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MicroRNAs are short RNAs that serve as regulators of gene expression and are essential components of normal develop-

ment as well as modulators of disease. MicroRNAs generally act cell-autonomously, and thus their localization to specific

cell types is needed to guide our understanding of microRNA activity. Current tissue-level data have caused considerable

confusion, and comprehensive cell-level data do not yet exist. Here, we establish the landscape of human cell-specific

microRNA expression. This project evaluated 8 billion small RNA-seq reads from 46 primary cell types, 42 cancer or im-

mortalized cell lines, and 26 tissues. It identified both specific and ubiquitous patterns of expression that strongly correlate

with adjacent superenhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown minor strand (passenger)

microRNAs of known microRNA loci and 495 novel putative microRNA loci. Although cancer cell lines generally recapit-

ulated the expression patterns of matched primary cells, their isomiR sequence families exhibited increased disorder, sug-

gesting DROSHA- and DICER1-dependent microRNA processing variability. Cell-specific patterns of microRNA expression

were used to de-convolute variable cellular composition of colon and adipose tissue samples, highlighting one use of these

cell-specific microRNA expression data. Characterization of cellular microRNA expression across a wide variety of cell types

provides a new understanding of this critical regulatory RNA species.

[Supplemental material is available for this article.]

MicroRNAs are an established class of small regulatory RNAs that,
within theRISC complex, bindmRNAs and repress proteinproduc-
tion (Valencia-Sanchez et al. 2006). In this role, they control essen-
tial cell processes in health and disease (Ambros 2004;Mendell and
Olson 2012). Despite all that is known aboutmicroRNAprocessing
and function, the cellular localization of microRNAs is still widely
underappreciated. An understanding of which cells express which
microRNAs is useful as we move toward microRNA therapeutics
(Janssen et al. 2013) and microRNA biomarkers (Mitchell et al.
2008). Knowing a microRNA’s full localization pattern will maxi-
mize efficacy and minimize off-target effects of therapeutics and
will better rationalize candidate biomarkers (Haider et al. 2014).

MicroRNA expression has been predominantly characterized
in tissues, with no comprehensive cellular studies. Initial tissue
studies sequenced individual clones or used arraymethods provid-
ing low-depth coverage of abundant microRNAs (Lagos-Quintana
et al. 2002; Barad et al. 2004; Liu et al. 2004; Baskerville and Bartel
2005). Themost thorough of thesemicroRNA localization projects
performed small RNA library sequencing (RNA-seq) on over 250 li-
braries from 26 organ systems. However, this nascent effort se-
quenced only ∼1200 reads per library (Landgraf et al. 2007).
While providing valuable insights into the relationship of
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microRNA expression and disease (Lu et al. 2005), these and subse-
quent studies (Cheng et al. 2015; Ludwig et al. 2016) have not un-
raveled cellular microRNA expression. Because all tissues are
composed of multiple, unique cell types, it is essential to under-
stand from which cell the microRNA signal is obtained. Addition-
ally, the anonymity of microRNA nomenclature, with sequential
numerical naming, has not allowed an intrinsic understanding
of whichmicroRNAs are ubiquitous and which have cell-restricted
patterns of expression (Witwer and Halushka 2016). This determi-
nation is fundamental to understanding the proper biologic and
regulatory roles of microRNAs.

Small RNA-seqhas becomea robustmethod to fully character-
ize knownmicroRNAs, capture complete isomiR families, and iden-
tify novelmicroRNAs. IsomiRs are related sequenceswithmostly 5′

and3′ nucleotidemodifications that collectivelymakeup the total-
ity of a given microRNA (Neilsen et al. 2012). The microRNA com-
munityhas been forthright in depositingRNA-seqdata into central
public repositories. As a result, there is a significant amount of data
that can be collectively analyzed.We combinednew sequencing of
39 primary cell lines or isolated cells with hundreds of publicly
available primary cell and immortalized/cancer cell line data sets,
with all microRNA assignment performed by a single robust and

high-throughput microRNA alignment method (Baras et al.
2015), to establish the most complete characterization of the hu-
man cellular microRNAome, including novel microRNA discovery
and isomiR diversity. We additionally analyzed whole-tissue
microRNA data to understand the extent to which cells obtained
from ex vivo cultures could recapitulate a tissue signal and com-
pared matched primary and cancer/immortalized cells to deter-
mine the extent of similarity in their expression patterns.

