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Summary

T-helper cell type 17 (Th17) mediated inflammation is associated with

various diseases including autoimmune encephalitis, inflammatory bowel

disease and lung diseases such as chronic obstructive pulmonary disease

and asthma. Differentiation into distinct T helper subtypes needs to be

tightly regulated to ensure an immunological balance. As microRNAs

(miRNAs) are critical regulators of signalling pathways, we aimed to iden-

tify specific miRNAs implicated in controlling Th17 differentiation. We

were able to create a regulatory network model of murine T helper cell

differentiation by combining Affymetrix mRNA and miRNA arrays and in

silico analysis. In this model, the miR-212~132 and miR-182~183 clusters

were significantly up-regulated upon Th17 differentiation, whereas the

entire miR-106~363 cluster was down-regulated and predicted to target

well-known Th17 cell differentiation pathways. In vitro transfection of

miR-18b, miR-106a and miR-363-3p into primary murine Cd4+ lympho-

cytes decreased expression of retinoid-related orphan receptor c (Rorc),

Rora, Il17a and Il17f, and abolished secretion of Th17-mediated inter-

leukin-17a (Il17a). Moreover, we demonstrated target site-specific regula-

tion of the Th17 transcription factors Rora and nuclear factor of activated

T cells (Nfat) 5 by miR-18b, miR-106a and miR-363-3p through luciferase

reporter assays. Here, we provide evidence that miRNAs are involved in

controlling the differentiation and function of T helper cells, offering use-

ful tools to study and modify Th17-mediated inflammation.

Keywords: microRNA; miR-106a; miR-18b; miR-363a-3p; nuclear factor

of activated T cells 5; retinoid-related orphan receptor a; retinoid-related
orphan receptor ct; T helper cell differentiation; T helper type 17.

Abbreviations: 30 UTR, 30 untranslated region; AFC, array fold change; EAE, experimental autoimmune encephalitis; FC, fold
change; Foxp3, forkhead box protein 3; Gatm, glycine aminotransferase; Gimap1, GTPase of the immunity-associated protein
family 1; IL, interleukin; IPA, ingenuity pathway analysis; miRNA/miR, microRNA; Nfat, nuclear factor of activated T cells;
qRT-PCR, quantitative real-time PCR; ROR, retinoid-related orphan receptor; Tanc2, tetratricopeptide repeat, ankyrin repeat and
coiled-coil containing 2; TGF, transforming growth factor
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Introduction

Interleukin-17 (IL-17) -secreting T helper cells (Th17) are

essential for protection from bacterial and fungal infec-

tions.1,2 Recent literature suggests that Th17 cells are also

involved in chronic, non-infectious diseases, such as

experimental autoimmune encephalitis (EAE)3 and

inflammatory bowel disease,4 as well as chronic lung dis-

eases such as chronic obstructive pulmonary disease and

severe asthma.5 The differentiation from naive Th0 cells

to Th17 cells is regulated by Il-6, Il-23 and transforming

growth factor b (Tgf-b). These initiate downstream sig-

nalling cascades including activation of T-cell receptor,

signal transducer and activator of transcription 3 (Stat3),

and retinoid-related orphan receptor ct (Rorct).6 How-

ever, the precise regulatory networks of Th17 differentia-

tion in complex diseases are still unknown. Identification

thereof may potentially enable to develop novel therapies

for Th17-related diseases.

The expression of Rorct and additional host proteins,

such as the aryl hydrocarbon receptor (Ahr) for Th17

cells,7 needs to be carefully controlled to ensure an

immunological balance. Such regulatory fine-tuning is

often modulated by small, single-stranded non-coding

RNAs, the so-called microRNAs (miRNAs),8,9 the binding

of which to the 30 untranslated region (30 UTR) of their

target mRNAs either leads to degradation of the respec-

tive mRNA or a translational repression leading to a

decreased expression of the target gene.8,9 Hence, miR-

NAs are able to control gene or protein expression at the

post-transcriptional level. Single miRNAs have been

shown to play a pivotal role in many biological systems,

and in regulating the immune system.10 Several studies

have proposed a role for miRNAs in the regulation of T

helper cell differentiation,11–15 although information on

the specific role of single miRNAs during differentiation

into distinct T helper subtypes is scarce. Therefore, we

aimed to decipher the regulatory interactions of miRNAs

during Th17 differentiation to better understand the

underlying molecular mechanisms of Th17-driven dis-

eases. We performed mRNA and miRNA microarray

analyses of primary, in-vitro-differentiated Th17, Th2 and

Th0 cells and subsequently validated the candidates on a

functional level.

