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Summary

Interleukin 27 (IL-27) has been identified as a potent cytokine in the dif-

ferentiation of type 1 regulatory T (Tr1) cells through interactions with

several key elements, including transcription factors such as aryl hydro-

carbon receptor and IL-21. Autocrine production of IL-21 is known to be

important for maintaining IL-10 expression by Tr1 cells. Although previ-

ous studies have shown that the phosphoinositide 3-kinase (PI3K) –Akt
axis contributes to the differentiation of helper T-cell subsets, the role of

the PI3K pathway on Tr1 cell differentiation remains to be elucidated.

Here, we demonstrate that suppression of the PI3K-Akt pathway results

in impairment of IL-27-induced Tr1 (IL-27–Tr1) cell differentiation

in vitro and in vivo. Furthermore, this suppression down-regulates IL-21

receptor expression by Tr1 cells, followed by suppression of IL-10 expres-

sion by IL-27–Tr1 cells. These results suggest that the PI3K pathway

enhances IL-10 expression by IL-27–Tr1 cells through up-regulation of

IL-21 receptors.

Keywords: interleukin-21 receptor; interleukin-27; phosphoinositide 3-kinase;

type 1 regulatory T cells.

Introduction

The immune response is known to be essential for

protecting the host from a wide range of potentially patho-

genic microorganisms. Furthermore, an immune-suppres-

sive response is crucial for preventing reactivity to self-

antigens. Interleukin-10 (IL-10) is a regulatory cytokine

that plays an essential role in controlling inflammatory

processes and autoimmune pathologies. Numerous cell

types produce IL-10, such as activated T cells, mast cells

and antigen-presenting cells, including macrophages and

dendritic cells.1–3 In previous studies, mice deficient in IL-

10 developed a spontaneous inflammation in the colon,

and mice with mutations in either IL-10 or IL-10 receptor

suffered from early-onset enterocolitis.4,5 Among helper T

(Th) cell subsets, the best understood subsets that express

IL-10 are Foxp3+ CD4+ regulatory T (Treg) cells and Fox-

p3– IL-10-producing type 1 regulatory (Tr1) cells.6

Tr1 cells have received increased attention in recent

medical research due to their role in peripheral immune

tolerance. Tr1 cells lack expression of Foxp3 but predom-

inantly produce IL-10.7 Adoptive transfer of Tr1 cells has

been shown to suppress tissue inflammation, including

colitis and autoimmune diseases.8 Recently, IL-27, a het-

erodimeric cytokine that belongs to the IL-6/IL-12 family

of cytokines, has been identified as a differentiation factor

for Tr1 cells. Production of IL-10 by IL-27-induced Tr1

cells was reported to be promoted by signalling pathway

Abbreviations: 4-HT, 4-hydroxytamoxifen; AhR, aryl hydrocarbon receptor; CFSE, 5-(and-6)-carboxyfluorescein diacetate succin-
imidyl ester; cLP, colonic lamina propria; GSK3, glycogen synthase kinase 3; MLN, mesenteric lymph node; mTORC, mam-
malian target of rapamycin complex; PI3K, phosphoinositide 3-kinase; PP, Peyer’s patch; Th, helper T cells; Tr1, type 1
regulatory T cells; Treg, regulatory T cells
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through aryl hydrocarbon receptor (AhR), c-Maf, induci-

ble T-cell co-stimulator, and IL-21 receptor is important

for the maintenance of IL-10 production by IL-27-

induced Tr1 cells.9,10 A study using mice deficient for

IL-27 found a lack of Tr1 cells, an increase in Th17 cells,

and development of more severe experimental autoim-

mune encephalitis.11

The phosphoinositide 3-kinase (PI3K) family controls

several biological functions and has emerged as a key

molecular regulator in immune responses. Cytokine-

mediated signals in immune cells activate class IA PI3K,

consisting of a catalytic subunit (p110a, b or d) and a

regulatory subunit (p85a, p55a, p85b or p55c). This

enzyme is also activated on antigen recognition and co-

stimulatory signalling molecules such as CD28.12,13

Our previous study showed that deletion of p85a or

inhibition of PI3K-mammalian target of rapamycin com-

plex 1 (mTORC1) impaired Th17 cell differentiation.14 In

contrast, another study showed that the inhibition of

PI3K and mTORC1 increased inducible regulatory T

(iTreg) cell differentiation.15 In the context of IL-10, we

showed that the PI3K-Akt pathway up-regulates IL-10

production by dendritic cells after lipopolysaccharide

stimulation.16 However, the role of the PI3K pathway on

IL-10 production by Tr1 cells still remains unclear.

