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The force exerted by a muscle during a voluntary contraction depends on the number of
motor units recruited for the action and the rates at which they discharge action potentials
(rate coding). Over most of the operating range of a muscle, the nervous system controls
muscle force by varying both motor unit recruitment and rate coding. Except at relatively low
forces, however, the control of muscle force depends primarily on rate coding, especially
during fast contractions. This review provides five examples of how the modulation of rate
coding influences the force exerted by muscle during voluntary actions. The five examples
comprise fast contractions, lengthening and shortening contractions, steady isometric con-
tractions, fatiguing contractions, and contractions performed after a change in the daily level
of physical activity.

The force exerted by a muscle during a volun-
tary contraction depends on the number of

motor units that are activated and the rates
at which these motor units discharge action
potentials. These two properties are known as
recruitment and rate coding, respectively. Over
most of the operating range of a muscle, the
force it generates is controlled by concurrent
changes in recruitment and rate coding. How-
ever, the relative contributions of recruitment
and rate coding vary across the operating range.
Early experimental evidence suggested that re-
cruitment is the more significant factor at low
forces, whereas rate coding is more responsible
for changes in muscle force at intermediate and
high forces (Milner-Brown et al. 1973b). In this
review, we discuss the underappreciated contri-
bution of rate coding to the force produced by
muscle during voluntary contractions.

At an elementary level, the relative signifi-
cance of rate coding can be shown with a com-
putational model of motor unit recruitment
and rate coding (Fuglevand et al. 1993). When
the forces exerted by each motor unit (n ¼ 120)
discharging action potentials at a minimal rate
(�8 pulses per second [pps]) are summed, the
result is a net force that is 25% of the maximal
force achieved when all motor units are activat-
ed at the assigned peak discharge rates (25–
35 pps). The 75% discrepancy between the
sum of the motor unit forces produced by min-
imal discharge rates and the peak force that can
be achieved underscores the significant role of
rate coding in the control of muscle force. As
discussed in the subsequent sections, experi-
mental observations indicate that rate coding
has a significant influence on the rate of increase
in force during rapid contractions, the control
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of force during shortening and lengthening
contractions, the ability to maintain a constant
force during a steady submaximal contraction,
the adjustments showed during fatiguing con-
tractions, and the adaptations elicited by
changes in physical activity.

RATE CODING AND CONTRACTION SPEED

The influence of rate coding on motor unit
force is characterized experimentally by deriv-
ing the force–frequency relation (Macefield
et al. 1996). In such an experiment, the axon
of a single motor unit is activated with electrical
stimuli over a range of frequencies (5–100 pps)
and the evoked force is measured. The result is a
sigmoidal relation that indicates peak motor
unit forces require activation rates of at least
50 pps. In most voluntary contractions involv-
ing a gradual increase in force, however, peak
discharge rates are usually ,50 pps (Heckman
and Enoka 2012).

Gradual increases in the force exerted by a
muscle during an isometric contraction require
a progressive increase in motor unit activity,
both the recruitment of additional motor units
and an increase in discharge rate. The relative
contribution of motor unit recruitment to the
increase in muscle force is greater during the
initial part of the gradual muscle contraction.
Recordings of motor unit activity with fine-wire
electrodes in which action potentials can be
observed directly often show that the peak dis-
charge rate achieved during such tasks is greater
for later recruited motor units (Gydikov and
Kosarov, 1974; Kanosue et al. 1979; Moritz
et al. 2005; Bailey et al. 2007; Barry et al. 2007;
Oya et al. 2009). Earlier recruited motor units
reach a peak value that tends to remain con-
stant, despite a continual increase in muscle
force. This effect is referred to as saturation of
discharge rate and is likely attributable to intrin-
sic mechanisms that limit the capacity of a
motor neuron to increase discharge rate despite
continual increases in net excitatory synaptic
input (Fuglevand et al. 2015).