Results

Generation of a cellular microRNAome

Toward catalogingahigh-quality complete cellularmicroRNAome,
we generated new small RNA-seq data from 39 primary cells ob-
tained by culture, flow cytometry, or centrifugation. We augment-
ed this with Sequence Read Archive (SRA) small RNA-seq read data
from496 samples with >1millionmicroRNA reads. Thesewere pri-
mary cell cultures, immortalized/cancer cell lines, or normal tissues
(Fig. 1). All samples were processed through miRge (Baras et al.
2015). miRge uses modified microRNA libraries andmultiple Bow-
tie steps for optimal alignments on multiplexed runs (Table 1; Fig.

Figure 1. A generalized overview of the 530 cells and tissues included in this study. (A) Representation of 46 main cell types. (B) Representation of 42
cancer or immortalized cell lines. (C) Representation of 26 tissues/organ types.
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2A). Overall, 2319 of 2546 knownmicroRNAs (miRBase v21) had a
minimum expression of 1 read per million microRNA reads (RPM)
in at least one sample (Supplemental Table S1).

The 161 primary cell RNA-seq data sets encompassed 46main
cell types, many from multiple anatomic locations (Fig. 1A;
Supplemental Table S2). There were 100 cancer cell or immortal-
ized cell line RNA-seq data sets from 42 separate cell lines (19 gen-
eral cancer types) (Fig. 1B; Supplemental Table S3). The 269 small
RNA-seq data sets from 26 normal tissues/organs aided in the nor-
malization methods employed due to organ coverage from multi-
ple separate studies (Fig. 1C; Supplemental Table S4). As much of
this primary data was derived from different laboratories using dif-
ferent protocols, significant attention was given to potential con-
founding and batch effects.

We utilized the DEXUS algorithm (Klambauer et al. 2013) to
identify discrete expression states for each microRNA. The result-
ing cell type-specific patterns of discretized microRNA expression
across the 161 primary cell types (Supplemental Fig. S1) are inher-
ently robust to batch effects. This method clustered cell types into
hematologic, neural/embryonic stem cell (ESC), epithelial, and
mesenchymal groups, identifying general patterns of microRNA
expression. T-distributed stochastic neighbor embedding (t-SNE)
clustering was then compared between uncorrected primary cell
RPM data and primary cell data that underwent remove unwanted
variation (RUV) normalization for five variables using the most
abundantmicroRNAs (Risso et al. 2014). The use of RUV improved
clustering of similar cell types from different experiments
(Supplemental Fig. S2). We then identified 387 samples represent-
ing a cell type or tissue with RNA-seq data inmore than one exper-
iment. We used surrogate variable analysis (SVA) and 26 loosely
described “biologic clusters” of tissues and cells to clearly demon-
strate that, after adjusting for surrogate variables, similar tissue and
cell types clustered together across experiments (Supplemental Fig.
S3; Leek and Storey 2007). t-SNEwas then performed separately for
primary cells, cancer/immortalized cells, and tissues using RUV
normalization (Fig. 2B; Supplemental Fig. S4). Akin to the DEXUS
results, among primary cell types, microRNA expression patterns
generated four major groups: hematologic, mesenchymal, neu-
ral/ESC, and epithelial. Strong clustering by biological group was
observed for all samples, overcoming most technical concerns.
We then moved to assess what microRNAs drove the formation
of these different clusters.