Materials and methods

Mice

Female wild-type BALB/c mice were purchased from

Taconic (Silkeborg, Denmark). Mice were maintained

under specific pathogen-free conditions in individually

ventilated cages according to the federal guidelines for the

use and care of laboratory animals. At the age of 10–
14 weeks, mice were killed for spleen collection.

Isolation and in vitro differentiation of Cd4+ T helper
cells

Splenic Cd4+ cells were isolated by using the mouse Cd4+

Isolation Kit II (Miltenyi Biotech, Teterow, Germany).

Isolation was performed according to the manufacturer’s

guidelines, and yielded at least 96% purity of

Cd4+ Cd3+ Cd8� T lymphocytes. A total of 200 000

Cd4+ cells per well were seeded in a 96-well plate, and

were cultured with RPMI-1640 media containing 10%

fetal calf serum, 1% penicillin/streptomycin and antibod-

ies against Cd3 (4 µg/ml) and Cd28 (30 ng/ml) (both

BioLegend, San Diego, CA). Th17 cells were also cultured

with Il-6 (20 ng/ml), Tgf-b (5 ng/ml), Il-23 (10 ng/ml)

(all R&D Systems, Wiesbaden-Nordenstadt, Germany)

and an antibody against Interferon-c (Ifn-c) (10 µg/ml)

(BioLegend). Th2 cells were differentiated with Il-4

(100 ng/ml) (R&D Systems) and an antibody against Ifn-c
(10 µg/ml) (BioLegend). Th0 cells served as a control and

were cultured with antibodies against Cd3 and Cd28

(BioLegend). Primary Th cells were cultivated at 37°C in

5% CO2 in a humidified incubator. After 72 hr the med-

ium was replaced with fresh differentiation media. After

120 hr of culture, cells were stimulated with 50 ng/ml

PMA and 1 µg/ml ionomycin (both Sigma-Aldrich, St

Louis, MO) for 4 hr.

Intracellular cytokine staining

Before intracellular staining, secretion of cytokines during

the 4-hr stimulation was blocked by Monensin GolgiS-

topTM (BD, Franklin Lakes, NY) according to the manu-

facturer’s recommendations. Cells were washed twice with

PBS (containing 2% fetal calf serum and 0�01 M EDTA)

and stained with surface antibodies against Cd3 (Pacific

Blue), Cd8 (FITC) and Cd4 (allophycocyanin-H7) (all

1 : 100, all BioLegend). Intracellular Il-17a (FITC) and

Il-4 (phycoerythrin) (both Becton Dickinson, Franklin

Lakes, NY) were stained by using the Cytofix/Cytoperm

Plus Fixation/Permeabilization Kit (BD) according to the

manufacturer’s instructions. After additional washing,

cells were analysed on an LSRII flow cytometer (BD).

Quantitative real-time PCR

RNAs containing small RNAs were isolated with the miR-

Neasy micro kit (Qiagen, Venlo, The Netherlands)

according to the manufacturer’s recommendations. The

quality and quantity of the isolated RNA samples were

validated with the Nanodrop ND-1000 Spectrometer (peq

Lab Bioscience, Erlangen, Germany) and the Agilent Bio-

analyzer 2100 (Agilent, Santa Clara, CA). Only RNAs

with an RNA integrity number > 7.25 were used for fur-

ther analyses Quantitative real-time PCR (qRT-PCR) was

performed using an LC480 (Roche, Basel, Switzerland)
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and the recommended ‘Light Cycler DNA master SYBR

Green I’ Kit (Roche). Primer sequences were self-designed

and are listed in the Supplementary material (Table S1).