Hence, in this study, we analysed the role of the PI3K

pathway in the differentiation of Tr1 cells.

Materials and methods

Mice

Female, 8- to 12-week-old BALB/c mice were purchased

from Japan SLC (Hamamatsu, Japan). Foxp3hCD2 mice on

a C57BL/6 background17 were kindly provided by S. Hori

(RIKEN RCAI, Yokohama, Japan). Il10Venus mice on a

C57BL/6 background18 were kindly provided by K.

Honda (Keio University, Tokyo, Japan). Il10Venus mice

were crossed with Foxp3hCD2 mice to obtain Il10Venus Fox-

p3hCD2 mice. Akt-mertg mice on a C57BL/6 background19

were kindly provided by T. Nakano (Osaka University,

Osaka, Japan). All animal experiments were performed in

accordance with protocols approved by the Animal Care

and Use Committee of Tokyo Medical and Dental

University (TMDU; approval number 0170344A) and

Kansai Medical University, and 8- to 12-week-old mice

were used for all experiments.

Generation of IL-10-producing Tr1 cells in vitro

After single-cell suspension of splenocytes was isolated, we

negatively isolated CD25� CD4+ T cells. After that,

CD62L+ cells were purified with anti-phycoerythrin
microbeads by magnetic separation using magnetic-acti-

vated cell sorting (MACS) microbeads (Miltenyi Biotec

Inc., San Diego, CA) according to the manufacturer’s pro-

tocol; the purity of each population was confirmed by FACS

to be routinely > 95%. CD62L+ and CD62L� were used as

naive and memory CD4+ T cells, respectively. Each popula-

tion was cultured in triplicate and stimulated for 3 days

with plate-bound aCD3e (5 lg/ml; 2C11) and aCD28
(2 lg/ml; PV-1) antibodies in the presence of IL-10 (10 ng/

ml; eBioscience, San Diego, CA) or IL-27 (10 ng/ml; eBio-

science). The pan-PI3K inhibitor LY294002 (Calbiochem,

San Diego, CA) was used at a final concentration of 3 lM,
and IC87114 (Symansis, San Diego, CA), a specific inhibitor

for class-IA-PI3K, was used at a final concentration of 8 lM.
4-Hydroxytamoxifen (4-HT) was purchased from Sigma-

Aldrich (St Louis, MO) and used at 2 lM. For the IL-27-

induced Tr1 cells proliferation assay, naive or memory T

cells were labelled with 5-(and-6)-carboxyfluorescein diac-

etate, succinimidyl ester/CFSE (Molecular Probes, Eugene,

OR) or with violet tracker (CellTrace Violet Cell Prolifera-

tion Kit; Invitrogen, Carlsbad, CA), respectively, according

to the manufacturer’s protocol. Both populations were then

cultured together at a ratio representing the initial

CD4+ CD25� T-cell population. To investigate the involve-

ment of IL-21 and IL-21 receptor, recombinant mouse IL-

21 (80 ng/ml; R&D Systems, Minneapolis, MN) or neutral-

izing IL-21 monoclonal antibody (10 lg/ml; clone FFA21,

eBioscience) was added when we started to differentiate Tr1

cells by IL-27.

Antibodies

The following antibodies were used for flow cytometry:

monoclonal antibodies against CD3 (145-2C11), CD4

(RM4-5), CD44 (IM7), CD62L (MEL-14), interferon-c
(XMG1.2), and IL-10 (JES5-16E3). All monoclonal anti-

bodies were obtained from Affymetrix (Santa Clara, CA),

eBioscience, or BD-Pharmingen (San Diego, CA). For

Western blotting analyses, anti-pAkt (Ser473, #4058),

anti-pAkt (Thr308, #9275), anti-Akt (#9272), anti-

pFOXO1 (Ser256, #9461), anti-pFOXO1/3a (Thr24/32,

#9464), anti-FOXO1 (#2880), anti-pGSK-3a/b (Ser21/9,

#9331), anti-GSK-3b (#9315), and anti-p-p70S6K

(Thr421/Ser424, #9204) antibodies were purchased from

Cell Signaling Technology (Danvers, MA). Anti-GAPDH

(FL-335) and anti-S6K1 (C-18) antibodies were purchased

from Santa Cruz Biotechnology (Santa Cruz, CA).