However, not all studies in which motor
unit action potentials have been recorded with
fine-wire electrodes have observed saturation of

discharge rate for low-threshold motor units
and greater peak discharge rates for later-
recruited motor units during gradual increases
in muscle force (Person and Kudina 1972; Tanji
and Kato 1973; Monster and Chan 1977; De
Luca et al. 1982; Duchateau and Hainaut
1990). These different findings are not consis-
tently related to methodological issues, such as
the muscle studied or the approach used to
quantify recruitment threshold. Also, estimates
of motor unit activity derived from multichan-
nel recordings of surface electromyography
(EMG) signals in which the action potentials
of single motor units cannot be observed
directly, invariably report that the earliest re-
cruited motor unit achieve the greatest dis-
charge rates during gradual increases in force
(De Luca and Hostage 2010; De Luca and
Contessa 2012).

In contrast to the relatively modest changes
in discharge rate observed during gradual
increases in muscle force, rapid increases in
force during ballistic isometric contractions
involve instantaneous discharge rates of 60–
120 pps (Desmedt and Godaux 1979; Van
Cutsem and Duchateau 2005). Although the
discharge rate increases progressively during
gradual increases in muscle force, ballistic con-
tractions are characterized by a high initial dis-
charge rate at the onset of activation and a sub-
sequent decline during successive discharges
(Fig. 1A) (Desmedt and Godaux 1977; Bawa
and Calancie 1983; Van Cutsem et al. 1998;
Klass et al. 2008a). Because of the electrome-
chanical delay between the discharge time of
the action potential and onset of force exerted
by the motor unit, recruitment thresholds occur
at lower forces during rapid contractions pre-
sumably caused by the more synchronized ar-
rival of excitatory postsynaptic potentials onto
the motor neurons. For example, the upper lim-
it of motor unit recruitment in tibialis anterior
declines from �90% of maximal force during
slow contractions to �40% of maximum dur-
ing rapid contractions (Desmedt and Godaux
1977; Van Cutsem et al. 1997). Consequently,
rate coding assumes a more prominent role in
the modulation of muscle force during fast con-
tractions. Furthermore, the capacity of motor
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neurons to discharge action potentials at rates
on the plateau of the force–frequency relation
during rapid contractions suggests that rate
coding is limited during slow changes in force
during isometric contractions.

The rate at which motor neurons discharge
action potentials is proportional to the synaptic
input (descending drive and afferent feedback)
they receive. In addition to ionotropic input,
rate coding is influenced by the activation of
persistent inward currents induced by neuro-
modulatory input to the motor neuron pool
(Heckman and Enoka 2012). Two main neuro-
transmitters play a role at the motor neuron
level: serotonin (5-HT) and norepinephrine.
Activity in the descending 5-HT system seems
to increase in proportion to motor output,
whereas the norepinephrine system varies with
the level of arousal (Perrier and Cotel 2015; As-
ton-Jones and Waterhouse 2016). Neurons that
deliver monoaminergic input to motor neurons
originate from the raphe nucleus in the brain
stem and have monosynaptic connections to the

motor neurons. The role of persistent inward
currents is to amplify the excitatory synaptic
input, thereby increasing the discharge rate of
motor neurons. Its action is instantaneous and
responsible for the self-sustained discharge of
action potentials by motor neurons observed
in some conditions and the high initial rate
and double discharges at the onset of a ballistic
contraction (Heckman et al. 2008).

The maximal discharge rates achieved dur-
ing ballistic contractions are adaptable. For
example, several weeks of training the ankle
dorsiflexor muscles to lift a moderate inertial
load (30%–40% of maximal voluntary contrac-
tion [MVC] force) with rapid contractions
increased both the rate of force development
(82% of initial) and the average discharge rate
of motor units in tibialis anterior (Van Cutsem
et al. 1998). The increase in instantaneous
discharge rate is significantly less for the first
(þ84%) and second (þ70%) interspike inter-
vals than for the third (þ124%) interspike in-
terval (Fig. 1B). In addition, training with rapid
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Figure 1. Discharge rates of motor units during ballistic contractions. (A) Action potentials discharged by a
single motor unit in tibialis anterior during a ballistic contraction with the ankle dorsiflexor muscles by an
untrained subject. The peak force achieved during the submaximal contraction was �40% of maximal volun-
tary contraction (MVC). Traces correspond to the ankle dorsiflexor force (a) and intramuscular electromyogram
(EMG) plotted at slow (b) and fast (c) speeds. The typical discharge times for tibialis anterior motor units in an
untrained person comprised a brief interval between the first two action potentials followed by longer interspike
intervals. The dots indicate the discharge of the same motor unit as indicated by the superimposed traces (b). (B)
Average maximal discharge rates for the first three interspike intervals (see trace c in panel A) during ballistic
contractions for tibialis anterior motor units before (white bar) and after 3 months of training (black bar) with
rapid contractions (data from Van Cutsem et al. 1998). (C) Average maximal discharge rate for the first three
interspike intervals during ballistic contractions for the tibialis anterior motor units in young (white bar) and
older adults (black bar) (data from Klass et al. 2008a). pps, Pulses per second.
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contractions increases the number (from 5% to
33%) of motor units that show double dis-
charges with discharge rates of greater than
200 pps at the onset of the contraction. Because
the time to peak force of the tibialis anterior
motor units—as estimated with spike-triggered
averaging (Milner-Brown et al. 1973a)—was
similar before and after the training interven-
tion, the marked increase in rate of force
development during ballistic contractions was
attributable to the adaptations in discharge rate.