Analysis of all qRT-PCRs was done with the ‘LC 480

SW1.5’ software (Roche) using the second derivative

maximum method and fold changes between groups were

calculated by the ΔΔCt method.16

Messenger RNA profiling

For mRNA arrays, total RNA (30 ng) of four independent

differentiations was amplified using the Ovation PicoSL

WTA System V2 (Nugen, San Carlos, CA) in combina-

tion with the Encore Biotin Module (Nugen). Amplified

cDNA was hybridized on an Affymetrix Mouse Gene 2.0

ST array (Affymetrix, Santa Clara, CA). Staining and

scanning were performed according to the Affymetrix

expression protocol, except for minor modifications as

suggested in the Encore Biotion protocol (Nugen).

Expression console (v.1.3.0.187, Affymetrix) was used for

quality control and to obtain annotated normalized

Robust Multichip Average (RMA) data (standard settings

including median polish and sketch-quantile normaliza-

tion). Statistical analyses were performed by using the sta-

tistical programming environment R17 implemented in

CARMAWEB.18 Genewise testing for differential expression

was carried out employing the (LIMMA) t-test (P < 0�05).
Heat maps were generated with CARMAWEB. Array data

have been submitted to GEO (GSE55013).

In silico analysis and Ingenuity pathway analysis

Pathway analyses and expression pairing were generated

through the use of QIAGEN’s Ingenuity Pathway Analysis

(IPA�, QIAGEN Redwood City, https://www.qiagenbioinf

ormatics.com/products/ingenuity-pathway-analysis/) using

Fisher’s exact test P-values.

MicroRNA profiling

For miRNA arrays, total RNA (600 ng) was labelled with

the FlashTag Biotin HSR kit (Genisphere, Sterling, VA)

and hybridized on miRNA 3.0 arrays (Affymetrix). Stain-

ing and detection of the array was performed as

described for mRNA arrays. Expression console

(v.1.3.0.187, Affymetrix) was used for quality control and

to obtain annotated normalized RMA data

[RMA + DABG (Robust Multichip Average + Detected

Above BackGround)]. Statistical analyses were performed

by using the statistical programming environment R17

implemented in CARMAweb.18 For miRNA analysis a fil-

ter for detection in at least n�1 samples in at least one

group was used. Heatmaps were generated with CARMA-

web. Array data have been submitted to GEO

(GSE55013).

MicroRNA qRT-PCR

For the miRNA analysis, all chemicals were purchased

from Exiqon (Vedbaek, Denmark). The cDNA of miR-

NAs were synthesized with the Universal cDNA Synthesis

Kit II followed by qPCR, which was done with ExiLENT

SYBR�Green Master Mix. Pre-designed primer sets for

miRNA qPCR (LNATM Primer sets, Exiqon) were used for

the analysis of the following miRNAs: miR-183-5p

(204652), miR-212-3p (205589), miR-301a-3p, miR-363-

3p (204726), miR-18b-5p (205076) and miR-106a-5p

(205061). The small nuclear RNA U6 (203907) was used

as a reference miRNA for normalization.

Dual-luciferase reporter assays

Potential miRNA binding sites within the genes Rorc,

Rora and Nfat5 were identified with the Whitehead Insti-

tute for Biomedical Research target prediction tool ‘TAR-

GETSCAN MOUSE’ (http://www.targetscan.org/mmu_71/).

Due to the large size of the 30 UTRs (> 7 kb) with the

presence of multiple miRNA binding sites, we decided to

clone smaller fragments, containing miRNA binding sites

of the respective 30 UTR into reporter plasmids (primer

sequences used for cloning are listed in the Supplemen-

tary material, Table S1). For a more detailed analysis, we

used synthetic DNA duplexes spanning ~80-nucleotide
regions of the respective 30 UTR each with a single

miRNA binding site (or a mutation thereof comprising

seven or eight sequential T or A nucleotides, all sequences

are listed in the Supplementary material, Table S5) in the

reporter assays as described previously.19 Synthesized 80-

bp DNA fragments within the 30 UTRs of Rora, Rorc and
Nfat5 with binding sites for either miR-18b, miR-106a or

miR-363-3p were ordered as DNA duplexes from Meta-

bion (Planegg, Germany). To ease cloning into vectors,

the DNA oligos carried the overhang recognition sites for

the restriction enzymes XhoI (TCGAG on the 50 end, C
on the 30 end) and NotI (GGCCGC on the 50 end and

