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Introduction

Abstract. While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early
diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have
been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the
differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was intro-
duced, where custom abstract features are discovered from readily available imaging data. We propose an evo-
lutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by
patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic
sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers
that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations.
As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radi-
ologist’'s computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer
(EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-
of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically
proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity
(82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches. © 2017 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.4.041305]
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has shown promise in combination with multiparametric mag-

Lung cancer is the second most diagnosed form of cancer in men
and women after prostate cancer and breast cancer, respectively.
In 2016, lung cancer accounted for an estimated 158,080 deaths
(~27% of cancer deaths) and 224,390 new cases in Americans.'
Similarly, lung cancer accounted for an estimated 20,800 deaths
(~26% of cancer deaths) and 28,400 new cases in Canadians.’
Early detection of lung cancer can significantly impact the
patient survival rate, making efficient and reliable lung cancer
screening methods crucial.

Imaging-based cancer detection or radiomics-driven methods
have recently grown in popularity to help streamline the
cancer screening process and increase diagnostic consistency.
Referring to the extraction and analysis of large amounts of
quantitative features from medical imaging data, radiomics
allows for the creation of a high-dimensional abstract feature
space that can be utilized for cancer detection via the detailed
characterization of cancer phenotypes. The prognostic potential
of radiomics has previously been demonstrated in studies on
lung and head-and-neck cancer patients.*> Aerts et al.* intro-
duced a comprehensive study spanning over 1000 patients
across seven datasets to demonstrate the application of radio-
mics toward differentiating between tumor phenotypes, indicat-
ing clinical and prognostic implications. In addition, radiomics

*Address all correspondence to: Mohammad Javad Shafiee, E-mail:
mjshafiee @ uwaterloo.ca
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netic resonance imaging for breast cancer detection® and pros-
tate cancer detection.””®

Radiomics-driven methods have previously been developed
for malignant lung nodule detection using computed tomogra-
phy (CT) images.”™'? Anirudh et al.” used weakly labeled lung
data from the SPIE-LUNGx dataset to train a three-dimensional
convolutional neural network (CNN) and generate radiomic
sequences for lung nodule detection. In contrast, Orozco et al.'’
generated wavelet-based radiomic sequences and demonstrated
the effectiveness of wavelet-based features using a subset of
images from the early lung cancer action project and lung
image database consortium (LIDC) datasets.

Shen et al.!! proposed multiscale CNN, a hierarchical frame-
work for extracting discriminative features from lung nodules.
Specifically, the framework is comprised of alternating, stacked
layers, and uses multiscale nodule patches to learn class-specific
features. More recently, Shen et al. extended their previous work
to malignancy suspiciousness classification.'? In addition, the
extension simplified the training process via a multicrop pooling
architecture. An important aspect of these aforementioned radio-
mics-driven methods is that they leverage radiologist-driven
nodule annotations for predicting the malignancy of lung nod-
ules, rather than using pathology-proven data.

There are relatively few radiomics-driven methods that per-
form lung cancer detection using pathology-proven diagnostic
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data.'** Kumar et al.'® introduced an unsupervised deep
autoencoder for feature extraction with a binary decision tree
classifier for lung nodule classification. Shen et al.'* proposed
a domain-adaptation framework for lung nodule malignancy
prediction; more specifically, Shen et al. proposed CNN-multi-
ple instance learning (CNN-MIL) for learning transferable
patient-level malignancy knowledge, which combines a CNN
model with an MIL model.

Recently, the concept of discovery radiomics was introduced
where notions of using predefined, hand-crafted features for
cancer detection are bypassed in favor of radiomic sequencers
that produce abstract imaging-based features that are discovered
directly from the wealth of readily available medical imaging
data. This allows for custom-tailored features to be discovered
that can better characterize cancerous tissue and distinguish
cancer phenotypes relative to conventional features.
Discovery radiomics has shown promising results for both pros-
tate cancer'> and lung cancer'>!'%!7 detection.

