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Validation of risk stratification models in acute myeloid
leukemia using sequencing-based molecular profiling
M Wang1,5, J Lindberg2,5, D Klevebring1, C Nilsson3, AS Mer1, M Rantalainen1,6, S Lehmann3,4,6 and H Grönberg1,6

Risk stratification of acute myeloid leukemia (AML) patients needs improvement. Several AML risk classification models based on
somatic mutations or gene-expression profiling have been proposed. However, systematic and independent validation of these
models is required for future clinical implementation. We performed whole-transcriptome RNA-sequencing and panel-based deep
DNA sequencing of 23 genes in 274 intensively treated AML patients (Clinseq-AML). We also utilized the The Cancer Genome Atlas
(TCGA)-AML study (N= 142) as a second validation cohort. We evaluated six previously proposed molecular-based models for AML
risk stratification and two revised risk classification systems combining molecular- and clinical data. Risk groups stratified by five out
of six models showed different overall survival in cytogenetic normal-AML patients in the Clinseq-AML cohort (P-valueo0.05;
concordance index 40.5). Risk classification systems integrating mutational or gene-expression data were found to add prognostic
value to the current European Leukemia Net (ELN) risk classification. The prognostic value varied between models and across
cohorts, highlighting the importance of independent validation to establish evidence of efficacy and general applicability. All but
one model replicated in the Clinseq-AML cohort, indicating the potential for molecular-based AML risk models. Risk classification
based on a combination of molecular and clinical data holds promise for improved AML patient stratification in the future.
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INTRODUCTION
The cytogenetic karyotype is the most important prognostic factor
in acute myeloid leukemia (AML) and forms the basis of the
current risk classification in the disease.1 However, 40–45% of all
AML patients are cytogenetic normal (CN)2,3 and belong in the
intermediate cytogenetic risk group, where prognostic stratifica-
tion needs to be improved for clinical decision-making. Improved
risk stratification will provide information that has the potential to
lead to improved therapy decisions and outcomes.
In the last decade, many individual genes as well as biomarker

panels based on multiple somatic mutations or expression levels
of multiple genes have been proposed to facilitate improved
prognostic risk classification. Individual somatic alterations with
prognostic significance that have been reported include NPM1,
CEBPA, FLT3, IDH1, IDH2, KIT, WT1 and RUNX1.4 However, in current
clinical routine only aberrations in NPM1, CEBPA and FLT3-ITD are
currently broadly utilized, these aberrations are also part of the
European Leukemia Net (ELN) risk classification system.5 Multiple
studies have proposed novel biomarker panels and predication
models aimed at improving AML risk stratification. Patel et al.6

proposed a panel of somatic mutations for risk stratification based
on sequencing of a set of 18 genes. Recently, Papaemmanuil et al.7

suggested a new molecular-based classification system based on
mutation panel of 76 genes in a large cohort (N= 1540). Several
studies have characterized gene expression for stratification of
intermediate risk group of AML or CN-AML. Bullinger et al.8

developed a model for stratification of CN-AML patients based on
clustering of gene-expression profiles. Metzeler’s 86-probe-set,9

Li’s 24-gene10 and Marcucci’s 7-gene11 signatures were derived by
applying supervised modeling methodologies. Eppert et al.12

proposed leukemia stem cells related (LSCR) and hematopoietic
stem cells related (HSCR) gene signatures based on a stem cell
model. These models were proposed to have prognostic value in
their respective studies (Table 1).
Clinical implementation of an improved AML risk classification

model has the potential to provide a significant advancement in
prognostication, and to improve outcomes for AML patients
through refined patient stratification and more relevant informa-
tion in clinical decision making. Although previously reported
studies have indicated promising prognostic results, surprisingly,
neither of these biomarker panels and models have undergone
systematic and independent validation to provide further
evidence of their effectiveness.
In this study, we evaluate and attempt to replicate six of the