GC on the 30 end) and are phosphorylated (p) on the 50

ends (sequences are listed in the Supplementary material,

Table S5). All fragments were cloned into individual psi-

CheckTM-2 vectors (Promega, Madison, WI) using XhoI

and NotI restriction sites. Reporter assays were performed

by transfecting 100 ng of the transgene psiCheckTM-2 vec-

tors and 5 nM of each miRNA precursor or a scrambled

miRNA into A549 human alveolar basal epithelial cells by

using peqFECT siRNA transfection reagent (PeqLab Bio-

tech GmbH, Erlangen, Germany). Cells were cultured in

Dulbecco’s modified Eagle’s medium containing 10% fetal

calf serum in 96-well plates (Nunc, Roskilde, Denmark ).

After 48 hr, luciferase activity was measured in a lumines-

cence plate reader (Berthold, Bad Wildbad, Germany)

after the addition of the respective substrates by using the

DualGlo Luciferase Assay System (Promega) according to
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the manufacturer’s recommendations. Renilla luciferase

(fused to 30 UTR) activity was normalized to firefly luci-

ferase activity (transfection control).’

Transfection of miRNAs

Primary Cd4+ T cells were transfected with miRNA mim-

ics for miR-106a-5p, miR-18b-5p, miR-363-3p or a

scrambled miRNA as control (Ambion, Life Technologies,

Carlsbad, CA). Freshly isolated cells were cultivated in

75% normal differentiation medium and 25% transfection

medium. The latter contained serum-free medium, 0�12%
transfection reagent (PeqFECT siRNA, PeqLab Biotech

GmbH) and the miRNA precursors (6�5 nM final concen-

tration). After 4 hr, the media was exchanged for fresh

differentiation medium. Cells were harvested after 72 hr

and analysed for gene expression, cytokine secretion and

viability.

Analysis of cell viability

Viability of primary cells after transfection was measured

by an MTT-assay (Thermo Fischer Scientific, Waltham,

MA). MTT dye (3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-

nyltetrazolium bromide) was added to the cells and incu-

bated for 4 hr. Purple formazan produced by living cells

was then analysed by measuring the absorbance at 500–
600 nm with a plate reader (Tecan, M€annedorf, Switzer-

land).

Statistical analysis

Statistical validation of arrays was performed using LIMMA

t-test and Benjamini–Hochberg multiple testing correc-

tion. For all other experiments, statistical differences

between groups were calculated using either one-way

analysis of variance with Tukey post-test or unpaired Stu-

dent’s t-test. The calculations and graphs were made with

GRAPHPAD PRISM 5.01.

Results

Validation of in vitro Th cell differentiation

To study mRNA and miRNA expression in mature Th17

cells, we isolated Cd4+ cells from murine spleens, and dif-

ferentiated them in vitro into Th17, Th2 and Th0 cells. A

successful differentiation into distinct T-helper subtypes

was verified and quantified by intracellular cytokine stain-

ing for Il-4 for Th2 cells, and Il-17a for Th17 after 120 hr

of culture. Both cytokines were significantly elevated in

the respective T-helper subtype. Compared to Th0 control

cells, Th2 cells produced double the amount of Il-4

(Fig. 1a) and Th17 cells showed a threefold increase of

Il-17a production (Fig. 1b).

Next, we analysed the mRNA expression of distinct

Th17 and Th2 markers by qRT-PCR. The gene encoding

the Th17 transcription factor Rorct, Rorc, and Il17a were

significantly up-regulated in Th17 cells compared with

Th0 and Th2 cells. The two specific Th2 cell markers,

Gata3 and Il4, were significantly increased in Th2 cells

and unchanged or lower in expression in Th0 and Th17

cells (Fig. 1c), confirming specific differentiation.

mRNA profiling of Th17, Th2 and Th0 cells

In a next step, we aimed to identify regulatory networks

in the distinct in-vitro-differentiated T helper subtypes.