A number of different radiomic sequencers have been pro-
posed within the discovery radiomics framework for the purpose
of lung cancer detection. Kumar et al.' introduced the notion of
deep autoencoding radiomic sequencers (DARS), which are
comprised of a deep autoencoder architecture. Shafiee et al.'®
proposed deep radiomics sequencers based on a deep convolu-
tional StochasticNet'® architecture, referred to as StochasticNet
sequencers. More recently, Kumar et al.'” leveraged deep radio-
mic sequencers built upon a deep CNN architecture.

While diagnostically powerful, the discovered radiomic
sequencers (DRSs) were both computationally expensive and
memory intensive, which could make it difficult for on-site clini-
cal deployment and would require the transfer of patient infor-
mation to more powerful cloud computing leading to patient
privacy concerns. To mitigate computational requirements and
increase operating efficiency, we propose an evolutionary deep
radiomic sequencer discovery framework for discovering more
efficient yet powerful deep radiomic sequencers. Using the
concept of evolutionary deep intelligence'>*° to mimic biologi-
cal evolution mechanisms, the proposed evolutionary deep
sequencer discovery process discovers progressively more effi-
cient yet diagnostically powerful deep radiomic sequencers over
multiple generations. The resulting evolved deep radiomic
sequencers (EDRSs) are not only significantly more efficient,
thus making them more suitable for on-site clinical deployment,
but can provide improved diagnostic performance compared to
existing deep radiomic sequencers.

Custom radiomic sequencer discovery

Medical imaging data archive discovery

Radiomic sequencer

2 Methods

In this section, we will first discuss the concepts behind discov-
ery radiomics and evolutionary deep intelligence. We will then
present the proposed evolutionary deep sequencer discovery
approach in detail.

2.1 Discovery Radiomics

The idea behind discovery radiomics can be described as fol-
lows (see Fig. 1). Given past radiology data and corresponding
pathology-verified radiologist tissue annotations from a medical
imaging data archive (i.e., provided by Cancer Imaging
Archive?'?? and consisting of diagnostic and lung cancer screen-
ing thoracic CT), the radiomic sequencer discovery process
learns a radiomic sequencer that can extract highly customized
radiomic features (which we will refer to as a radiomic
sequence) that are tailored for characterizing unique tissue phe-
notypes that differentiate cancerous tissue from healthy tissue.
The DRS can be applied to new patient data to extract the cor-
responding radiomic sequence for cancer screening and diagno-
sis purposes.

As discussed earlier, one of the key limitations of previously
proposed deep radiomic sequencers'>!” for the purpose of lung
cancer detection is that, while diagnostically powerful, they are
both computationally expensive and memory intensive. They
usually utilize very deep neural network architectures with a
large number of parameters (i.e., which needs a large amount
of memory to store) such that a huge set of arithmetic operations
are required to generate the radiomic sequence and as a result it
needs a fair amount of time to produce the results. This could
make it difficult for on-site clinical deployment and would
require the transfer of patient information to more powerful
cloud computing leading to patient privacy concerns. To miti-
gate computational requirements and increase operating effi-
ciency to enable on-site clinical deployment, we will leverage
the concept of evolutionary deep intelligence!>?° to discover
highly efficient deep radiomic sequencers that still provide
strong diagnostic performance.

2.2 Evolutionary Deep Intelligence

Prior to describing the proposed evolutionary deep sequencer
discovery approach, it is first important to discuss the idea
behind evolutionary deep intelligence. First introduced by
Shafiee et al.,'” the general idea is to synthesize progressively
more efficient deep neural networks over multiple generations.

New patient tissue

Radiomic
sequence

Discovered radiomic
sequencer

Fig.1 Overview of the discovery radiomics framework for cancer detection. A custom radiomic
sequencer is discovered via past medical imaging data; for new patients, radiomic sequences of abstract
imaging-based features are generated for quantification and analysis.
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Fig. 2 Evolutionary deep intelligence framework. The heredity is encoded by a probabilistic DNA mod-
eling the architectural traits, which should be carried to the next generation. The environmental conditions
simulate the factors that must be considered to synthesize an offspring network. The evolutionary
approach is repeated over multiple generations until all conditions are satisfied by the latest generation.

