Skip to main content
. 2017 Oct 6;15:178. doi: 10.1186/s12916-017-0942-1

Table 3.

Results for regressions of log total cost on service volume and other potential predictors

Variablea Model specification
1 2 3 4 5
Intercept 9.44 (0.45) 9.44 (0.25) 9.43 (0.16) 9.43 (0.16) 9.48 (0.13)
Service volume
 log(doses) 1.10 (0.03) 1.10 (0.03) 1.13 (0.04) 1.04 (0.20)
 log(doses) squared –0.04 (0.02) –0.01 (0.02) –0.01 (0.02) 0.10 (0.03)
Other predictors
 log(GDP) 0.41 (0.16) 0.31 (0.17) 0.39 (0.14)
 Government owned –0.13 (0.09) –0.14 (0.09) –0.15 (0.08)
 Hospital 0.34 (0.09) 0.31 (0.09) 0.27 (0.08)
 Percent outreach 0.11 (0.04) 0.11 (0.04) 0.08 (0.03)
 Percent management 0.13 (0.03) 0.13 (0.03) 0.13 (0.03)
 DTP3 per dose 0.15 (0.02) 0.15 (0.02) 0.13 (0.02)
 Rural –0.02 (0.06) –0.04 (0.06)
 ANC4 0.14 (0.08) 0.12 (0.07)
 Wealth ratio –0.06 (0.04) –0.07 (0.03)
Random effects included
 Country r.e.s for intercept + + + + +
 Province r.e.s for intercept + + + + +
 Country r.e.s for log(doses) +
Variance parameters
 Error term 0.86 (0.04) 0.39 (0.02) 0.35 (0.02) 0.35 (0.02) 0.32 (0.01)
 SD of country r.e.s, intercept 0.93 (0.48) 0.55 (0.27) 0.34 (0.24) 0.32 (0.23) 0.24 (0.21)
 SD of province r.e.s, intercept 0.44 (0.10) 0.19 (0.04) 0.19 (0.04) 0.20 (0.04) 0.14 (0.03)
 SD of country r.e.s, log(doses) 0.46 (0.23)
 WAICb 828.2 335.2 273.2 270.9 212.4
 Sample size 316 316 316 316 316

aCountry and province random effects not shown. Predictors are standardized; thus, fitted coefficients for continuous variables (e.g., log(doses)) represent the increase in log total costs observed for a 1.0 standard deviation increase in the variable. Values in parentheses represent standard errors

bWatanabe-Akaike information criterion (WAIC) describes out-of-sample prediction accuracy for the fitted model, with lower values suggesting better model fit

SD standard deviation, r.e. random effect