Diverse microRNAs expression patterns

We assessed common, potentially functional microRNAs (Mullo-
kandov et al. 2012) by their frequency of expression across the dif-
ferent normal cell classes (Supplemental Table S5). There were 320

microRNAs that had an RPM ≥1000 in any of the 46 normal cell
types. Of these, 94 (29%) were present in only a single class of cells
(Fig. 2C).Most of these arewell-known associations (e.g., miR-144-
3p and red blood cells or miR-1-3p with skeletal myocytes) that
highlight the nonubiquitous nature of microRNA expression
(Haider et al. 2014). SixmicroRNAswere present in all 46 cell types
at this RPM threshold (miR-107, miR-103a-3p, miR-103b, miR-
191-5p, miR-21-5p, and miR-92a-3p), and an additional nine
microRNAs were present in all cells at a lower threshold of 100
RPM: miR-16-5p, miR-25-3p, miR-26a-5p, miR-26b-5p, miR-30d-
5p, miR-101-3p, miR-128-3p, miR-140-3p, and miR-181a-5p (Sup-
plemental Table S6). Among tissues containing a mixture of cell
types, 377 microRNAs were present at an RPM ≥1000. Seven of
these microRNAs (let-7a-5p, let-7c-5p, let-7b-5p, let-7f-5p, let-7g-
5p, miR-26a-5p, and miR-30d-5p) were found in all tissues. Some
well-known cell-specific microRNAs appear to be ubiquitous
among tissues but merely reflect the presence of a certain cell
type across tissues. miR-451a was abundantly present in 20 of 26
tissues but is from only one cell class (red blood cells). Likewise,
miR-126-3p, abundant only in endothelial cells and platelets,
was present in 21 tissues, and miR-150-5p, abundant in lympho-
cytes, was present in 11 tissues. We then determined microRNA
abundance from the 5p or 3p arm and found the guide/“driver”
(more abundant, thermodynamically stable) microRNA to be
equally from either arm of the hairpin microRNA, suggesting no
strand bias in microRNA selection (Fig. 2D). To augment this con-
cept of cell-specific microRNAs, we investigated their relationships
to adjacent superenhancers.

Superenhancers are dense genomic regions of transcription
factor binding sites that have a multiplicative effect on increasing
adjacent gene expression (Whyte et al. 2013; Suzuki et al. 2017).
We examined the association betweenmicroRNA expression levels
and the presence of a superenhancerwithin 40 kb of themicroRNA
loci in 11 primary cells and cancer cell lines, for which we had
matching data. MicroRNA expression in the presence of a superen-
hancer was significantly increased compared to microRNA expres-
sion at sites not adjacent to a superenhancer (Wilcoxon rank-sum
test, P < 2.2−16). This association was observed with and without
batch effect adjustment and was generally consistent across sam-
ples. Importantly, cell-type restricted microRNAs showed active
superenhancer activity matching those specific cells (Fig. 2E).
These data further support the cell-type restricted microRNAs
seen above and indicate that analyses of global tissue microRNA
expression require an understanding of the source of each
microRNA of interest, lest misinterpretations of the data result in
spurious disease associations (Kent et al. 2014).

Taking advantage of cell-specific microRNAs, we determined
the feasibility of using cellular microRNA expression data to de-

Table 1. Overall sequencing data

Primary cell Cancer/immortalized Tissue Total

RNA-seq runs 161 100 269 530
Unique classes 46 42 26 114
Total reads 2,329,481,747 1,741,232,555 3,976,537,372 8,047,251,674
Total microRNA reads 1,273,974,684 843,209,452 2,367,360,331 4,420,393,245
Average microRNAs/run 705 809 693 719
microRNAs identified 2094 2123 2171 2319a

All other RNAs 411,017,393 300,011,463 664,726,863 1,375,755,719
Total residual reads 543,983,463 330,245,320 515,559,855 1,389,788,638

aOut of 2546 known microRNAs (miRBase v21), minimum RPM = 1.
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convolute an overall tissue signal to discern the individual compo-
nents.We investigated 15white adipose samples fromparticipants
in the METSIM study (Civelek et al. 2013). We used CIBERSORT
(Newman et al. 2015) to determine the composition of each tissue
based on groupedmicroRNA signatures formesenchymal cells, en-
dothelial cells, blood, B/T lymphocytes, and dendritic cells (Fig.
2F). Surprisingly, the red blood cell component (blood) was a ma-
jor and variable (18%–56%) part of each tissue, suggesting incon-
sistent and inadequate samplewashing prior to RNA isolation (Fig.