The evolution of deep neural networks is modeled in a probabi-
listic manner, where the architectural traits of ancestor networks
are encoded by a probabilistic DNA. The probabilistic DNA is
utilized to mimic biological heredity, and new offspring net-
works are synthesized stochastically based on this probabilistic
model. Each synaptic connectivity is modeled by a probability
distribution based on the corresponding weight magnitude in the
ancestor network such that the strength of the weight determines
the probability of each synapse to be connected in the offspring
network. To close the cycle of evolution, environmental factors
are applied to the model to mimic random mutation and natural
selection. The environmental factor is combined with the prob-
abilistic DNA to enforce how the random mutation should be
applied (i.e., what the rate of mutation of synaptic connectivity
should be in the offspring network architecture). Loosely speak-
ing, when the environmental factor forces the offspring network
architectures to be smaller than their ancestor, this causes a
decrease in the chance of each synaptic connectivity to be syn-
thesized in the offspring network such that weaker synaptic con-
nectivity in the ancestor network will have a lower chance of
being connected in the offspring network. At each generation,
the offspring network (which is more efficient than its parent) is
then trained to refine its modeling capabilities and maximize its
modeling accuracy.

Figure 2 shows the evolution process visually. As seen, the
evolution is initialized using a known network structure as the
first generation. The network is trained based on the available
training data and the weights associated with each synaptic
strength are computed. The underlying heredity of the network
(i.e., as the parent network) is encoded by the probabilistic
DNA, which is modeled based on the synaptic strengths. The
environmental factors are then formulated into the model to
account for the requirements needed to be satisfied by the off-
spring network. The offspring network is then synthesized by
taking advantage of random mutation to diversify the offspring
network from its ancestors. This process is repeated until all
requirements are satisfied by the latest offspring network.
Given its ability to produce progressively more efficient yet
powerful deep neural networks, we are motivated to leverage
the ideas behind evolutionary deep intelligence within the dis-
covery radiomics framework to discover highly efficient yet
diagnostically accurate deep radiomic sequencers for the pur-
pose of lung cancer detection.

2.2.1 Evolutionary Deep Radiomic Sequencer Discovery

Motivated to leverage evolutionary deep intelligence within the
discovery radiomics framework, we introduce an evolutionary
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deep radiomic sequencer discovery process for discovering
deep radiomic sequencers. As seen in Fig. 3, the evolutionary
deep radiomic sequencer discovery framework discovers a more
optimal deep radiomic sequencer generation by generation and,
as aresult, the generated radiomic sequence at each generation is
more concise compared to radiomic sequences generated by pre-
vious deep radiomic sequencers in past generations.

The methodology behind the proposed framework can be
described as follows. Inspired by Refs. 20 and 23, let the
deep radiomic sequencer be modeled as H(N,S), denoting a
network architecture with the set of neurons N and set of syn-
aptic connectivities S. In this study, we will utilize a deep CNN
architecture for the deep radiomic sequencer (see Fig. 4). The
structural information of a deep radiomic sequencer at genera-
tion g can be encoded by S, W,_, is the set of weights that
encode the strength associated with each synapse in the network
at generation g — 1, where a synaptic weight of zero indicates
that the associated synapse is not connected. It should be
noted that W,_, can, therefore, encode the structural information
S, of a network at generation g — 1. As a result, it is possible
to reformulate P(H |H,_;) as P(S,|W,_;) without any loss of
modeling accuracy. Thus, the probabilistic DNA of a deep radio-
mic sequencer at generation g is formulated as P(S |W,_; ), such
that at each generation g the structure of the sequencer S, is syn-
thesized given the trained weights of the sequencer of the pre-
vious generation W_;.

0.8 T T T T T

0.7 1

0.6 1

0.5 1

Processing time (S)

0.4r 1

0.3 . . . . .
0 2 4 6 8 10 12

Generation

Fig. 3 Evolutionary deep radiomic sequencer discovery to synthesize
optimized radiomic sequencer from an archive of medical images (in
this study, lung nodule CT images). At each generation, the past
radiomic sequencer and archive of medical images are used by
the evolutionary deep radiomic sequencer discovery process to syn-
thesize a more efficient radiomic sequencer. As shown, the size of
parameters of radiomic sequencer is decreased over generations,
resulting to a more concise radiomic sequence to describe the
input radiology image.
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Fig. 4 Deep radiomic sequencer based on deep CNN architecture.
The input to the deep CNN is a suspicious region of a CT image.
The architecture of the original ancestor network (i.e., generation 1
in Fig. 3) is a Lenet5 network architecture where it has 32 at 5x 5
filters in the first and second layers, 64 at 5x 5 filters in the third
layers, and 64 at 4 x 4 in the last layer. The output of last layer gen-
erates the radiomic sequence with 1024 feature length.