Another example of the adaptability of
maximal discharge rates is the decline observed
in older adults. For example, both the rate of
force development for ballistic contractions
with the ankle dorsiflexors and the maximal
discharge rates for motor units in tibialis ante-
rior are reduced in older adults (71–84 yr) rel-
ative to young adults (18–22 yr) (Klass et al.
2008a). As observed for gains achieved after
training with rapid contractions, the decline in
discharge rates showed by older adults was less
for the first (–19%) and second (–28%) inter-
spike intervals than the third (–34%) interspike

interval (Fig. 1C). In addition, the proportion
of tibialis anterior motor units that showed
double discharges greater than 200 pps was
less for older (4.6%) than young (8.4%) adults.

These two examples suggest that the initial
component of the increase in force during
rapid contractions is constrained by the capac-
ity of motor neurons to discharge action poten-
tials at high rates. This association and the
underlying mechanisms were examined with a
computational model (Fuglevand et al. 1993).
When the motor units in the model were
assigned experimentally observed contractile
properties (Van Cutsem et al. 1998), an increase
in peak discharge rates to the range of 100–
200 pps substantially augmented the rate of
force development for all motor units in the
population (Fig. 2) (Duchateau and Baudry
2014). Further increases in discharge rate only
increased the rate of force development for the
fastest-contracting motor units, as expected
from the difference in speed-related properties
of low- and high-threshold motor units (Ker-
nell 1992).
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Figure 2. Simulated relations between motor unit discharge rate and maximal rate of force development for
motor units (MUs) in the tibialis anterior muscle. The model comprised 200 motor units. The data indicate the
relations for the smallest (MU 1), largest (MU 200), and middle (MU 100) motor units. The simulation was
based on a model developed by Fuglevand et al. (1993) with the contractile properties of the motor units
adjusted to match values measured experimentally for tibialis anterior (Van Cutsem et al. 1998). The force
generated by each motor unit was simulated for four successive discharge times generated at constant frequen-
cies ranging from 10 to 500 pps before the first derivative was computed to obtain the maximal rate of force
development (data from Duchateau and Baudry 2014). pps, Pulses per second.

R.M. Enoka and J. Duchateau

4 Cite this article as Cold Spring Harb Perspect Med 2017;7:a029702

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



Taken together, these experimental and
modeling studies underscore the critical role
of maximal motor unit discharge rates in lim-
iting the rate of force development at the onset
of a ballistic contraction (Duchateau and Bau-
dry 2014). Greater rates of force development
are an advantage in physical activities in which
there is only a brief period of time to develop as
much force as possible to increase the force–
time impulse. In contrast, the age-related reduc-
tion in the rate of force development attenuates
the capacity of older adults to perform fast
movements and to react quickly to perturba-
tions that compromise balance.

RATE CODING DURING SHORTENING AND
LENGTHENING CONTRACTIONS

When an action requires a change in muscle
length, the net motor unit activity must be con-
trolled to produce the desired trajectory. In
addition to the magnitude and speed of the
required displacement, the modulation of mo-
tor unit discharge rate depends on whether the
activated muscle shortens or lengthens during
the prescribed action. Because of the greater
force capacity of muscle during lengthening
contractions (Altenburg et al. 2009), the same
absolute muscle force can be generated with
less motor unit activity during lengthening con-
tractions than during shortening contractions
(Duchateau and Enoka 2016). Although short-
ening contractions typically involve the recruit-
ment of more motor units than during length-
ening contractions, those motor units that are
active during both the shortening and length-
ening phases of an action show lower discharge
rates during the lengthening contraction (Pas-
quet et al. 2006).