2G). Lymphocytes were also variable (0%–5%) between samples
(Fig. 2H), while endothelial cells were generally more consistent
(4%–9%). We investigated a second group of colon tissues derived
from patients with ulcerative colitis, Crohn’s disease, or diverticu-
losis (Lin et al. 2016). This experiment showed a reduction in epi-
thelium as a percent of all cell types among the ulcerative colitis
samples (avg. 20%) compared to Crohn’s disease (avg. 44%) and
diverticulosis (avg. 61%). Inflammation was also most prominent
in the ulcerative colitis samples (Supplemental Fig. S5). Altogether,

Figure 2. Method and primary analysis of the cellular distribution of microRNAs. (A) Six hundred ninety-four total samples were processed through
miRge, yielding 530 samples available for analysis and novel microRNA detection through miRDeep2 and miRanalyzer. (B) t-SNE distribution of 161 pri-
mary cells showing four main clusters (hematologic, epithelial, mesenchymal, and neural/stem cell) and subclustering by cell type. Cell types are color-
coded, and round symbols indicate epithelial cells. (∗) indicates an intestinal epithelial cell that was either contaminated or underwent mesenchymal trans-
formation. (C) A selection of microRNAs that have unique expression to certain primary cell types. (∗) indicates specificity for flow-sorted colonic epithelial
(likely goblet) cells. (D) Across 334 microRNAs with >1000 RPM, both strands of a hairpin microRNA give rise to the dominant microRNA in fairly equal
measures. (E) The presence of nearby superenhancers strongly correlates with high microRNA expression. (F ) The individual cellular microRNA patterns
can be used to de-convolute the cellular composition of tissue. (G) A representative hematoxylin& eosin (H&E) section of adiposewith significant red blood
cells (lower part of the panel) as an example of heterogeneous elements that can contribute microRNA expression (10× original magnification). (H) A H&E
representative section of adipose with a small cluster of lymphocytes (lower part of the panel) that may be randomly sampled, modulating the tissue signal
(10× original magnification).
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these data demonstrate the importance and feasibility of solving
for the cellular content of tissues to better understand the compo-
sition of the analyzed tissue.

Variable expression in cancer cell lines

Immortalized and cancer-derived cell lines are frequent surrogates
for primary cells in understanding biologic pathways. However,
the extent of differences in microRNA expression between these
cell lines and primary cells is unknown. We analyzed fibroblasts
and T lymphocytes, the only two cell types in which there exist
sufficient numbers of primary and immortalized/cancer cell types
to determine the extent of theirmicroRNA similarities. An analysis
of 12 primary and three immortalized fibroblast cell line
microRNA signatures identified overall strong correlation (RUV-
corrected, log2-normalized, pairwise R > 0.80–0.99), with the im-
mortalized lines being slightly less correlated (Supplemental Fig.
S6A). A global comparison of microRNA differences identified
miR-1304-3p to be the most extreme outlier among fibroblasts
(Supplemental Fig. S6B). Eight primary T lymphocyte samples
and 14 T lymphocyte malignancy samples also revealed moderate
to strong correlation but with separate primary and cancer-derived
cell clustering (Supplemental Fig. S6C). There were more
microRNAs that differed between primary and cancer-derived cells
(Supplemental Fig. S6D), includingmiR-150-5p whichwas 64-fold
higher in the primary T cells, as has been reported (He et al. 2014).
miR-9-3p, 64-fold higher in the cancer-derived cells, has been pre-
viously reported as elevated in Hodgkin’s lymphoma (Leucci et al.
2012) but not in these three cell types. Other markedly different,
well-studied microRNAs include miR-363-3p, miR-146a-5p, miR-
146b-5p, and miR-486-3p. We also ascertained how consistent
themicroRNA expression pattern of cancer cell lineswould be after
years of divergent growth in separate laboratories. A comparison of
HeLa cells obtained from five sources had a range of expression cor-
relation between 0.35 and 0.75, while fibroblasts from three sepa-
rate batches but obtained from different organ systems had a
correlation between 0.75 and 0.9 (Supplemental Fig. S7). These
analyses suggest some key differences between immortalized/can-
cer cell lines and primary cells and highlight NIH concerns about
the rigor and reproducibility of widely used cancer cell lines
(http://grants.nih.gov/reproducibility/).