most promising molecular AML risk stratification models that have
been proposed to date (Table 1) in two independent cohorts, in-
house Clinseq-AML study (N= 274) and The Cancer Genome Atlas
(TCGA) AML (N= 142) study. All of the six models evaluated are
based on molecular biomarkers and some of the models also
integrate cytogenetic information. These studies share the
common aim of improving AML prognostication and risk
stratification. Our primary objective is to investigate to what
extent these previously proposed models can be replicated and
thereby establish independent evidence of their effectiveness and
potential for future clinical implementation.
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PATIENTS AND METHODS
Patients
Bone marrow or peripheral blood samples were obtained at the time of
diagnosis from 274 AML patients of the Clinseq-AML cohort treated in
Sweden between February 1997 and August 2014. Samples were
separated for mononuclear cells and stored in isothermal liquid nitrogen
freezers at − 180 °C. All patients were treated with intensive induction
regimens, including anthracyclines and cytosine arabinoside, according to
national guidelines.13 Clinical data was retrieved from the Swedish Adult
Acute Leukemia Registry3 or from patient records. The regional ethical
review board in Stockholm, Sweden approved the study.
The TCGA study includes 142 AML patients with intensive induction

treatment. Clinical and mutational data were retrieved from the data portal
of TCGA (https://gdc.cancer.gov) and Supplementary Table S1 of the
publication of the TCGA-AML study.14

Cytogenetic aberrations
Karyotype was available on 261 out of 274 patients in the Clinseq-AML
cohort and 140 out of 142 patients in the TCGA-AML cohort. Cytogenetic
risk classification was assigned following the Medical Research Council
criteria.2 The ELN risk classification was also assigned by the ELN
classification system using cytogenetics and mutational status of NPM1,
FLT3-ITD and CEBPA.5 The Intermediate-I and –II groups were combined
since the difference is minor and the number of patients in the
intermediate-II groups is limited.

Sample and library preparation, sequencing and bioinformatics
processing
Transcriptomic RNA and a somatic mutation panel of genes were
sequenced. Details about sample preparation and bioinformatics proces-
sing were described in Supplementary Methods. The average depth of
DNA sequencing was 360X. The median reads of RNA-sequence was 33
million. For RNA-sequencing data, after processing, genes with zero count

in either the Clinseq-AML or the TCGA-AML data set were excluded. Thus,
18 744 genes remained for further statistical analyses. For DNA sequen-
cing, 23 genes were manually curated for the identification of somatic
variants relevant for prognostication (Supplementary Tables S14 and S15).
Normalized RNA sequencing data is open assessable (https://doi.org/10.
5281/zenodo.292986).

Assessment of prognostic model performance
In this study, we applied six models developed for prognostic risk
stratification in patients with CN-AML in the Clinseq and TCGA cohorts. To
assess the performance of the six prediction models, we used the
concordance index (C-index)15,16 of the prognostic score and the hazard
ratio of overall survival between dichotomized risk groups in Cox
proportional hazards regression model.17 Overall survival was measured
as the date of diagnosis to the date of death from any cause, and patients
alive at last follow-up were censored.
The prognostic score for each model was derived following the methods

described in their respective original study (Supplementary Methods). The
C-index of the prognostics score in each model was calculated to assess
the ability of discrimination on predicting the overall survival. C-index is
the most commonly used measurement of discrimination, which is the
probability that a randomly selected person with the event will have a
higher predicted risk than a randomly selected person without the event.18

A C-index of 0.5 means no discrimination, 1 means perfect discrimination.
The C-index and confidence interval (CI) were calculated using R package
survcomp.19

Under each model, the patients were further stratified to high- and low-
risk groups based on the prognostic score according to the original study.
Kaplan–Meier curves were used to visualize the probability of survival
outcomes over time in each group. Univariable and multivariable Cox
proportional hazards regression models were fitted at time-on scale.
Variables included in the multivariable cox-regression model were age
(dichotomized at 60 years), sex, etiology (de novo, secondary or therapy-
related AML), and mutational status of NPM1, FLT3-ITD and CEBPA.
Proportional hazards assumptions were checked using Schoenfeld
residuals. The survival analysis was conducted by R package survival.20

Table 1. Molecular markers associated with AML prognosis

Gene set Methods Significance Clinical
subtype

No. of patients

Papaemmanuil-mutation7 DNA sequencing of 76 genes or
regions

Propose molecular-based
classification

All 1540

Marcucci-7-gene11 Microarray-based GEP; genes
with promoter DMRs and
expression levels significantly
associated with OS