To show that the neural drive to a muscle
(number of motor unit action potentials) dif-
fers during lengthening and shortening con-
tractions, it is necessary to compare motor
unit activity when the biomechanical require-
ments of a task are similar for the two types of
contractions. Pasquet et al. (2006) performed
such a study by comparing the activity of motor
units in tibialis anterior when the dorsiflexors
pushed against a torque motor over a 20-degree

range of motion (10 degrees/sec) about the an-
kle joint. Each action began with an isometric
contraction and then the torque motor either
allowed the dorsiflexor muscles to shorten or
produced a torque that was sufficient to length-
en the activated muscles. A key finding of
this study was that the discharge rate of the
identified motor units (recruitment thresh-
olds: 0.2% –32.8% MVC force) remained rela-
tively constant during the entire lengthening
contraction (12.6 + 2.0 pps; mean + SEM),
whereas it increased progressively from the
start (12.6 + 2.0 pps) to the end (14.5 +
2.5 pps) of the shortening contraction (Fig.
3) despite similar changes in muscle fascicle
length and velocity as determined by ultra-
sonography. Because the order in which
motor units are recruited does not differ dur-
ing shortening and lengthening contractions
(Duchateau and Enoka 2016) and the torque
generated by the dorsiflexors was similar dur-
ing the two types of contractions (Pasquet et al.
2006), the greater discharge rate at the end of
the shortening contraction was likely necessary
to accommodate the decline in force capacity
of muscle fibers at short lengths. Nonetheless,
discharge rate was not greater at the start of the
lengthening contraction when the tibialis
anterior muscle was at a short length.

As reviewed by Duchateau and Enoka
(2016), the differential modulation of motor
unit discharge rate during shortening and
lengthening contractions involves neural path-
ways at both the spinal and supraspinal levels.
One consequence of the lower motor unit dis-
charge rate during lengthening contractions is
that it explains, at least in part, the lesser meta-
bolic demand during lengthening relative to
shortening contractions (Bigland-Ritchie and
Woods 1976).

COMMON INPUT AND FORCE STEADINESS

When performing a steady isometric contrac-
tion, the applied force fluctuates about an aver-
age value. The standard deviation of these force
fluctuations, which provides a measure of force
steadiness (Galganski et al. 1993), increases with
the magnitude of the target force caused by the
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progressive recruitment of motor units dis-
charging action potentials at submaximal rates
(Moritz et al. 2005). The normalized measure
of force steadiness (coefficient of variation
for force) is often greater for older adults than
younger adults, especially during low-force
contractions (Enoka et al. 2003), and can
explain significant amounts of the variance in
measures of motor performance, such as the
time to complete a pegboard test of manual
dexterity (Almuklass et al. 2016b) and the walk-
ing performance of individuals with multiple
sclerosis (Almuklass et al. 2016a). For example,
70% of the variance in the time it takes young
adults to complete the grooved pegboard test
(41.5–67.5 sec) can be explained by two predic-
tor variables: (1) time to match a submaximal
target force during a rapid pinching action
with the index finger and thumb; and (2) coef-
ficient of variation for force (steadiness) during
a steady contraction with the wrist extensors at
10% MVC force (Almuklass et al. 2016b). Sim-
ilarly, �50% of variance in walking speed (time

to walk 25 ft) and walking endurance (distance
walked in 6 min) for individuals who are
moderately impaired by multiple sclerosis can
be explained by dorsiflexor torque steadiness at
20% MVC and the coefficient of variation for
interspike interval of motor units in tibialis
anterior during a steady contraction at 10%
MVC force (Almuklass et al. 2016a).