We therefore performed mRNA arrays involving > 35 000

transcripts. By comparing the expression values between

Th17 and Th0 cells, we identified 2052 significantly regu-

lated genes (P < 0�05), and 1918 genes that were signifi-

cantly different between Th17 and Th2 cells (see

Supplementary material, Tables 1 and 2 accessible at GEO

GSE55013). From these gene sets, 544 genes were simi-

larly regulated in Th17 compared with Th0 cells or com-

pared with Th2 cells (see Supplementary material,

Fig. S1). All genes that were increased in expression in

Th17 cells compared with both Th0 and Th2 cells were

then defined as Th17-specific genes (see Supplementary

material, Table 3, accessible at GEO GSE55013).

Next, we used qRT-PCR to confirm the regulation of

three Th17-specific and three Th2-specific genes. As Th17

cell validation markers we chose the aryl hydrocarbon

receptor (Ahr) with an array fold change (AFC) of 5�9x,
Il17f, the second main cytokine of Th17 cells with an

AFC of 29�8, and the highly increased glycine aminotrans-

ferase (Gatm) with an AFC of 15�0. All three specific

Th17 genes were significantly increased (Fig. 2a). For Th2

cells we chose the Th2 cytokines Il5 (AFC: 1�7), Il24

(AFC: 2�0) and tetratricopeptide repeat, ankyrin repeat and

coiled-coil containing 2 (Tanc2) (AFC: 3�0). Il5 and Il24

were significantly increased in Th2 cells compared with

Th17 and Th0 cells (Fig. 2b). We observed a trend for

Tanc2 up-regulation in Th2 compared with Th0 and

Th17 cells, although this did not reach statistical signifi-

cance.

To determine which genes are involved in the regula-

tion of Th17 cell differentiation and function, we then

conducted an in silico analysis with the 2052 genes differ-

entially regulated in Th17 cells versus. Th0. Ingenuity

Pathway Analysis revealed ‘differentiation of Th17 cells’

as the most significantly enriched canonical pathway (see

Supplementary material, Table S2). Of note, nearly all

Th17-specific genes described in the literature were found

to be increased in our Th17 cells (Fig. 2c). In contrast,

the Th2-specific genes Gata3 and Il4 and the Th1-specific

T-box transcription factor Tbx21 (Tbet) and Stat4 were

all decreased in Th17 cells. Many genes that are con-

nected to T regulatory (Treg) cells were also increased in

ª 2017 John Wiley & Sons Ltd, Immunology, 152, 402–413 405

miR-106a~363 cluster in Th17 cells



Th17 cells, including TGF-b receptor (Tgfbr), Rorc and

Il2; however, the main transcription factor of Treg, fork-

head-box protein 3 (Foxp3), was decreased in expression

(Fig. 2c).

Additional prediction of functional properties of Th17-

regulated genes revealed a significant enrichment of genes

associated with activated lymphocytes and specific Th17

functions with the top four being ‘cell movement of T

lymphocytes’, ‘T-cell migration’, ‘recruitment of neu-

trophils’ and ‘phosphorylation of protein’, and a decrease

in ‘bacterial infections’ and fungal infections’ (see Supple-

mentary material, Table S2). Hence, the microarray analy-

sis indicated correct differentiation into Th2 and Th17

cells in our in-vitro system.

microRNA profiling in Th17, Th2 and Th0 cells

To identify regulatory miRNAs involved in Th17 differen-

tiation, we performed Affymetrix miRNA 3.0 arrays with

the same RNA samples that were used for the mRNA

array. Comparing Th17 and Th0 cells, 92 miRNAs were

significantly regulated in Th17 cells (P < 0�05). In com-

parison to Th2 cells, 162 miRNAs (P < 0�05) were signifi-

cantly regulated in Th17 cells (see Supplementary material,

Fig. S2, Tables 4 and 5 accessible at GEO GSE55013). We

identified 60 miRNAs that were differentially expressed

compared with both Th0 and Th2 cells (see Table 6 acces-

sible at GEO GSE55013), and might therefore influence

Th17 differentiation or cytokine secretion.