The genetic encoding scheme (i.e., probabilistic DNA) can
be formulated in different ways to favor special requirements
needed to be applied when the new offspring deep radiomic
sequencers are synthesized. For promoting computational effi-
ciency and compactness, P(S,|W,_;) is modeled such that it
promotes the formation of a particular cluster of synapses
while considering the synthesis of each individual synapse in

the offspring deep radiomic sequencer as well*
P(Sy|W,1) = [TIP(SgIW,or) - TTP(silwi )]s (1)
ceC iec

where P(S5|W,_,) promotes the synthesis of a particular cluster
of synapses ¢, §§ C S, given the weights of the network at gen-
eration g — 1 and P(sy|w_, ) is the probability that synapse s}, €
S¢ will be synthesized in the offspring deep radiomic sequencer
at generation g.

A cluster of synapses can be defined and represented based
on different factors, such as faster run time of the offspring
radiomic sequencer on a parallel computing device or decreased
storage requirements relative to its ancestor sequencer.
However, the main advantage of Eq. (1) is that the P(S5|W,_,)
not only favors strong synapses, which are more effective in
maintaining a high modeling accuracy, but it promotes the per-
sistence of clusters of synapses in the offspring deep radiomic
sequencer, which can extract more discriminative features,
resulting in a sequencer that can model the problem more accu-
rately. Here, we define a set of synapses constructing a filter in
each convolutional layer as a cluster of synapses in the network
structure of a deep radiomic sequencer. As shown in Fig. 4, each
filter in a convolutional layer is responsible for producing one
output channel of the layer. By extending this definition to all
convolutional layers in the radiomic sequencer, the length of the
radiomic sequence varies over the generations as the number of
filters in the last layer determines the actual length of the radio-
mic sequence.

The probabilistic DNA P(S,|W,_) is combined with the
environmental factor model F(£) to mimic natural selection,
such that the offspring deep radiomic sequencer for the next
generation is comprised of stochastically selected synapses or
clusters of synapses. The environmental factor simulates the
conditions that the offspring networks should be adapted for.
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For example, if in the new environment the offspring network
should be faster in computation, the environmental factors
enforce the offspring network to be synthesized with fewer num-
bers of filters for decreasing the processing time. The environ-
mental factors can also reflect what is the situation in terms of
memory availability and the host hardware in which the com-
putation will be done; as a result the synthesized offspring net-
work architecture adapts itself to these environmental factors to
be able to survive. The probabilistic model of the network struc-
ture P(H,) at generation g can be formulated as

P(H,) = F(&) - P(Sy|Wy1), 2

g
where F(€) quantitatively encodes the environmental condi-
tions, and the offspring deep radiomic sequencer structures
must adapt to them to survive over generations. As mentioned
before, the goal here is to synthesize a deep radiomic sequencer
with fewer parameters while preserving the modeling accuracy;
therefore, the environmental factor model F (&) favors the for-
mation of a deep radiomic sequencer with fewer parameters and
increased efficiency over the generations. This property is
applied via a cluster-based encoding scheme, which decreases
the number of filters of different layers over generations

P(H,) = [TIFe(&) - P(SgIW,-0)]. ©)

ceC

More specifically, the environmental factor F(€) is formu-
lated such that the offspring radiomic sequencer is limited to
80% of the total number of synapses in its direct ancestor
sequencer.

3 Results

3.1 Experimental Setup

The proposed evolutionary deep radiomic sequencer discovery
framework was examined using the pathology-proven subset of
the LIDC-IDRI*!*? dataset and was compared to state-of-the-art
methods. In this section, the configuration of the dataset, the
underlying network architecture of the DRSs, and the competing
methods are explained.