Novel human microRNAs

In light of the recent description of 3707 novel humanmicroRNAs
(Londin et al. 2015), we used the large breadth of our samples to
determine ifwe coulduncover additional novelmicroRNAs.We in-
vestigated1.2 billion reads, unmappedbymiRge, from474 samples
for putative novel microRNAs in miRDeep2 (Friedlander et al.
2012). miRDeep2 identified, and we assigned names (JHU_ID_
xxx) to, 25,218 putative “driver” (thermodynamically stable)
and “passenger” (thermodynamically unstable and degraded)
microRNAsfrom21,338loci,withthemajority (18,480,65%)being
from individual samples and frequently (5662, 22%) identified
from only a single read (Fig. 2A; Supplemental Table S7). A small
percent (394, 0.7%)were identified inmore than 50 samples. Addi-
tionally, 207were the unassigned “passenger” 5p or 3pmicroRNAs
from a known microRNA locus, and 15 were orthologous to a dif-
ferent species’microRNA(primarilyprimate) (Supplemental Tables
S8, S9). This number of new microRNAs seems impossibly high
and likely mostly false positives and/or nonfunctional transcripts
(Mullokandov et al. 2012). We further refined this list of novel
microRNAs using complementary sources of information.

We began with the 2724 loci containing 4064 mature
microRNAs that had ≥50 combined dominant microRNA reads.
We then compared these samples to novel microRNAs detected
on a filtered set by a second detection method, miRanalyzer
(Hackenberg et al. 2011). This reduced the loci to 984. We then
limited ourselves to the 652 microRNA loci that had both 5p and
3p sequences. Finally, we obtained 105 Argonaute CLIP-seq data
sets and processed them through miRDeep2 to obtain 21,908 pu-
tative novel Ago-bound microRNAs. We compared these to the
652 microRNA loci to ultimately produce 495 highest confidence
putative novel microRNAs (Fig. 3A; Supplemental Table S10).

To validate these putative novel microRNAs, we employed
three complementary methods. First, we investigated the novel
microRNAs based on a z-score generated by novoMiRank, which
compared novel microRNAs to those in miRBase based on 24 fea-
tures (Backes et al. 2016). We found the average z-score was right-
shifted to 1.07 (indicating less similarity) for a subset of the 21,338
loci, while for the 495 highest confidence loci it was 0.90, indicat-
ing more consistency with miRBase microRNAs (Supplemental
Fig. S8A,B; Backes et al. 2016).

Second, we used PhyloP (Pollard et al. 2010) to look for base-
wise conservation of nucleotides across 17 primates, shrew,mouse,
and dog, reasoning that these putative novel microRNAs would
have some conservation among primates, as recently reported
(Hubisz et al. 2011; Londin et al. 2015). We compared the nucleo-
tide conservation of all novel microRNAs against known
microRNAs from miRBase v21. Although miRBase is accepted as
the repository of all knownmicroRNAs, there have been questions
about the accuracy of this list, and a “high quality” subset of
miRBase microRNAs can be obtained from miRGeneDB (Fromm
et al. 2015). We observed that only these miRGeneDB microRNAs
have a separate distribution of high conservation. The remaining
miRBase microRNAs had modest conservation and were similarly
distributed to both the putative novel microRNAs reported here
and the 3707 novel microRNAs reported as TJU microRNAs (Fig.
3B; Londin et al. 2015).

Third, we investigated whether there was evidence that
DICER1 could act upon these microRNAs. We obtained paired
HCT116 wild-type and DICER1 knockout cell line RNA-seq data
(Kim et al. 2016). DICER1 knockouts are known to significantly re-
press 3p driver microRNA levels while allowing for longer 5p
microRNAs that are loaded into Ago and trimmed back from the
3p end (Hill et al. 2009). A test for the difference in proportions be-
tween wild-type and DICER1 knockout samples revealed the pro-
portion in wild-type dropped from 0.151 to 0.047 in the DICER1
samples, representing a significant decrease (P < 2.2−16). This con-
firms that DICER1 is acting on some of these novel microRNAs. In
summary, these analyses suggest that the 495 highest confidence
putative microRNAs reported here are similar to other known
microRNAs.