We further compared the significantly regulated

mRNAs and miRNAs of all three T helper cell subtypes

to identify Th17-specific regulatory miRNA and mRNA

interactions (Fig. 3a). This expression pairing with IPA

predicted a number of miRNAs that are potentially

involved in differentiation and induction of Th17 cells,

with the top hits listed in Fig. 3(b,c). The miRNAs show-

ing the highest expression were the miR-212~132 cluster,

the miR-182~183 cluster and miR-338-5p (Fig. 3c). The
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Figure 1. Characterization of primary, in-vitro-differentiated T helper cells. (a) Protein expression of the Th2 effector cytokine interleukin-4 (Il-

4). Depicted are representative flow cytometry density blots for Il4 and Cd4. Numbers are positive counted cells in %. n = 5 independent experi-

ments are summarized in the dot blot on the right column. (b) Protein expression of the Th17 effector cytokine Il-17a. Depicted are density blots
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malized to Hprt. Medians in dot blots are represented by a black line. For (a) and (b) significant differences between Th0 control cells and Th17

or Th2 cells were calculated with Student’s t-test. For (c) statistical differences were calculated with one-way analysis of variance and Tukey post-

test. *P < 0�05, **P < 0�01,***P < 0�001.
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most decreased miRNAs were miR-301a and almost all of

the miR-106~363 cluster, including miR-18b, miR-20b

and miR-363-3p (Fig. 3d).

The expression of the most prominent up- and down-

regulated miRNA candidates was further validated by

qRT-PCR. miR-183-5p and miR-212-3p were significantly
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Figure 2. Messenger RNA (mRNA) profiling in T helper cell subtypes. (a) and (b) Quantitative RT-PCR validation of T helper type 17 (Th17)

and Th2 up-regulated genes. Depicted are dot blots of fold changes compared with the control (Th0) and normalized to Hprt. Medians in dot

blots are represented by a black line. For (b) and (c) significant differences between Th0 and Th17 or Th2 cells were calculated of n = 4 indepen-

dent differentiations with one-way analysis of variance and Tukey post-test. *P < 0�05, **P < 0�01, ***P < 0�001. (d) Regulation of Th17 genes

in the context of T helper cell differentiation. Depicted are up- and down-regulated genes of Th17 mRNA arrays, which are responsible for the

differentiation of Th17, Th2, Th1 and regulatory T (Treg) cells. In silico analysis and schematic figures were conducted with IPA software.
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increased in Th17 cells compared with Th0 and Th2 cells;

miR-301-3p, miR-18b and miR-106a were decreased, con-

firming the array data (Fig. 3d).

Th17 cell differentiation involves miRNA regulation

After identifying distinct Th17-specific miRNAs, we were

interested in whether these could play a functional role in

the Th17 differentiation process. Hence, we created an in

silico model of T helper cell differentiation by using the

miRNA and mRNA expression pairing data (Fig. 4).

According to this in silico model the increased miRNA

clusters 182~183 and 212~132 in Th17 cells might regulate

essential genes of Th1 and Treg differentiation. The miR-

NAs 182 and 183 were predicted to inhibit the expression

of GTPase of the immunity-associated protein family 1

(Gimap1), which was decreased in Th17 cells, and which is

important for Th1 differentiation. Moreover, the 182~183
cluster may also interfere with Foxo1/3 and Foxp3 expres-

sion, and so Treg differentiation. The Ahr-induced miRNA

cluster 212~132 may inhibit Th1 differentiation by reduc-

ing Stat4 expression. In contrast the down-regulated miR-

363-3p, miR-106a and miR-18b are predicted to bind to

the Th17 key transcription factors Rorc, Rora and Nfat5.

All predicted miRNA-mRNA pairings are listed in the

Supplementary material (Tables S3 and S4). Changes in

expression of these transcription factors could therefore

directly affect Il-17a/f secretion (Fig. 4).

Over-expression of miR-106a, miR-18b and miR-363-
3p decreases Th17 differentiation and Il-17 secretion

According to TargetScan S (mouse) (http://www.targetsca

n.org/mmu_71/), the 30 UTRs of Rora and Nfat5 contain

three binding sites for miR-18b, one for miR-106a and

two for miR-363-3p, while the Rorc 30 UTR only features

one binding site for miR-106a. To address this, we per-

formed dual-reporter luciferase-reporter assays, with one

specific region of the 30 UTR of the three transcription

factors each containing a predicted binding site for the

respective miRNAs.