3.1.1 Lung Dataset

In this study, we used the subset of the LIDC-IDRI?'?? dataset
that had corresponding pathology-proven diagnostic data. The
dataset is a public dataset provided by Cancer Imaging
Archive?'"? consisting of diagnostic and lung cancer screening
thoracic CT scans with marked-up annotated lesions. The CT
images were captured using a broad range of scanner models
from different manufacturers by applying the following tube
peak potential energies for acquiring the scans: 120 kV
(n =818), 130 kV (n =31), 135 kV (n = 69), and 140 kV
(n = 100). A subset of 93 patient cases, which have definite
diagnostic results, was selected from the LIDC-IDRI. While
pathology data were used to generate labels for the CT images
in the LIDC-IDRI dataset, the pathology data were not available
for comparison and labels were provided on a nodule basis.
Using data augmentation, an enriched dataset of 42,340 lung
lesions was obtained via the rotation of each malignant and
benign lesion by 45-deg and 10-deg increments, respectively.
The proposed method is examined by a 10-fold cross-validation
approach where 9 out of 10 folds of patient cases (subset of
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patient cases) are used in the training while the other fold (subset
of patient cases) is utilized as test samples and the results are
reported based on the average performance of 10 trials.

3.1.2 Network Architecture (Lenet5)

The deep neural network architecture of the original, first gen-
eration radiomic sequencer used in this study builds upon the
Lenet5 architecture.”* The radiomic sequencer is comprised
of three convolutional layers: c;: 3X 3, c,: 5X5, and c;3:
3 x 3, where the first layer consists of 32 filters, the second
layer has 32 filters, and the last layer has 64 filters. The radiomic
sequence generated by the original, first generation radiomic
sequencer has a length of 16 X 64 and is the input into two
fully connected layers (f;: 64 and f,: 2) to classify each
input as cancerous or benign.

3.1.3 Competing Frameworks

The proposed evolutionary deep radiomic sequencer
discovery was evaluated using the enriched dataset and quanti-
tatively compared to four state-of-the-art radiomics-driven
approaches.!>1416:17

Kumar et al.’s DARS'? uses a five layer denoising autoen-
coder trained by L-BFGS with 30 iterations and a batch size
of 400, as suggested by past work;>> a 200 dimension feature
vector is extracted from the fourth layer and paired with a binary
decision tree classifier. Shen et al.’s proposed CNN-MIL!* is
composed of three concatenated convolutional layers, each with
64 convolutional kernels of size 3 X 3. Each convolutional layer
is followed by a rectified linear unit and a max-pooling layer
(4 x4 pooling window in the first layer and 2 X 2 in the sub-
sequent layers), and two fully connected layers are used to deter-
mine nodule malignancy. Shafiee et al.’s StochasticNet radiomic
sequencer (SNRS)!® is constructed using three stochastically
formed convolutional layers of 32, 32, and 64 receptive fields,
respectively. Each receptive field is 5 X 5 in size and is part of a
random graph realization with a uniform neural connectivity
probability of 0.5. Similarly, Kumar et al.’s DRS'! is comprised
of three convolutional sequencing layers of 20, 50, and 500
receptive fields, respectively, each of size 3 X 3.

3.2 Experimental Results

The proposed evolutionary deep radiomic sequencer discovery
process was performed through 11 generations where in each
generation, the environmental factor restricts the offspring
radiomic sequencer to 80% of the total number of synapses
in its direct previous network. Using this environmental factor,
the number of parameters in the deep neural network of radio-
mic sequencer is decreased generation by generation, allowing
for the generated radiomic sequences to be more compact over
generations. Decreasing the number of parameters in the
sequencer is important as it affects the generalizability of the
sequencer such that a more generalized sequencer is less likely
to be over-trained to the training data and can perform more
accurately in the evaluation step.

The performance of the proposed framework is examined in
a 10-fold cross validation approach where 9 out of 10 subsets of
the data are used in the training step while the 10th subset is used
to evaluate the model. This training and testing process is
repeated over all permutations of the training and testing
subsets. The cross-validation approach is combined with
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evolutionary deep intelligence, where in each validation step,
the radiomic sequencers are synthesized generation by genera-
tion with the same training dataset and validated with the same
testing data.