Differences in force steadiness across tasks
and individuals depend more on the discharge
characteristics than force capacity of the active
motor units (Enoka et al. 2003). Although some
evidence has indicated an association between
force steadiness and variability in discharge
times of individual motor units (Laidlaw et al.
2000; Mortiz et al. 2005), this finding is not
consistent (Semmler et al. 2000; Barry et al.
2007; Negro et al. 2009). Rather, differences in
force steadiness depend more on the cumulative
activity of the recruited motor units (Semmler
et al. 2006; Dideriksen et al. 2012). Farina and
colleagues, for example, showed that 74% of the
variance in muscle force during steady contrac-
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Figure 3. Average (+SEM) discharge rate of motor units (n ¼ 63) in tibialis anterior during slow (10 degrees/
sec) shortening and lengthening contractions. The shortening contraction (filled circles) began from a long
muscle length (10 degrees), whereas the lengthening (open circles) contraction began from a short muscle length
(–10 degrees). Each action began with an isometric contraction before the torque motor that controlled the
angular displacement of a footplate either allowed the dorsiflexors to shorten or generated a torque that was
sufficient to lengthen the activated muscles. The discharge rate at each joint angle averaged more than 0.2-sec
bins for all motor units and was expressed relative to the value recorded during the initial isometric contraction
(data from Pasquet et al. 2006).
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tions with a hand muscle could be explained by
low-frequency modulation (�10 Hz) of motor
unit discharge times, which was attributed to
the common synaptic input received by the
motor neurons (Negro et al. 2009; Farina and
Negro 2015; Farina et al. 2016). Moreover, the
proportion of common input increases with
target force and during sustained isometric
contractions (Castronovo et al. 2015). Conse-
quently, improvements in force steadiness after
various training interventions (Keen et al. 1994;
Bilodeau et al. 2000; Tracy et al. 2004; Marmon
et al. 2011) should be accompanied by a reduc-
tion in the variability of common input to the
involved motor neurons (see Fig. 7 in Farina
and Negro 2015). For example, Farina et al.
(2012) showed that an increase in force variabil-
ity caused by an induced increase in muscle pain
was explained by an increase in the variability of
the common input signal, as estimated by the
low-frequency bandwidth of the cumulative
motor unit discharge times.

Decreases in force variability during steady
contractions and the accompanying practice-
associated improvement in manual dexterity
(Marmon et al. 2011), therefore, were presum-
ably attributable to a reduction in the variability
of the common input signal. Similarly, the
greater force variability showed by older adults
at low forces (Galganski et al. 1993; Christou
and Carlton, 2001) is likely caused by greater
variability in the common input signal, which
can be improved with physical training (Chris-
tou et al. 2003). Despite these associations,
essentially nothing is known about the source
of the common input to the motor unit pools
responsible for these effects.

ADJUSTMENTS IN RATE CODING DURING
PROLONGED ACTIVITY

When a motor unit is recruited to participate in a
prescribed task, the rate at which it discharges
action potentials changes over time. The adjust-
ments in discharge rate are attributable to
changes in the intrinsic properties of the motor
neuron and the synaptic inputs it receives. In a
classic demonstration of the significance of in-
trinsic properties, Kernell and Monster (1982)

recorded the decline in discharge rate when sin-
gle motor neurons were activated with a constant
level of injected current above activation thresh-
old. The typical result, as indicated for one mo-
tor neuron in Figure 4A, comprised an initial
(,2 sec) rapid and then more gradual decline
in discharge rate. The decrease in discharge rate
from 2 sec to 26 sec was termed late adaptation
and its magnitude was positively correlated (r ¼
0.93) with the initial discharge rate of the motor
neuron.

When a task involves sustaining a submax-
imal target force for a prescribed duration,
therefore, additional motor units must be re-
cruited to compensate for the decrease in motor
unit discharge rate due to the decline in respon-
siveness of a motor neuron to an applied cur-
rent. The magnitude of the depression in motor
neuron responsiveness has been estimated by
measuring the time it takes the level of muscle
activation to recover after a sustained, low-force
isometric contraction (Héroux et al. 2016). The
approach involved participants sustaining the
discharge of an identified motor unit in triceps
brachii at �10 pps for �260 sec and then after
several different recovery periods (1–240 sec)
repeating the task and determining the time
course of the return in EMG amplitude to initial
values. An increase in EMG amplitude indicat-
ed a greater number of muscle fiber action po-
tentials (Enoka and Duchateau 2015) and,
hence, more synaptic input to the motor neu-
ron pool to achieve the required discharge rate
of the identified motor unit. The increase
in EMG amplitude declined exponentially
with a time constant of 28 sec, but recovery
was not complete until �240 sec. The decline
in motor neuron responsiveness during pro-
longed activation, however, can be compensated
for by increasing the synaptic inputs to the mo-
tor neurons as indicated by the finding that
humans are able to sustain the discharge rate
(10.6 + 1.8 pps; mean + SD) of motor units
in first dorsal interosseus for 21.4 + 17.8 min
during a low-force (5.5% + 2.8% MVC) iso-
metric contraction (Pascoe et al. 2014).