Flow cytometry

For intracellular cytokine staining, cells were stimulated

for 6 hr with PMA (5 ng/ml) and ionomycin (50 lg/ml)

in the presence of brefeldin A (0�5 lg/ml; Sigma-Aldrich).

Stained cells were analysed using FACSVERSE (BD Bio-

sciences, San Jose, CA) with FACSUITE software. Data

were analysed using FLOWJO software (Tree Star, Ashland,

OR). For intracellular staining for phosphorylated Akt,
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purified CD4+ CD25� T cells were incubated for 24 hr

with IL-27 in the presence or absence of IC87114. Cells

were then fixed with BD Phosflow Lyse/Fix Buffer (BD

Biosciences). After fixation, cells were made permeable

with BD Phosflow Perm Buffer III (BD Biosciences), and

stained for CD4 and phosphorylated Akt (T308) or Akt

(S473). Antibodies were purchased from BD Pharmingen.

Western blotting

Western blotting analyses were performed as previously

described.14 ECL Prime Western Blotting Detection Kits

(GE Healthcare, Piscataway, NJ) were used for detection

of chemiluminescence. The LAS-4010 mini imaging sys-

tem (Fuji Film, Tokyo, Japan) was used to quantify digi-

tal images.

Anti-CD3 antibody treatment in vivo

Il10Venus Foxp3hCD2 mice were treated intraperitoneally

with 20 lg of aCD3 (clone 2C11) or isotype-matched

control antibody, in the presence or absence of IC87114

(2 mg/kg). Mice were killed 3 days after injection, and

single-cell suspensions were prepared from spleens,

mesenteric lymph nodes (MLNs), Peyer’s patches (PPs)

and colonic lamina propria (cLP). Single-cell suspensions

of MLN cells from mice were isolated using type I colla-

genase as described previously. PP and cLP cells were iso-

lated as described previously.20,21 Briefly, after removal of

PPs from the small intestines and separation of the colo-

nic area, the resected tissues were minced and enzymati-

cally digested, followed by density gradient separation.

The isolated cells were subjected to flow cytometry analy-

sis. Venus (IL-10) and hCD2 (Foxp3) expression was

analysed using FACSVERSE.

Quantitative real-time PCR

Total mRNA was extracted using NucleoSpin RNA II

(Macherey-Nagel, D€uren, Germany). cDNA was reverse-

transcribed using Takara PrimeScript RT Master Mix

(Takara Bio Inc., Shiga, Japan) according to the manufac-

turer’s instructions. Real-time PCR was performed using

the StepOnePlus Real-Time PCR System (Applied Biosys-

tems, Foster City, CA) and SYBR Premix Ex Taq II

(Takara Bio Inc.). Primers used were as follows: Il10 for,

50-GCTGGACAACATACTGCTAA-30; rev, 50-ATGCTCC
TTGATTTCTGG-30; il21 for, 50-GCACATAGCTAAATGC
CCTTCC-30; rev, 50-TCTCGGATCCTCAGGAATCTTC-30;
il21r for, 50-TACAGTGTGAACATGTAGGGGTG-30; rev,

50-TCCCAACATGGATGTGCTAA-30; ahr for, 50-AGCAT
CATGAGGAACCTTGG-30; rev, 50-GGATTTCGTCCGTT
ATGTCG-30; cmaf for, 50-GTGCAGCAGAGACACGTC
CT-30; rev, 50-CAACTAGCAAGCCCACTC-30.

Statistical analysis

Statistical analyses were performed by Mann–Whitney U-

test using PRISM 6 (GraphPad Software, La Jolla, CA). The

significance threshold was set at *P < 0�05 or **P < 0�01.

Results

Generation of Tr1 cells

Although several studies have extensively explored Tr1

cells, the lack of an efficient system to differentiate and

maintain Tr1 cells in vitro is a major limitation. Naive

CD25� CD62Lhi CD44lo CD4+ T cells have been used to

generate Tr1 cells;10,22 however, recent evidence suggests

that CD44hi Foxp3� CD4+ T cells from wild-type mice

rapidly differentiate into Tr1 cells.23 We therefore investi-

gated Tr1 cell differentiation by adding IL-10 or IL-27

from different CD4+ T-cell populations from the spleens

of wild-type mice. We sorted the CD4+ T-cell populations

into CD25�, CD25� CD62Lhi CD44lo (naive), and

CD25� CD62Llo CD44hi (memory) CD4+ T cells. Expres-

sion of IL-10 was highly induced with IL-27 stimulation,

especially in CD25� CD4+ T cells. These IL-10-producing

Th cells did not express Foxp3 marker (data not shown).