Table 1 shows the average performance of the proposed
framework over 11 generations. As seen, by moving generation
by generation, the number of filters used in the radiomic
sequencer is decreased and the length of the radiomic sequence
is correspondingly shortened. However, the performance of the
radiomic sequencers improves over generations, which demon-
strates the increase in the generalizability of the models through
generations. As seen, the performance of evolved radiomic
sequencers (i.e., sensitivity, specificity, and accuracy) increases
after the first generation and it reaches a stable point (e.g., gen-
eration 7). However, evolving the radiomic sequencer after the
seventh generation can improve the compactness of the radiomic
sequences.

Table 1 demonstrates that the specificity of the radiomic
sequencers increases when the sequencers are evolved over gen-
erations, which is a good indication of generalizability of the
final model. It is worth noting that in lung cancer classification,
improving the specificity is challenging?® and increasing the
specificity while maintaining a reasonable sensitivity is highly
desirable.

Table 1 also shows that the evolved radiomic sequencers can
perform better in terms of sensitivity compared to the first gen-
eration original ancestor radiomic sequencer, resulting in a
model with higher accuracy. As mentioned before, one of the
important obstacles in using a deep neural network as the under-
lying architecture for a radiomic sequencer is the efficiency of
the underlying deep neural network. As seen, the average

Table 1 Radiomic sequence lengths and the modeling accuracies
over generations. “ANF" stands for average number of filters in the
sequencer and “RSL” column represents the average length of the
radiomic sequence at each generation. Since the numbers are aver-
aged over 10 folds of evaluation, they are reported with one floating
point precision. As seen while the radiomic sequences become more
compact over generations, the modeling accuracy, sensitivity, and
specificity are increasing.

ANF RSL Sensitivity ~ Specificity =~ Accuracy
Gen. 1 194.0 3104.0 0.8786 0.7570 0.8255
Gen. 2 180.4 2886.4 0.9156 0.7788 0.8590
Gen. 3 171.0 2736.0 0.9305 0.8063 0.8795
Gen. 4 161.1 2577.6 0.9276 0.8062 0.8812
Gen. 5 150.9 24144 0.9311 0.8109 0.8845
Gen. 6 1426 2281.6 0.9295 0.8125 0.8834
Gen. 7 135.1 2161.6 0.9390 0.8105 0.8898
Gen. 8 125.8 2012.8 0.9341 0.8129 0.8879
Gen. 9 1185 1896.0 0.9384 0.8169 0.8917
Gen. 10 1112 1779.2 0.9385 0.8107 0.8901
Gen. 11 1045 1672.0 0.9342 0.8239 0.8878

Note: The boldface values show the best accuracy.

Oct-Dec 2017 « Vol. 4(4)



Shafiee et al.: Discovery radiomics via evolutionary deep radiomic sequencer. ..

0.9 T T T T T T T T T

0.85 V\/W
e D

Specificity
=3
9 S
(lln o

[

0.7 1

0.65 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11

Generation

Fig. 5 Running time evaluation of synthesized radiomic sequencer at
each generation is evaluated by 1500 sample inputs. As seen the sub-
sequent radiomic sequencers perform faster than their ancestors,
which shows the efficiency of the synthesized sequencer discovered
via the proposed evolutionary deep radiomic sequencer discovery
process.

number of filters constructing the radiomic sequencer is
decreased over generations, indicating that the efficiency of
the radiomic sequencer is increasing generation by generation.
It is also worth noting that the number of filters of a deep neural
network determines the number of parameters needed to be
computed in one forward pass of the network to compute the
final prediction; therefore, decreasing this number can increase
the efficiency of the radiomic sequencer.

| Medical image data archive

Medical image data archive

To evaluate the efficiency of the synthesized radiomic
sequencers, the running time computation of the sequencers
is examined at each generation with 1500 sample inputs.
Figure 5 shows the running time performance of synthesized
radiomic sequencers through generations. As seen, the sub-
sequent generations perform faster than their ancestors, which
shows the efficiency of the proposed evolutionary deep intelli-
gence framework.