Define subgroups in CN-AML
that are associated with disease
prognosis

CN-AML Training: 126
VS1 (validation): 72
VS2 (validation): 134
VS3 (validation): 65
VS4 (validation): 84

Li-24-gene10 Microarray-based GEP; top
genes associated with OS from
meta-analysis of four cohorts

Define subgroups that are
associated with disease
prognosis, and improve ELN
risk classification

All USA-Set-1 (training): 65
USA-Set-2 (training): 87
Netherlands-Set-1 (training): 241
Germany-Set-1 (training): 106
Netherlands-Set-2 (validation): 277
Germany-Set-2 (validation): 548

Eppert-LSCR and HSCR12 Microarray-based GEP; LSCR
and HSCR gene profile
generated from cancer stem
cells model

Define subgroups in CN-AML
that are associated with disease
prognosis

CN-AML AMLCG-1999: 160

Patel-mutation6 DNA sequencing of 18 genes Define subgroups that are
associated with disease
prognosis

All Test cohort: 398
Validation cohort: 104

Metzeler-86-probe9 Microarray-based GEP;
supervised principal
components by OS

Define subgroups in CN-AML
that are associated with disease
prognosis

CN-AML Training cohort: 163
Test cohort: 79
Validation cohort: 64

Bullinger-133-gene8 Microarray-based GEP;
unsupervised clustering

Define subgroups in CN-AML
that are associated with disease
prognosis. It was validated in
an independent study23

CN-AML Training set: 59
Test set: 57
Test set: 22
Radmacher et al. 2006: 64

Abbreviations: CN-AML, cytogenetic normal-acute myeloid leukemi; DMR, DNA methylation region; ELN, European Leukemia Net; GEP, gene expression
profiling; HSCR, hematopoietic stem cells related; LSCR , leukemia stem cells related; OS, overall survival.
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RESULTS
Previously published prognostic biomarker panels for AML
To review published studies on gene signatures developed to predict
prognosis in AML, a systematic search was conducted (details are
described in Supplementary Methods). Seven studies, including five
studies reporting gene-expression-based biomarker panels and
associated models, and two studies using mutational panel, were
identified and selected for replication (Table 1). Marcucci-7-gene,
Eppert-LSCR and HSCR, Metzeler-86-probe and Bullinger-133-gene
were aimed at stratification of CN-AML, while Li-24-gene and Patel-
mutation panel were proposed to improve upon the current
cytogenetic-based risk classification system. Each model was
implemented as described in the original study (for details, see
Supplementary Methods). The gene IDs of the gene-expression-
based signatures are listed in Supplementary Tables S7–S12.

The AML cohorts
The clinical and molecular characteristics of the patients in the
Clinseq-AML and TCGA-AML cohorts are described in
Supplementary Table S1. Among the 274 patients with intensive
induction treatment in the Clinseq-AML cohort, 222 were de novo
AML, 24 secondary AML and 26 therapy-related AML. The
distribution of cytogenetic aberrations was similar to previously
published population-based data in Sweden.3 We performed
mutational analyzes of 23 genes (Supplementary Table S1).
Somatic alterations were identified in 94.5% of the patients. The
frequencies of somatic mutations are summarized in
Supplementary Table S1 and plotted in Supplementary Figure 2.
The characteristics of the patients in TCGA-AML cohort were
described in their original report.14 In order to compare the
cohorts used in the prognostic models, only the 142 patients with
intensive induction treatment were selected from TCGA-AML. The
frequencies of mutations were compared between the Clinseq-
AML and the TCGA-AML in Supplementary Figure 1. To note, all
patients in the TCGA-AML cohort were de novo AML, which
contrasts to the Clinseq-AML cohort that represents unselected
consecutive AML patients. The median follow-up time was
346.5 days in the Clinseq-AML cohort and 455.5 days in the
TCGA-AML cohort (Supplementary Table S1).