In contrast, IL-10 expression was independently induced

by IL-27 from the memory T cells as IL-10 was highly

expressed without any cytokine stimulation and the addi-

tion of neither IL-10 nor IL-27 induced IL-10 in this frac-

tion (Fig. 1a).

The fact that IL-27 augments the expression of IL-10 in

CD25� CD4+ T cells compared with naive T cells leads

to the speculation that another factor besides IL-27 affects

IL-10 expression by Tr1 cells. A previous study suggests

that IL-10 is an essential factor in Tr1 cell differentiation,

as the Tr1 cell is generated by a dendritic cell subtype

that secrets IL-10.24 We found that adding IL-10 to naive

T cells enhanced IL-10 expression by IL-27-induced Tr1

(IL-27–Tr1) cells. In accordance with this result, adding a

neutralizing antibody against IL-10 to the CD25� CD4+

T-cell population dampened IL-10 expression by IL-27–
Tr1 cells (Fig. 1b). Therefore, in the CD25� CD4+ T-cell

population, which consists of both CD62Lhi and CD44hi

populations, total IL-10 expression by IL-27–Tr1 cells

might be influenced by IL-10 cytokine, which is sponta-

neously expressed by memory T cells (Fig. 1a). Hence-

forth, the CD25� CD4+ T-cell population is used for the

generation of IL-27–Tr1 cells.

PI3K activity influences IL-10 expression by IL-27-
induced Tr1 cells in vitro

We then examined the involvement of the PI3K pathway

in Tr1 cell differentiation in vitro by adding LY294002, a

pan-PI3K inhibitor, or IC87114, a selective inhibitor for
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class IA subunit p110d, to the initial culture used for IL-

27–Tr1 cell differentiation. Both inhibitors suppressed IL-

10 expression by IL-27–Tr1 cells, and the suppressive

activity of LY294002 was more effective than that of

IC87114 (Fig. 2a). When we generated Tr1 cells using

CD25� CD4+ T cells from splenocytes of Akt-mer trans-

genic (Akt-mertg) mice in which a fusion protein of Akt

and mutated estrogen receptor (mer) can be activated

with 4-HT, hyper-activation of Akt by 4-HT enhanced

IL-10 expression by Tr1 cells (Fig. 2b). These results sug-

gested that PI3K activity was essential in IL-27–Tr1 cell

differentiation. Furthermore, the involvement of PI3K

activity in Tr1 cell differentiation was essential in the

early phase of generating IL-27–Tr1 cells, because the

inhibition rate gradually decreased in case of the addition

of IC87114 in later phases (day 1 or day 2) (Fig. 2c).

To investigate whether naive or memory subsets were

mainly affected by PI3K inhibition, IL-27–Tr1 cells were

induced in the presence or absence of IC87114 after label-

ling both subsets with different fluorescent agents and

mixing both populations. The suppression of IL-10

expression was mainly detected by the naive population

in CD25� CD4+ T cells (Fig. 3). Furthermore, IL-10 sup-

pression by IC87114 in IL-27–Tr1 cells was in a dose-

dependent manner (see Supplementary material, Fig. S1).

IC87114 suppresses phosphorylation of Akt and
FoxO1

T-cell stimulation via T-cell receptor (using aCD3 anti-

body) and co-stimulation (using aCD28 antibody)

induces PI3K activation followed by phosphorylation of

Akt at both Ser473 and Thr308.14 We found that adding

IC87114 during IL-27-induced Tr1 cell differentiation

dampened the phosphorylation of Akt at Ser473 at 24 hr,

but not Thr308 (Fig. 4a). In line with the result shown in
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Figure 1. Generation of type 1 regulatory