We then determined the characteristics of these putative nov-
el microRNAs. The median number of samples sharing a given
microRNA loci was 33 (range 3–293) (Supplemental Fig. S8C).
About half, 264, were located within a gene locus. Thirty-four
were also adjacent to a known microRNA. In comparison to the
3707 novel TJU microRNAs (Londin et al. 2015), only 257 (52%)
were shared between both data sets. The median number of reads
per “driver”microRNA in these 495 putative novelmicroRNAswas
282 (range 51–257,582). Total reads per microRNA did not corre-
late with the number of samples within which the microRNA
was detected (R2 < 0.01) (Supplemental Fig. S9). Finally, we as-
sessed the seed sequences (bases 2–7) of these putative novel
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microRNAs for their similarities to known microRNAs. There were
411 unique seed sequences among the driver novelmicroRNAs. Of
these, 226 (55%) overlapped with a known microRNA seed se-
quence. This indicates the potential for more shared regulatory
control of genes often in a more cell-specific manner.

We then validated nine novel microRNAs from six different
cell types or tissue by PCR (Fig. 3C). As an example of potentially
interesting novel microRNAs, JHU_ID_23828-3p was validated
by PCR and is located in intron 8 of the EGFL7 gene, approximate-
ly 900 bp frommir-126 and within the same pri-miRNA transcript
(Fig. 3D,E; Chang et al. 2015). Unsurprisingly, due to the specific
high abundance of miR-126 in endothelial cells, JHU_ID_23828-
3p was also significantly more abundant in four endothelial cell
lines (avg. 3673 reads) than 30 other cell types (avg. eight reads;
P = 0.001, Mann-Whitney U test) (Fig. 3F). Additionally, while
miR-126 is highly conserved throughout chordates, JHU_ID_
23828 is only conserved among primates (Fig. 3G).

Wide variation in the distribution of isomiRs

Due to the inexact cutting of DICER1 andDROSHA andnucleotide
additions/modifications, a collection of mostly similar sequences
(with most diversity on the 3′ end) make up the isomiR family of
a microRNA (Morin et al. 2008; Neilsen et al. 2012). IsomiR fami-
lies can be comprised of hundreds of different sequences, butmost
sequences that constitute an isomiR family are templated length
variants of the canonical (consensus) sequence and additional nu-
cleotides added to the 3′ end. We evaluated the isomiR distribu-
tions of 126 primary cell and 82 cancer/immortalized cell samples.

Technical factors, caused by the different chemistries of se-
quencing kits from different vendors, may modulate isomiR fami-
lies, particularly in respect to nontemplate additions. We found
that nontemplated adenine additions were more common in
data obtained from runs performed on older Illumina sequencers
(Genome Analyzer I, II, and IIx) compared to the HiSeq (1000,

Figure 3. Some novel humanmicroRNAsmay still await characterization. (A) A nested Venn diagramwas parsed down from 21,338miRDeep2 identified
novel microRNA loci to 2724 with ≥50 reads to 984 based on overlap with miRanalyzer-detected novel microRNAs to the 652 with both 5p and 3pmature
microRNAs, and finally, with evidence of the RNA being Ago-bound, yielding 495 highest confidence novel microRNAs. (B) A histogram of PhyloP conser-
vation scores averaged across the length of eachmature microRNA. This collection of miRBase∗ v21microRNAs has themiRGeneDB set removed. TJU novel
microRNAs are from Londin et al. (2015). (C ) Nine novel microRNAs were amplified that were predicted to be either cell-specific or ubiquitous. Most of
these were lowly expressed. miR-21-5p was used as a control. (D) The predicted hairpin structure of novel microRNA JHU_ID_23828 is shown. (E)
JHU_ID_23828 is located in the EGFL7 gene locus and shares a pri-miRNAwithmir-126, an endothelial cell-enrichedmicroRNA. (F) From the same sequenc-
ing batch, the average number of reads for JHU_ID_23828 among four endothelial cell types was 3673 and eight among 29 nonendothelial cell types ([∗] P
= 0.001, Mann-Whitney U test). (G) JHU_ID_23828 is present among primate species but is absent in lower mammals including Mus musculus.
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2000, 2500) systems (P < 2.4−9, paired t-test). We determined that
the main drivers of this difference were the changing methods of
the Illumina sequencing library kits acting upon a small subset
of microRNAs (Supplemental Fig. S10A; Baran-Gale et al. 2015).
This was taken into consideration when making comparisons of
nontemplated additions across samples. We evaluated both 3′