We therefore demonstrated a specific binding of miR-

18b and miR-106a to the 30 UTR fragment of Rora and

Nfat5 via a diminished signal of the reporter luciferase

renilla compared with the control luciferase firefly

(Figs 5a and see Supplementary material, Fig. S3) and to

the scrambled miRNA transfection. miR-363-3p also sig-

nificantly bound to the 30 UTR of Rora and trendwise

also to Nfat5. Mutating the binding sites for the respec-

tive miRNAs abolished the reduction of the renilla luci-

ferase (Fig. 5a), so indicating a specific regulation by the

respective miRNA. The regulation of Rorc by miR-106a

could not be verified by this assay.

To investigate the functional relevance of this miRNA

cluster in the differentiation of Th0 to Th17 cells, we

transiently over-expressed miR-363-3p, miR-106a and

miR-18b in Th0 cells at the beginning of the in vitro dif-

ferentiation towards Th17. Compared with Th17 cells

transfected with the same concentration of scrambled

miRNA, simultaneous transfection of miR-363-3p, miR-

106a and miR-18b decreased the mRNA expression of

Rorc, Rora, Il17a and Il17f (Fig. 5b). Furthermore, down-

regulation of these genes by miRNA over-expression

resulted in a significant decrease of Il-17a protein produc-

tion in Th17 cells compared with the scrambled trans-

fected Th17 cells (Fig. 5c). The viability of transfected

cells did not vary between the different conditions; in

particular not between miRNA-transfected Th17 cells and

scrambled transfected Th17 cells (Fig. 5d).

Discussion

This study aimed to identify regulatory miRNA/mRNA

networks that control the differentiation and function of

Th17 cells. Hence, we combined mRNA and miRNA

microarray data of in-vitro-differentiated murine primary

Th2 and Th17 cells in an in silico IPA. The identified

Th17-specific miRNA clusters were predicted to be func-

tionally involved in Th17 differentiation and cytokine pro-

duction. For example, the miR-106a~363 cluster was

decreased in expression upon the differentiation of Th17

cells, and we confirmed its direct interference with the

specific Th17 transcription factors Rorct, Rora and Nfat5.

Further, in vitro transfections of this cluster into Th17 cells

reduced the secretion of Il-17 cytokines. Hence, we suggest

that the miR-106a~363 cluster plays an important role in

fine-tuning the T helper differentiation towards Th17.

A correct in vitro differentiation of naive Cd4+ T cells

into Th17 was confirmed by (i) expression of Th17- and

Th2-specific genes and production of respective cytokines;

(ii) a unique gene expression signature in the microarray

analysis of previously described genes involved in Th17

differentiation and effector function, including Rorc,

Il17a, Il17f, Ahr, Il23r, Rora and Il22;6,20 and (iii) strong

enrichment of Th17-associated functions such as defend-

ing against bacterial or fungal infections, and preventing/

hindering recruitment of neutrophilic cells in IPA.

To identify the complex regulatory networks of Th cell

differentiation, we combined our mRNA array data with

a miRNA microarray of our Th17, Th2 and Th0 cells,

creating in silico a hypothetical T helper cell differentia-

tion model. Although this model is based on our own

expression data of miRNA or mRNA and published data,

it has to be emphasized that IPA only creates an in silico

prediction of potential biological models but does not

provide evidentiary facts. Nonetheless, in this theoretical

model miR-182 had a central role in Th17 cell function

by potentially inhibiting the differentiation pathways of

Th1 and Treg cells. Additionally, miR-182 would affect

the expression of Foxo1 and Foxo3, indirectly suppressing
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Foxp3 expression and consequently Treg cell differentia-

tion. Binding of miR-182 to Foxo1 and Foxo3 mRNA has

been confirmed,21,22 and the entire miRNA cluster

183~182 has just been shown by Ichiyama et al. to pro-

mote Th17 pathogenicity through direct repression of

Foxo1.23 Further, Foxo1 and Foxo3 conditional knockout

mice are depleted of Treg cells and have higher Cd4+

lymphocyte populations and inflammation.24,25 Hence,

Foxo1 regulation seems to be fine-tuned by miRNAs in

Th17 cells, influencing their pathogenicity and function.