(Tr1) cells. (a) Splenocytes from BALB/c wild-

type mice were phenotypically sorted into

CD25�, CD25� CD62Lhi CD44lo (naive), and

CD25� CD62Llo CD44hi (memory) CD4+ T

cells, and were cultured in the presence of

interleukin-10 (IL-10) or IL-27 cytokine. (b) In

the presence of IL-27, naive T cells were cul-

tured with the addition of IL-10, and

CD25� CD4+ T cells were cultured with the

addition of aIL-10 neutralizing antibody. Cells

were stimulated with aCD3e and aCD28 anti-

body for 3 days. Multicolour fluorescence

staining was performed, and the stained cells

were analysed by flow cytometry. Data are

representative of three independent experi-

ments; the values in the profiles are mean �
standard deviation (SD) from three indepen-

dent experiments. Significant difference:

*P < 0�05.
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Figure 3 that IC87114 suppression mainly affected the

naive population, especially in the highly divided popula-

tions, using flow cytometric analysis, the suppression of

the phosphorylation of Akt (Ser473) was mainly detected

in the FSChi (highly proliferative) population (Fig. 4b).

To find the key molecule(s) involved in IL-27–Tr1 cell

differentiation, we investigated several molecules down-

stream of PI3K in the presence of IC87114 at 24 hr after

initial culture. To clarify the involvement of molecules

downstream of Akt, we examined glycogen synthase

kinase 3 (GSK3), but no phosphorylation of GSK3 was

detected (see Supplementary material, Fig. S2a). Although

phosphorylation of p70S6K, a protein kinase phosphory-

lated by mTORC1, was detected 24 hr after IL-27–Tr1
cell differentiation, this phosphorylation was not sup-

pressed even in the presence of IC87114 (Fig. S2b). Our

recent study demonstrated that Treg cell differentiation

was down-regulated by phosphorylation of Akt and FoxO

transcription factors induced by transforming growth fac-

tor-b.25 Hence, we assessed the involvement of FoxO1 in

IL-27–Tr1 cell differentiation via the PI3K pathway.

FoxO1 (Ser256) phosphorylation was suppressed at 24 hr

after IC87114 addition during IL-27–Tr1 cell differentia-

tion (Fig. 4c). These results suggest that the PI3K-

Akt-FoxO1 pathway might regulate differentiation of

IL-27–Tr1 cells in vitro.

PI3K controls Tr1 cell generation in vivo

Administration of aCD3 antibody to wild-type mice

resulted in significant induction of IL-10-producing T

cells mediated by IL-27, as Il27ra�/� mice failed to induce

IL-10+ T cells with this treatment.9 To address the

involvement of the PI3K pathway on Tr1 cell

differentiation in vivo, we administered aCD3 antibody

intraperitoneally to Il10Venus Foxp3hCD2 mice and assessed

Venus+ IL-10-producing T cells in the spleen, MLNs, PPs

and cLP at 3 days after injection. In line with our in vitro

findings, IL-10 expression by Foxp3� Tr1 cells in the

spleen, MLNs (data not shown), PPs and cLP was

decreased after IC87114 injection (Fig. 5a), but not IL-10

expression by Foxp3+ Treg cells (Fig. 5b). This result sug-

gested that the regulatory effects of the PI3K pathway on

IL-10 expression in Tr1 cells and Treg cells were different

in vivo, because inhibition of the PI3K pathway resulted

in attenuation of IL-10 expression by Foxp3� Tr1 cells,

but not Foxp3+ Treg cells.

IC87114 down-regulates IL-21 receptor expression

Interleukin-27 signalling induces transcription factors

such as AhR and c-Maf, both of which together with IL-

21 are associated with Tr1 cell expansion and differentia-

tion.10,22 Next, we investigated IL-10 and IL-21 expression

in Tr1 cells by real-time PCR. Intriguingly, despite sup-

pressing IL-10 expression, IC87114 enhanced IL-21

expression in IL-27-induced Tr1 cells (Fig. 6a). Activation

of AhR and c-Maf increased IL-21 production in Tr1

cells,9 in line with the enhancement of IL-21 expression

by IC87114, the addition of IC87114 also enhanced AhR

expression and probably c-Maf expression by IL-27–Tr1
cells on day 1 (Fig. 6a). In contrast, IL-21 receptor

expression was down-regulated by IC87114 on day 1 of

IL-27–Tr1 cell differentiation (Fig. 6a). To confirm that

IC87114 down-regulates IL-21 receptors, recombinant IL-

21 (Fig. 6b) or neutralized IL-21 antibody (Fig. 6c) were

added during IL-27–Tr1 cell differentiation in the

presence or absence of IC87114. Addition of recombinant
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Figure 2. Phosphoinositide 3-kinase (PI3K)