Replication results across risk stratification models in CN-AML
In order to evaluate the prognostic ability of each gene signature
(Marcucci-7-gene, Li-24-gene, Eppert-LSCR, Eppert-HSCR,
Metzeler-86-probe and Bullinger-133-gene), we applied each
model for stratification of CN-AML patients in both the Clinseq-
AML and the TCGA-AML cohorts (Figures 1a and b, Supplementary
Table S2). There were 130 and 64 CN-AML patients in the Clinseq-
AML and TCGA-AML cohorts, respectively. In the Clinseq CN-AML
cohort, patients could be stratified into a high-risk and a low-risk
group, with significantly different overall survival (P-valueo0.05),
using five of the six models and only Eppert-LSCR failed to stratify
patients into low and high-risk with significantly different overall
survival (Figure 1a and Supplementary Table S2). After adjusting
for other risk factors, only the Bullinger-133-gene stratification
remained statistically significant (Supplementary Table S3). The
effect size estimates from the multivariable models had similar
magnitudes and directions as the univariable results although not
meeting the significance level threshold in the Marcucci-7-gene
and Li-24-gene models This may be an effect of limited statistical
power rather than a lack of independent prognostic power of
these models. However, the prognostic value of these molecular
risk stratification models beyond the traditional clinical para-
meters would have to be tested in larger cohorts with better
statistical power before any conclusions could be drawn. The
C-index of the prognostic score assess the ability of discrimination
of each model. The Patel-mutation model and Li-24-gene model

showed relatively good discrimination (C-index = 0.65 and 0.64,
respectively), while Bullinger-133-gene had no discrimination
(Figure 1d and Supplementary Table S4). In the TCGA CN-AML
cohort, only the Li-24-gene model provided a significant
difference in overall survival between the subgroups. The C-index
of models indicated no discrimination (CI of C-index included 0.5).
Estimated HRs of the six models evaluated in the Clinseq-AML and
the TCGA-AML cohorts were compared with HRs of the validation
cohorts reported in the original studies (Figure 1c).
Although different gene sets were developed based on distinct

theories, there are some degrees of overlap between Li-24-gene,
Eppert-HSCR, Metzeler-86-probe and Bullinger-133-gene. The
gene lists were compared in pairs (Supplementary Table S6).
The gene DAPK1, a tumor suppressor, appears in the gene sets of
Li-24-gene, Eppert-HSCR, Metzeler-86-probe and Bullinger-133-
gene. It has been reported that the DAPK1 is repressed via a
pathway promoted by FLT3-ITD.21 The consistent selection of this
gene from different gene sets also indicates that it may play an
important role in AML.

Comparison of novel risk classification systems to cytogenetic and
ELN risk classification
We then compared four risk classification systems (Figure 2),
including conventional cytogenetic risk, ELN, Patel-mutation and
Li-24 for the whole-AML cohorts, also including patients with
cytogenetic low and high-risk. Patients with acute promyelocytic
leukemia (translocation (15;17) were excluded (N= 252 patients
remaining in the Clinseq cohort after exclusion, N= 127 remaining
in the TCGA cohort). Stratified by cytogenetic information only,
the intermediate risk group dominated and accounted for 73% of
the patients in the Clinseq-AML cohort and 61% of the patients in
the TCGA-AML cohort, further underlining the need to improve
cytogenetic stratification. In the Clinseq-AML cohort, the three risk
groups showed different overall survival rates (Figure 2). Based on
mutation status of FLT3-ITD, NPM1 and CEBPA, the ELN
classification system5 redistributed a subset of the CN-AML into
the low-risk group (Figure 3). In Clinseq-AML, the survival outcome
of this subset of patients is good. However, in TCGA-AML, the
survival outcome of this subgroup was found to be similar to the
intermediate risk group (Supplementary Figures S4A and B). The 3-
year survival rate in this larger low-risk group increased from 30 to
54% in the Clinseq-AML cohort whereas survival decreased from
54 to 44% in the TCGA-AML cohort (Table 2).
Patel et al.6 proposed to improve the cytogenetic risk

