to the transcripts of affected genes. New
Onsen copies were located in gene promoters or in gene bod-
ies (in introns or exons) and rarely in intergenic regions
(Table 2). In general, transcriptional activation was detected
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at relatively short distances from the new Onsen copies, and
these distances were largely influenced by genic environ-
ment; therefore, it is impossible to provide general regulatory
rules across genic and intergenic insertions based on any kind
of meta-analysis of this data set. However, typical regulatory
influences for certain types of chromosomal environment can
illustrate the regulatory influences of new Onsen insertions
and are presented on Figure 3. For example, sense insertions
in gene promotors or gene bodies often activated transcrip-
tion of the target gene, and the activation distance followed
the length of a native gene transcript (Figure 3, A and B). This
pattern was found in 61 genes targeted by Onsen, of which
56 were deemed expressed, and 46 (~82%) showed acti-
vated transcript levels between nrpd1 plant 2L and nrpdl
upon heat stress (Table S3). Similarly, out of seven Onsen
insertions in promoters of genes, of which five were deemed
expressed, all five were activated upon heat stress in nrpd1
plant 2L (Table S3). Interestingly, if the target gene was
linked to another gene in the same orientation, Onsen-
mediated activation sometimes seemed to expand over the
adjacent gene (Figure 3C). To assess these transcriptional
alterations, we investigated the transcriptomic data for
74 of these adjacent genes deemed expressed. Out of these,
30 (~41%) showed altered transcript levels in nrpd1 plant
2L subjected to heat stress (Table S3). We calculated the
frequency distribution of distances between new insertions
of Onsen and the genes transcriptionally affected (30) and
not affected (44); no significant differences between the
two groups were observed (Kolmogorov-Smirnov test,
P = 0.4833, Figure S4 in File S1). Therefore, it cannot be
predicted whether transcript level of an active gene neigh-
boring a new Onsen insertion will be altered or not. How-
ever, when altered, the typical Onsen influence occurs
within a small distance of ~2 kb; with occasional excep-
tions of longer distances that may reach even 10-12 kb
(Figure S4 in File S1).

In case of antisense genic insertions, transcriptional acti-
vation in 81% the cases seemed to be bidirectional (Figure 3D
and Figure S5 in File S1). This effect is similar to transcrip-
tional activation by Onsen insertions found in intergenic re-
gions (Figure 3E). We also found rare examples of absence
or negligible transcriptional alterations following Onsen in-
sertions (Figure 3F and Figure S5 in File S1). Thus, Onsen
seems not to have long-distance transcriptional enhancer-like
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effects, but predominantly a rather local influence on genes
directly affected by the insertions, and less often on those
being in their vicinity. Noticeably, for Onsen insertions induc-
ing heat-stress-triggered transcription in the same direction
as the transcription of interrupted genes, the induced tran-
scripts seem to terminate in the region where gene transcripts
would normally terminate. In contrast, insertions of Onsen
inducing transcripts in an antisense direction in relation to
the gene transcription resulted in bidirectional transcripts
mostly terminated in close proximity to the insertion. To fully
illustrate the variable influence of chromosomal environment
on regulatory impacts of new Onsen insertions, we provide
screenshots for all 75 regions acquiring new Onsen copies
(Figure S5 in File S1).

Discussion

It seems that, for two plants tested by reciprocal cross of a
single flower, new Onsen insertions are transmitted with
equal efficiency through male and female gametes, suggest-
ing that, in these cases, the observed bursts of transposition

had a limited impact on the gametophytic developmental
cycle and embryogenesis. This could be the result of prefer-
ential targeting of new insertions and/or the activation of
mechanisms restricting uncontrolled proliferation of Onsen
copies. Indeed, we observed favored targeting of Onsen into
genes; however, this is inconsistent with the low impact on
the transgenerational transmission of new Onsen insertions.
On the other hand, the frequent targeting of genes involved
in particular processes not directly affecting plant survival,
such as plant defense, may explain in part why new insertions
do not interfere with the plant sexual cycle, and, thus, with
their transgenerational inheritance. Interestingly, genic pref-
erence of insertion has been also documented for Tos17, and,
also in this case, genes related to plant defense have been
preferentially targeted (Miyao et al. 2003).

It appears that Onsen activates only a single burst of trans-
position per plant generation in a given lineage of germline
progenitor cells. Importantly, it has been shown that progeny
of stressed nrpdl plants with new insertions can again un-
dergo additional Onsen transposition bursts (Matsunaga et al.
2015). Therefore, increased Onsen copy number is not the
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trigger for its transpositional inactivation, as documented for
Evadé (Mari-Ordonez et al. 2013). Alternatively, mechanisms
restricting retrotransposition might be encoded by the retro-
element itself, as recently documented for the yeast Ty1 ret-
rotransposon (Tucker et al. 2015), or a change in the
competence of particular cell lineages experiencing Onsen
transposition precludes subsequent transposition bursts. Nota-
bly, this switch of competence occurs only within the same
plant generation, and is reset between generations (Matsunaga
et al. 2015).

The late developmental timing of transposition bursts in
combination with just single independent bursts in a given cell
lineage increases immensely the variation in patterns of new
insertions in progeny of the transposition-competent parents.
In addition, since transposition bursts occur predominantly
during development of flowers, and prior to separation of the
male and female germlines, multiple progeny derived from
such flowers will have similar patterns of insertions segregat-
ing randomly as homozygous or hemizygous. This results in a
related insertion patterns in multiple offspring; deleterious
insertions are exposed to selection as homozygotes, but may
persist and be further transmitted in the hemizygous state.

The observed high variability in chromosomal position and
number of Onsen new insertions among the progeny of dif-
ferent plants, despite parallel, and thus identical, heat stress
and growth conditions, may lead to enhancement of the pro-
liferation of retrotransposons. High variability in the distri-
bution of newly inserted copies results in a certain number of
neutral or near-neutral new insertions, which increases the
possibility of their inheritance over multiple generations. In
this regard, it is important that, as observed, most of the
regulatory influence of relocated Onsen is local, or at relative-
ly short distances from the insertion sites. This is in contrast
to some maize transposons, whose regulatory influence ex-
tends to distances of tens of thousands of bases (Studer et al.
2011). Such limitation of Onsen impact, hugely influenced by
the chromosomal transcriptional landscape, likely limits al-
terations in the host’s gene regulatory networks and, thus,
potentially mitigates negative effects. This may further en-
hance the chance of transgenerational transmission of novel
Onsen insertions.

Moreover, high inter and intraplant variation in the number
of new insertions, their distribution, and their allelic state
(homo or hemizygous) should result in a rapid increase in
Onsen-generated genetic diversity, which is then the sub-
ject of natural selection. Indeed, transposable elements are
known to contribute to genome evolution through myriad
mechanisms, such as the generation of novel regulatory
elements (e.g., promoters, enhancers, or silencers), and
contributions to chromosomal recombination and the
epigenetic landscape (Lisch 2009). Although the mecha-
nisms described here that achieve high variability in new
insertions, and restrict their copy number and negative
regulatory impacts, might be specific only to Onsen, it is
conceivable that related strategies could be exploited also
by other retrotransposons.
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