activity influenced interleukin-10 (IL-10)

expression from interleukin-27-induced type 1

regulatory T (IL-27–Tr1) cells in vitro. (a) Pan

PI3K inhibitor (LY294002) or class IA PI3K

subunit 110d inhibitor (IC87114) was added to

the initial IL-27–Tr1 cell culture. (b) Akt-mertg

CD25� CD4+ T cells differentiated into IL-27–

Tr1 cells for 3 days with the addition of 4-

hydroxytamoxifen (4-HT). (c) IC87114 was

added at three different time-points: day 0, day

1 or day 2 after initial culture. Data are repre-

sentative of three independent experiments; the

values in the profiles are mean � standard

deviation (SD) from three independent experi-

ments. Significant difference: *P < 0�05.
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IL-21 enhanced IL-10 expression by IL-27–Tr1 cells, but

not in IC87114-treated ones (Fig. 6b). Similarly, IL-10

expression by IL-27–Tr1 cells was dampened by neutraliz-

ing IL-21 antibody, but not in IC87114-treated ones

(Fig. 6c). RT-PCR analyses of Il10 expression at day 2 of

IL-27–Tr1 cells treated with recombinant IL-21 or neu-

tralizing IL-21 antibody showed a similar result (see Sup-

plementary material, Fig. S3a,b). Together, our results

indicate that inhibition of PI3K activity down-regulates

IL-21 receptor expression in IL-27–Tr1 cells.

Discussion

As one of the suppressive T-cell subsets, Tr1 cells have

been described to regulate inflammation, graft-versus-host

disease, and autoimmunity by producing high levels of

IL-10.8 Interleukin-27, a potent inducer of Tr1 cell differ-

entiation, is known to be produced by macrophages and

dendritic cells after toll-like receptor ligation.26 But the

precise mechanism has not been clarified. In this study,

our results show that the PI3K-Akt pathway enhances the

differentiation of IL-27–Tr1 cells through up-regulation

of IL-21 receptors.

Previous studies have tried to overcome the limitation

that there is no efficient system for generating Tr1 cells

by using CD44hi Foxp3� CD4+ T cells as a major source

of IL-10-expressing Tr1 cells.23 However, our findings

showed that using the CD25� CD4+ T-cell population

that included naive and memory populations was the best

source for generating Tr1 cells using IL-27 stimulation.

This might be due to IL-10 production by the memory
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Figure 3. Naive population from

CD25� CD4+ T cells was mainly affected by

IC87114. CD25� CD4+ T cells were sorted into

CD62L+ [labelled with carboxyfluorescein suc-

cinimidyl ester (CFSE)] and CD62L� (labelled

with violet tracker) fractions. Both populations

were then cultured together at a ratio repre-

senting the initial CD25� CD4+ T-cell popula-

tion, and differentiated into interleukin-27-

induced type 1 regulatory T (IL-27–Tr1) cells,

with or without addition of IC87114. The table

represents IL-10 expression analysed among
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sents inhibitory rate by IC87114. Results are
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population, which further contributes to the differentia-

tion of IL-27–Tr1 cells, especially of those derived from

naive populations. This result emphasizes the importance

of IL-10 for generating Tr1 cells, which has already been

shown to be essential for maintaining IL-10 production

in human Tr1 cells.27

The PI3K-Akt axis generally increases Th cell differ-

entiation.28 Here, we clearly demonstrated that the

PI3K-Akt axis positively regulates IL-27–Tr1 cell

differentiation. Especially in in vivo experiments (Fig. 5),

IL-10 expression from Foxp3� Tr1 but not Foxp3+ Treg

cells was affected by PI3K inhibition, inferring several

different pathways for IL-10 expression by Th cells. It

has been demonstrated that upon antigen stimulation,

protein kinase C h, which requires mTORC2 for phos-

phorylation, was essential for inducing IL-10-secreting T

cells.29,30 Upon activation, mTORC2 may activate Akt

by phosphorylation at Ser473, followed by
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controls type 1 regulatory T (Tr1) cell genera-
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treated intraperitoneally with 20 lg of aCD3
alone or with the addition of IC87114. Three