classification system by including mutation status of additional
genes (IDH1, IDH2, ASX1, MLL-PTD, PHF6, TET2 and DNMT3A). We
performed mutational analysis on 23 genes, including the 18
genes reported in Patel et al.’s study and found that mutations in
ASXL1, CEBPA, EZH2, KRAS, SF3B1 and TP53 in Clinseq-AML and
EZH2, FLT3-ITD, RUNX1, SF3B1 and TP53 in the TCGA-AML studies
to be associated with overall survival (P-valueo0.05, log-rank test,
Supplementary Table S5). We found that the Patel et al.
classification system significantly redistributed patients between
risk groups, resulting in a substantial reduction of the low-risk
group and a doubling of the high-risk group in both AML cohorts
compared to the ELN classification (Figure 3). Patients reclassified
from ELN-Low and ELN-Intermediate groups to the Patel’s-High
group show poor survival in the Clinseq-AML cohort
(Supplementary Figure S4C). However, patients in the ELN-Low
group that were reclassified to Patel’s-Intermediate group
displayed a relatively good survival outcome the Clinseq-AML
cohort. The number of patients in the intermediate risk group was
slightly reduced. Compared to the cytogenetically determined risk
stratification, there was a major redistribution of intermediate risk
patients to the high-risk group. Compared with the cytogenetic
risk classification, the 3-year survival rate of the high-risk group
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remained at a similar level (from 25 to 25% in the Clinseq-AML
cohort, from 25 to 26% in the TCGA-AML cohort, Table 2).
We then evaluated the Li-24-gene model, which is based on the

ELN and a 24-gene-expression panel. With the Li classification, the
number of patients in the intermediate group was substantially
reduced both compared to the ELN classification, from 135 to 78
in the Clinseq-AML cohort and from 51 to 38 in the TCGA-AML
cohort (Figure 3). Patients reclassified from the ELN-Intermediate
to the Li-high-risk group show similar survival outcomes as the
patients classified as high risk by both ELN and Li’s classifications
(Supplementary Figures S4E and F). Instead, the proportion of
high-risk patients increased to ~ 50% which was paralleled by a
reduction in survival in the high-risk patients. For the low-risk
patients, the 3-year survival rate remained similar to the ELN
classification with the Clinseq-AML data set whereas it was
increased (from 44 to 54%) in the TCGA-AML data set (Table 2).
Moreover, the Li-24-gene risk model shows a statistically
significant effect after adjusting for age, gender and ELN, which
indicates that the Li-24-gene provides extra prognostic value
beyond the current ELN system. In summary, the integrated risk
classification by Patel-mutation and Li-24-gene reduced the
number of patients with intermediate risk, and provided improved

prognostic value although the result differed somewhat between
the two AML cohorts considered here.

Replication of Papaemmanuil et al.’s genomic classification of AML
Recently, Papaemmanuil et al. proposed a genomic-based
classification with 11 subgroups in a large cohort combining
driver mutations in 76 genes with cytogenetic information to
improve the current WHO classification of AML.7 Their genomic-
based classification is aimed at defining new subtypes of AML, not
risk classification, hence their model is not directly comparable
with other risk prediction models above. Nonetheless, new
subgroups defined by mutational pattern in chromatin and RNA-
spliceosome, and TP53 with chromosomal aneuploidy showed
prognostic differences in that study. The 11 subgroups are defined
based on genomic aberrations to reflect the biological character-
istics of AML. We applied this mutational-based classification to
Clinseq (N= 274) and TCGA (N= 142) cohort. The frequencies of
subgroup membership in the three cohorts were found to be
similar (Supplementary Table S16). A biologically focused
approach, in contrast to approaches focused on prognosis, has
the potential to also provide information that may provide target
leads in future efforts to develop targeted AML therapies. In the

Figure 1. Overall survival of CN-AML patients stratified by gene signature, Marcucci-7-gene, Li-24-gene, Eppert-LSCR, Eppert-HSCR, Metzeler-
86-probe and Bullinger-133-gene in the Clinseq-AML (a) and the TCGA-AML (b). P-value is the P-value of log-rank test comparing two groups.
HR is the HR and 95% CI comparing high-risk group to low-risk group. (c) HRs (95% CI) in the Clinseq-AML, the TCGA-AML cohort (blue) and
HRs reported in the validation cohorts from the original studies (grey). *Not CN-AML only. (d) C-index (95% CI) in the Clinseq and the TCGA
AML-CN patients.
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Clinseq cohort, the survival rate in the different subgroups
revealed similar pattern to the original study cohort
(Supplementary Figure 3), although the difference between
groups were not statistically significant due to limited number
of sample. We did not conduct survival analysis in the TCGA
cohort because of the small sample size.