In addition to the decline in motor neuron
responsiveness during prolonged activation,
motor unit recordings indicate that the reduc-
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tion in discharge rate can be modulated by the
synaptic inputs received by the motor neurons.
When performing a series of intermittent, iso-
metric contractions to a target of 50% MVC
force, Carpentier et al. (2001) found that the
discharge rate of motor units recruited from
the onset of the task declined progressively,
whereas the discharge rate of motor units re-
cruited during the task initially increased before
subsequently decreasing. Despite a progressive
increase in the neural drive to the muscle during
the fatiguing contraction, as indicated by the
recruitment of additional motor units and an
increase in EMG amplitude, the decline in
discharge rate was attributed to motor neuron
adaptation and to changes in afferent feedback
from the active muscle (for an explanation of
mechanisms, see Taylor et al. 2016).

The critical role of afferent feedback has
been underscored with a protocol that compares
the influence of load type on fatigability during
sustained isometric contractions. A number of
studies have shown that task failure occurs
more quickly when submaximal inertial loads

(�35% of maximum) are supported by a limb
compared with pulling at an equivalent force
against a rigid restraint (Hunteret al. 2002; Maluf
et al. 2005; Klass et al. 2008b). For example, time
to failure for the elbow flexors when pulling
against a rigid restraint to match a target force
of 15% MVC was 1402 + 728 sec (mean +
SD) compared with 702 + 582 sec when gen-
erating the same net muscle torque to support
an inertial load (Hunter et al. 2002). The various
durations of the two tasks, however, differs
across loads, muscles, and limb posture (Maluf
et al. 2005; Rudroff et al. 2010, 2011). The brief-
er time to failure for the inertial-load condition
is associated with a more rapid decline in dis-
charge rate (Fig. 4B) and a greater recruitment
of additional motor units (Mottram et al. 2005).
Moreover, the modulation of spinal reflex path-
ways is more pronounced when supporting the
inertial load (Klass et al. 2008b; Rudroff et al.
2010). The different rates of adjustment in dis-
charge rate for the two load conditions, there-
fore, appear to be attributable to differences in
afferent feedback onto the motor neurons.
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Figure 4. Declines in motor unit discharge rate during prolonged activation. (A) Decrease in discharge rate for a
cat motor neuron that was activated by sustained intracellular current injection. The motor neuron innervated
the medial gastrocnemius muscle. The injected current was �5 nA greater than the amplitude required to elicit
the repetitive discharge of action potentials. The gradual decline in discharge rate that began a few seconds after
the onset of stimulation and lasted for �30 sec is known as “late adaptation” (Kernell and Monster 1982). (B)
Decrease in discharge for motor units in biceps brachii (n ¼ 64) during submaximal isometric contractions
with the elbow flexor muscles. Average target force was �25% maximal voluntary contraction (MVC). In one
condition (filled circles), the participant was required to match the target force displayed on a monitor for a
prescribed duration. In the other condition (open circles), the participant generated the same net muscle torque
about the elbow joint and was required to maintain a constant elbow joint angle for the same duration by
matching the measured joint angle to the target displayed on the monitor (data from Mottram et al. 2005 and
Gould et al. 2016). pps, Pulses per second.
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At a functional level, these results indicate
that sustaining a submaximal force is easiest
when the limb acts against a rigid restraint
and the amount of muscle activity necessary
to maintain the posture is minimal. These re-
sults indicate the conditions that will minimize
metabolic costs of physical activity and, hence,
the optimal design of workstations, and con-
versely how to manipulate exercise intensity
during a rehabilitation program.