Taken together, these findings not only support our

in vitro Th17 differentiation, but also the IPA-driven tar-

get prediction approach of this study.

In our study, the miR-212~132 cluster was highly

increased in Th17 cells. Ahr signalling has been shown to

induce the expression of this miRNA cluster and the

production of Il-17 in vitro and in vivo,11 which is similar

to our data where both Ahr and the miR-212~132 cluster

were increased during Th17 differentiation. Additionally,

we speculate that this might prevent Th1 differentiation

as the miR-212~132 cluster has been shown to inhibit

Stat4, indirectly repressing Ifng.26 miR-10b,27 miR-210,28

miR-15529 and miR-30a30 have been previously described

to be involved in Th17 regulation and function, but are

not significantly altered in our arrays.

In our study, the expression of the entire cluster of

miR-106~363 was decreased. This cluster is located on

the X chromosome,31 but little is known about its role in

immune function. miR-17, miR-106a and miR-20a up-

regulation has been shown to lead to macrophage activa-

tion after lipopolyaccharide stimulation32 and miR-106a,

miR-20a, miR-18b were found to be increased in Th1

Th0
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cells compared with Th2 cells in a gene array study.33 We

observed a decreased expression of these miRNAs in

Th17 cells when compared with Th2 cells. Hence, this

miRNA cluster seems to be expressed highest in Th1 cells,

on intermediate levels in Th2 cells, and lowest in Th17

cells. We speculate that this differential, hierarchical regu-

lation might be a hint for a functional relevance in the

differentiation of Th cells into distinct subtypes. In our in

silico model, luciferase reporter assays and in vitro func-

tional analyses, we demonstrated that miR-106a, miR-18b

and miR-363-3p can bind to the 30 UTR of Nfat5 and

Rora, leading to a consequent decrease of Il17a/f gene

expression and reduction of Il-17a protein production.

This might be further amplified by additional binding of

these miRNAs to the transcription factor Stat3, as has

been shown for miR-106a.34 Stat3 is, next to Rora and

Rorct, essential for Th17 differentiation and Il17 gene

expression.35 As the miR-106~363 cluster is decreased in

Th17 cells, Stat3 might remain at baseline levels, inducing

Th17 differentiation and Il-17 production.

As our data suggest a role for miRNA cluster 106a~363
in Th17 differentiation, it will be crucial to analyse its

expression in animal models with ongoing Th17-mediated

inflammation, such as autoimmune encephalomyelitis,

Crohn’s disease or chronic respiratory diseases such as

severe asthma and chronic obstructive pulmonary dis-

ease.3–5,36 Given our findings, we speculate that therapy

approaches using miR-106a, miR-18b and miR-363-3p

might potentially ameliorate or prevent Th17-cell-

mediated inflammation. Along this line, another member

of the miR-106a~363 cluster, miR-20b, has been shown

to be down-regulated in the blood of patients with multi-

ple sclerosis37 and in a Th17-driven experimental model

for EAE.37 A genetic depletion of the miR-106a~363 clus-

ter resulted in a more severe EAE course and up-regula-

tion of the miR-20b target genes Rorgt, and Stat3,37

whereas lentiviral over-expression of miR-20b led to

decreased Th17 cells and reduced EAE severity.38 Hence,

these studies confirm the disease relevance of our in silico

model, strengthening the suggestion that the miR-
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106a~363 cluster might be an interesting target for thera-

peutic interventions.

In summary, by using microarray profiling we were

able to create an in silico miRNA/mRNA regulatory net-

work of Th17 cell differentiation. We observed that the

most abundant up- and down-regulated miRNAs are

organized in distinct clusters, and the expression of the

entire cluster of miR-106a~363 was decreased in Th17

cells. Target prediction and a luciferase reporter assay

revealed that this cluster interferes directly with key tran-

scription factors of Th17 differentiation. Over-expression

of these miRNAs reduced Th17 differentiation and the

secretion of Il-17a. Hence, the present work is a first step

towards the identification and understanding of the

underlying molecular mechanisms involved in Th17 cell

differentiation, which is crucial to develop novel and

effective treatment strategies for Th17-mediated inflam-

matory diseases.
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