DISCUSSION
Despite several proposed AML reclassification models based on
somatic mutations or gene-expression profiling, no systematic
evaluation of these models has been carried out to date. In this
study, we validated the prognostic value of six of the most

important and cited AML molecular-based risk stratification
models. Validation was performed by applying targeted exome
sequencing and full RNA-sequencing to profile 274 intensively
treated AML patients (Clinseq-AML) and as a second validation
cohort we used the TCGA-AML data set.
Revised risk classification models proposed by Patel et al.6 and

Li et al.10 were found to add prognostic value to cytogenetic-
based classification. These two models represent two major
directions of improving risk classification, (1) combining the
somatic mutation profile or (2) the gene-expression profile with
cytogenetic information. By combining information from the
18-gene mutation profile with conventional cytogenetic risk
classification, the Patel-mutation model reclassified ~ 30% of

Figure 2. Risk group distribution and overall survival of AML risk classifications in the Clinseq-AML cohort (a, c, e and g) and the TCGA-AML
cohort (b, d, f and h). Patients with acute promyelocytic leukemia were excluded. (a) and (b) are based on cytogenetic risk classification, (c)
and (d) are based on the ELN classification system, (e) and (f) are based on the Patel-mutation panel revised risk classification, and (g) and (h)
are based on the LI-24-gene revised ELN risk classification.
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patients in the intermediate risk group to the high-risk group.
Considering the genes in the 18-gene mutational profile in Patel
et al.’s study in three cohorts (Clinseq-AML, TCGA-AML and ECOG-
E1900,6 Supplementary Table S5), only CEBPA and TP53 showed
association with overall survival in more than one cohort. The
frequencies of mutations are also varied in the three cohorts
(Supplementary Figure S1).
The second direction for improving current risk classification is

integrating gene-expression signature with cytogenetic and
genetic information. Gene expression is a dynamic molecular
phenotype in many respects, particularly compared with genetic
mutations, therefore making it potentially more challenging to
apply for diagnostics or risk classification in a clinical setting.
Technological advancements, particularly sequencing, are, how-
ever, making it easier to consistently measure RNA abundances
reliably and with high-technical reproducibility. Gene-expression-
based biomarkers additionally provide larger effects sizes
compared with genetic variants, which is of central importance

in prediction modeling, including diagnostic and prognostic
applications. An example of this is a study in which a survival
prediction model was developed based on the TCGA-AML
cohort.22 Authors showed that the transcriptomic information
provided the highest prognostic power among genomic, tran-
scriptomic and clinical variables. We also find it interesting to
highlight that although the gene-expression-based models
evaluated in this study were developed from microarray-based
gene-expression measurements, we were able to validate their
prognostic value in data acquired by RNA-sequencing, indicating
that some of these signatures were not only robust across cohorts,
but also across the measurement technology applied (microarrays
or RNA-sequencing). Among the four risk classification systems we
compared, the Li-24-gene score provided the greatest reduction
of patients classified in the intermediate risk group (from ~70% to
~ 30%). Although the optimal set of variables (genes) may not
have been established yet, and would most likely require even
larger studies, the strategy of combining cytogenetic and

Table 2. 3-year survival rate (%) with 95% CI stratified by risk classification systems

Cytogenetic risk classification ELN Patel-mutation revised risk stratification Li-24-gene revised risk classification

N 3-year survival rate (%)
with 95% CI

N 3-year survival rate (%)
with 95% CI

N 3-year survival
rate (%) with 95% CI

N 3-year survival
rate (%) with 95% CI

Clinseq
Low 14 30 (12.4–72.8) 64 54.3 (41.7–70.6) 16 33.3 (14.4–77.4) 42 52.5 (36.5–75.6)
Intermediate 183 38.3 (30.4–48.1) 135 28.7 (20.5–40.1) 130 42 (32.9–53.7) 78 49 (36.9–65.1)
High 54 24.8 (14.8–41.5) 53 24.9 (14.7–42.2) 106 25.5 (17.2–37.7) 132 22.3 (15.5–32)

TCGA
Low 18 54.4 (29.9–98.9) 47 43.5 (29.6–64) 25 63.5 (43.3–93.3) 29 53.9 (35.9–81)
Intermediate 78 30.3 (20.4–45) 51 24.7 (13.6–44.7) 58 25.3 (15.3–41.8) 38 30.3 (17.5–52.3)
High 31 26.2 (12.8–53.9) 29 28.4 (13.9–57.9) 44 24.6 (12.4–48.9) 60 21.9 (11.9–40.6)

Abbreviations: CI, confidence interval; ELN, European Leukemia Net.