days after injection, the mice were killed and

spleens, mesenteric lymph nodes (MLNs; data

not shown), Peyer’s patches (PPs), and colonic

lamina propria (cLP) were analysed. (a) Flow

cytometry analysis of IL-10 expression in Fox-

p3� CD4+ cells and frequency of IL10+ Fox-

p3� CD4+ from spleen, PP and cLP. (b) Flow

cytometry analysis of IL-10 expression in Fox-

p3+ CD4+ cells and frequency of IL10+ Fox-

p3+ CD4+ from spleen, PP and cLP. Values
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experiments (five mice per group). Significant

difference: *P < 0�05, **P < 0�01.
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21 (IL-21) receptor expression. (a) Real-time
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on day 1 and day 2 of the interleukin-27-

induced type 1 regulatory T (IL-27–Tr1) cell

differentiation process. Relative gene expression
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(b, c) IL-10 expression in IL-27–Tr1 cells dif-

ferentiated with IL-27 and (b) IL-21 or (c)

aIL-21 antibody for 3 days. Results are repre-

sentative of three independent experiments.

Values shown are mean � SD. Significant dif-

ference: *P < 0�05. (d) Summary of the regula-

tory mechanism of IL-10 expression by the

phosphoinositide 3-kinase (PI3K) pathway in

an IL-27–Tr1 cell. Without any inhibition, T-

cell receptor (TCR) stimulation transduces the

PI3K signalling pathway that activates Akt and

FoxO1. This PI3K signalling increases IL-21

receptor expression. IL-27/IL-27R signalling

induces aryl hydrocarbon receptor (AhR) and

c-Maf expression, which trans-activates IL-21

promoter. Autocrine IL-21 production ampli-

fies Tr1 differentiation. When the PI3K path-

way is inhibited, in spite of the up-regulation

of AhR and IL-21 expression, IL-21 receptor

expression is down-regulated, which further

suppresses IL-10 expression in Tr1 cells.
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phosphorylation of FoxO1. This shows that PI3K inhi-

bition in IL-27–Tr1 cells suppressed phosphorylation of

Akt at Ser473, but not at Thr308. In the present study,

we found a positive correlation with FoxO1 phosphory-

lation during IL-27–Tr1 cell differentiation, whereas

PI3K-Akt-FoxO1/3a signalling has been known to

down-regulate Treg cell differentiation.5,31 Therefore, the

PI3K-Akt-FoxO1 axis might play an essential role in

the differentiation of IL-27–Tr1 cells. However, whether

FoxO1 plays a critical role in Tr1 cell differentiation

still remains unclear, requiring further studies in the

future.

The role of IL-27 in the generation of IL-10-producing

Tr1 cells has been clarified in both in vitro and in vivo

studies. During IL-27–Tr1 cell differentiation, cMaf and

AhR act synergistically to promote Tr1 cell development

through transactivation of Il10 and Il21 promoters.9,11 In

addition, autocrine production of IL-21 acts as a growth

factor for Tr1 cells, which is essential for maintaining Tr1

cell differentiation. In the present study, we demonstrated

that inhibition of the PI3K pathway significantly

enhanced Ahr expression, followed by IL-21 expression

during the Tr1 cell differentiation process. The mecha-

nism of suppression of Ahr expression by PI3K signalling

is also quite interesting but remains to be determined.

Enhancement of IL-21 expression by PI3K inhibition was

expected to enhance IL-10 expression by Tr1 cells, but

IL-10 expression by Tr1 cells was dampened. In fact, we

showed that IL-21 receptor expression, which is impor-

tant for IL-21 signalling, was inversely suppressed when

the PI3K pathway was inhibited, indicating that the PI3K

pathway is involved in the up-regulation of IL-21 recep-

tor expression. Hence, these data collectively suggest that

the inhibition of the PI3K pathway negatively regulates

IL-21 receptor expression, despite the abundance of IL-

21.

In summary, we demonstrated the importance of the

PI3K-Akt pathway in the differentiation of IL-27–Tr1
cells through the up-regulation of IL-21 receptors.

Manipulation of this pathway might offer great opportu-

nities to enhance Tr1 cell function in controlling immune

responses, such as in autoimmune disease and inflamma-

tory conditions.
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Figure S1. Interleukin-10 suppression by IC87114 in

the interleukin-27-induced type 1 regulatory T (IL-27–
Tr1) cells was in the dose-dependent manner.

Figure S2. GSK3 and mTORC1 pathway were not

involved in the interleukin-27-induced type 1 regulatory

T (IL-27–Tr1) cells differentiation.
Figure S3. IC87114 down-regulates interleukin-21

receptor expression.
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