Decreasing the number of filters in the model decreases the
length of the radiomic sequence. As shown in Table 1, the length
of the radiomic sequence is shortened generation by generation
and the length of the radiomic sequence in the last generation is
about half the size of the radiomic sequence of the first gener-
ation, demonstrating that it is possible to increase the concision
of the radiomic sequence while simultaneously increasing the
modeling accuracy.

Figure 6 shows the sensitivity of the evolved radiomic
sequencers overlaid with the standard deviation across different
folds of cross validation over multiple generations. By evolving
the radiomic sequencers generation by generation, the sensitiv-
ity increases while the standard deviation decreases (notice that
the purple margin narrows over generations). This is another
indication of generalizability of the evolved radiomic sequenc-
ers as the variance of the models in different cross validation
folds of evaluation decreases over generations. This effect is
more obvious in Fig. 7 as the standard deviation of the

Evolutionary radiomic
sequencer discovery

Evolutionary radiomic
sequencer discovery

£ 4
e o U
Discovered
radiomic sequencer

Discovered
radiomic sequencer

\
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Fig. 6 Sensitivity of the evolved radiomic sequencers over generations. The standard deviation of the
models based on 10-fold cross validation is overlaid with purple margin.
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Fig. 7 Specificity of the radiomic sequencer overlaid by their model-
ing standard deviation over generations. As seen, the generalizability
of radiomic sequencer increases generation by generation as the
standard deviation of modeling decreases.

Fig. 8 Radiomic sequencers modeling accuracy over generations.

specificity measure is decreased generation by generation and as
mentioned before, a more reliable specificity is highly desirable
in lung cancer classification. Figure 8 shows the same behavior
of the modeling accuracy over generations.

As the last experimental result, Table 2 shows the compari-
son of the proposed framework (EDRS) with other state-of-the-
art approaches. It should be noted that the statistics and model-
ing performances of other state-of-the-art frameworks are
reported directly by Kumar et al.'” and Shafiee et al.'® As
seen, the proposed radiomic sequencer in the discovery radio-
mics framework outperforms other state-of-the-art methods in

Table2 Comparison with state-other-the-art methods for lung cancer
classification. As seen, the proposed EDRS framework outperforms
other methods in sensitivity, specificity, and accuracy.

sensitivity (93.42%), specificity (82.39%), and accuracy
(88.78%). To demonstrate the effect of the evolutionary deep
intelligence framework on discovery radiomic sequencer, the
final network architecture synthesized by the evolutionary
deep intelligence framework is trained from scratch. The perfor-
mance of this network (so-called last generation) is compared
with the result of the evolutionarily deep intelligence approach.
As seen in Table 1, although the optimized network architecture
synthesized by the evolutionary framework is utilized to train
the last-generation approach, the sequencer could not compete
with the EDRS performance and could not gain the same accu-
racy level.

4 Conclusion

In this paper, we proposed an evolutionary deep radiomic
sequencer discovery framework to better uncover more efficient
yet powerful radiomic sequencers for the purpose of lung cancer
classification. An evolutionary deep intelligence approach is
incorporated within the discovery radiomics framework to
evolve the underlying deep neural network architecture of the
deep radiomic sequencer over multiple generations and discover
a more efficient and generalized deep radiomic sequencer. The
ultimate goal here is to synthesize a deep neural network as the
underlying core of the radiomic sequencer with fewer numbers
of parameters, which produces more concise radiomic sequen-
ces that can better capture the differences between healthy and
cancerous lung tissue. Results show that by evolving and dis-
covering more efficient radiomic sequencers, the diagnostic
accuracy can be increased. Experimental results demonstrate
that the EDRS discovered using the proposed evolutionary
deep radiomic sequencer discovery approach can outperform
other state-of-the-art radiomics-driven methods, achieving a
sensitivity of 93.42%, a specificity of 82.39%, and an accuracy
of 88.78%. It has been showed in the literature that there is a
direct relation between the number of parameters and the
need for training data. As a future work, it is suggested to
study the effect of an evolutionary deep intelligence framework
when limited training data are available.
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