Figure 3. Reclassification from cytogenetic risk to the ELN (a and b), from the ELN to the Patel’s revised risk stratification (c and d), and from
the ELN to the Li’s revised risk classification (e and f) in the Clinseq and the TCGA cohorts.
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gene-expression information to develop a better risk classification
system appears promising.
In the Clinseq-AML cohort, five out of six tested expression-

based signatures could separate CN-AML patients into subgroups
with statistically significant distinct prognosis. However, only Li-
24-gene could be validated in the TCGA-AML cohort. The
discrepancy between Clinseq-AML and TCGA-AML results can at
least partly be understood in terms of inclusion criteria and
sampling. Whereas the TCGA-AML cohort only is comprised by de
novo AML, the Clinseq-AML cohort consists of consecutive AML
patients including also secondary and therapy-related AML. There
was a larger proportion of cytogenetically intermediate and
smaller proportion of low-risk patients in the Clinseq-AML data set
compared to TCGA-AML. Mutations that have higher frequencies
in the Clinseq-AML cohort are ASXL1, IDH2, TET2, cohesion and
spliceosome mutations. The results presented here should also be
interpreted in the context of the available sample sizes in the
Clinseq-AML and TCGA-AML cohorts, where the smaller sample
size in the TCGA-AML cohort may account for the lack of statistical
significance in some cases. Although the Clinseq-CN cohort is
larger than the other CN validation cohorts used in the original
studies, failure to confirm previously reported different prognosis
in the different risk groups could be an effect of statistical power
and should therefore not necessarily be interpreted as evidence
against the model. We also encourage interpretation of the results
in terms of estimated effect sizes (Figure 1c), which agree in
respect to the direction of the effects (HRs) from the original
studies and findings in the Clinseq and TCGA cohorts and in many
cases also have estimates that are of similar size. The C-index
(Figure 1d) also offers another complementary statistic that
provide means for interpreting the different risk scores in terms
of their ability to correctly rank survival times.
In this study, we performed whole-transcriptomic RNA-sequen-

cing and panel mutational sequencing on a large cohort
comprised of 274 AML patients (Clinseq-AML). The TCGA-AML
study is also comprised of multi-level sequencing information. The
multi-omics data allows us to implement and compare different
types of models. We succeeded to replicate and validate several
models. We note that not all of the genes/probes from Eppert-
LSCR, HSCR, Metzeler-86-probe and Bullinger-133-gene could be
matched in the Clinseq-AML and the TCGA-AML studies, which
may lead to a potential reduction in their prognostic values
(Eppert-LSCR: 42 out of 43 genes matched, HSCR: 91 out of 122
genes matched, Metzeler-86-probe: 59 out of 63 genes matched
and Bullinger-133-gene: 108 out of 112 genes matched). We also
note that some models were easy to implement, while others less
so. For example, Marcucci-7-gene model’s inputs are dichoto-
mized at the median of expression value, which is easy to
implement in data from diverse platforms irrespective of the
original distribution of the data. The weights of predictors to
generate a summarized prognostic score in Metzeler-86-probe
model were given at probe level and the cutoff to dichotomize the
prognosis score was a given value, leading to potential challenges
in implementation. Although they may all have prognostic value,
to outperform other models in respect to application, a
standardized and ‘user-friendly’ procedure could pave the way
for clinical practice.
Improvement in AML patient stratification is important in

clinical practice. Next generation sequencing technologies are
rapidly becoming cost and time efficient, and also gradually
implemented in the clinical setting to facilitate diagnosis and
treatment decisions in a variety of diseases, including cancer and
hematological malignancies. This validation study further confirms
and adds evidence that some of the gene-expression as well as
mutation–based AML risk classification models are reproducible
and provide prognostic information. Nonetheless, it will be
necessary to evaluate these prognostic models further in larger

cohorts and clinical trials before implementation in routine
clinical care.
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