ADAPTATIONS IN RATE CODING ELICITED
BY CHANGES IN PHYSICAL ACTIVITY

Interventions that manipulate the amount of
physical activity for several weeks can produce
significant adaptations in rate coding. Not
surprisingly, the change in rate coding depends
on the details of the intervention. For example,
Vila-Chã et al. (2010) compared the adaptations
in muscle function and motor unit activation in
individuals who performed 6 weeks of either
strength training (load of 60%–70% of one-
repetition maximum) or endurance training
(20–50 min of cycling at 50%–75% of heart
rate reserve). As expected, the strength-training
group showed an increase in the MVC force for
the knee extensors, whereas the endurance-
training group experienced a reduction in fati-
gability when sustaining an isometric contrac-
tion with the knee extensors at 30% MVC force.
Moreover, the change in discharge rate of motor
units in the vasti muscles during an isometric
contraction at 30% MVC force differed for the
two groups; it decreased for the endurance-
training group (11.3 + 1.5 to 10.1 + 1.1 pps;
mean + SEM) and increased for the strength-
training group (11.4 + 1.2 to 12.7 + 1.3 pps).
These findings indicate that the relative contri-
butions of rate coding and recruitment to the
same normalized force (30% MVC) changed
differently after the two training programs.

Similarly, interventions that reduce the
amount of physical activity often decrease rate
coding. For example, the decline in MVC force
after a period of reduced activity is attributable
to both the loss of muscle mass and a decrease
in muscle activation (Duchateau and Hainaut
1987). At the motor unit level, 6–8 wk of im-

mobilization of hand muscles (first dorsal
interosseus and adductor pollicis) induces a
relatively uniform decrease in force across the
entire motor unit pool without any change in
recruitment order (Duchateau and Hainaut
1990). In addition, peak discharge rates for
motor units in first dorsal interosseus declined
markedly after the period of immobilization
from 31 + 8.9 to 19 + 4.9 pps (mean + SD)
during gradual increases in muscle force. Given
that the initial discharge rate at recruitment
did not change after immobilization, the range
of rate coding was depressed by the period of
reduced activity. The decline in rate coding was
more pronounced for motor units in the lower
half of the recruitment range.

The functional significance of the decline in
motor unit force and rate coding after several
weeks of immobilization was evaluated by as-
signing the observed properties to motor units
in a computational model (Fig. 5A) (Fuglevand
et al. 1993). The reduction in the simulated
MVC force (41%) was similar to that observed
experimentally (44%) (Duchateau and Hainaut
1990; Duchateau and Enoka 2002). To estimate
the contribution of the decline in rate coding to
the decrease in MVC force, motor units in the
model were assigned spike-triggered average
forces measured in the control condition and
peak discharge rates recorded after the period
of immobilization. With these parameters,
the simulated MVC force was reduced by 18%
(Fig. 5B). Hence, the 41% reduction in MVC
force after the period of reduced activity was
attributable to decreases in both rate coding
(18%) and motor unit force (23%).

Taken together, the measurements of motor
unit activity after a change in the daily level of
physical activity indicate that adaptations in
rate coding contribute significantly to the rela-
tive increases and decreases in performance.

CONCLUDING REMARKS

With the exception of fast contractions, most
voluntary actions involve motor units discharg-
ing action potentials in the range of 10–30 pps.
Because of the changes in synaptic inputs and
the intrinsic properties of motor neurons, dis-

Motor Unit Discharge Rates and Muscle Force

Cite this article as Cold Spring Harb Perspect Med 2017;7:a029702 9

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



charge rate is often modulated by 5–10 pps
across such tasks as submaximal steady contrac-
tions, lengthening and shortening contractions,
and fatiguing contractions. Although the mag-
nitude of the variation in discharge rate may
seem trivial, it is important to emphasize
that the rates at which motor units discharge
during these tasks lie on the steep portion of
the force–frequency relation, which results in
small changes in discharge rate producing rela-
tively large changes in motor unit force (Mace-
field et al. 1996; Fuglevand et al. 2015). In
contrast, more prolonged increases or decreases
in physical activity typically elicit greater adap-
tations in discharge rate that have a more pro-
nounced influence on maximal force or rate of
force development. These observations indicate
that the modulation of discharge rate (rate cod-
ing) by the nervous system contributes signifi-
cantly to a range of voluntary actions.
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