templated length variants ±4 bases from the reported canonical
sequence (miRBase v21) and variations in the 5′ nucleotide start-
ing location, which would affect the predicted seed sequence of
the microRNA (Fig. 4A; Supplemental Table S11). The most abun-
dant isomiRwas widely variable between cells and often incongru-
ent with the expected sequence. In primary cells, 556 microRNAs
had reads sufficient for analysis. A comparison of reads, all with the
same 5′ starting location, revealed themost abundant isomiR to al-
ways be the canonical sequence for only 182 (33%) microRNAs.
There were 204 (37%) microRNAs in which the miRBase v21 ca-
nonical sequence was never the most abundant sequence (Fig.
4A). This includes miR-10a-5p, in which a 1-bp-shorter sequence
was the dominant species in 111 of 112 samples, and miR-140-
3p, in which the dominant species was 2 bp longer in 91 of 113
samples (Supplemental Table S11).

Across the primary cells, 84 microRNAs also had more abun-
dant reads for template sequences that started proximal or distal to
the canonical 5′ starting position (Supplemental Table S12), which
is distinct from the 3′ changes reported in Figure 4A. This included
miR-199b-3p (+1 shift), miR-181c-3p (+1 shift), and miR-302a-5p
(+3 shift), all of which had highly abundant reads containing a
completely different seed sequence than the one currently as-
signed, with strong implications for the targeting of genes (Tan
et al. 2014). Although technical factors may be responsible for
some variation between cell types, the data clearly demonstrate a
need to revise our understanding of the appropriate canonical
microRNA sequences for better reproducibility and computational
target prediction (Mestdagh et al. 2014; Agarwal et al. 2015).

We then ascertained the nucleotide identity of the nontem-
plated 3′ addition at the +1 position from the most abundant ca-
nonical isomiR reported above. Across the 126 cell types, 56% of
nontemplate additions were adenines, followed by 41% uracils,
1% guanines, and 3% cytosines (Neilsen et al. 2012). Between
cell types, these values were highly variable, with additional non-
templated adenines ranging from 28% (iPSC neurons) to 82% (H9
differentiated cells) of all additional nucleotides. As this may be

Figure 4. IsomiRs are a challenge to characterizing microRNA levels. (A) Among primary cells, the most abundant (dominant) sequence for many
microRNAs differs in length from the canonical “C” miRBase.org v21 sequence by up to 4 bases (C−4 to C+4). Between cell types, length diversity is
also present, as evidenced by microRNAs that are not entirely of one length. Eighteen representative microRNAs from 556 in total. (B) The general features
of microRNA length among cancer/immortalized cells are similar, but the microRNA processing in these cells skews toward randomness. See also
Supplemental Figure 12. (C) miR-150-5p, a lymphocyte-specific microRNA, shows a diversity of nontemplated nucleotide addition at the +1 site on the
3′ end. Cytosine is the templated (genomic) nucleotide at this position and is not shown. (D) miR-151a-3p, a ubiquitous microRNA, has marked variation
in the first nontemplated nucleotide addition. Cytosine is again the templated nucleotide at this position.
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related to library preparation, as described, we investigated just the
32 different primary cells that we generated in a shared batch and
observed a twofold range, from 31% (dermal neonatal fibroblast)
to 69% (bronchial epithelium), of all +1 additions being adenines,
suggesting a real biological phenomenonwas present (Supplemen-
tal Fig. S10B).

Finally, we assessed what percentage of all reads from a given
microRNA family were assigned to the most abundant sequence.
On average, only 45%of all microRNA reads for each isomiR group
were assigned to themost abundant isomiR sequence (Supplemen-
tal Fig. S11). This was quite variable and rarely >90%, suggesting
methods that fail to acquire isomiRs significantly underestimate
the presence of microRNAs in a variable fashion (Mestdagh et al.
2014).

We then investigated the isomiRs of 82 samples from 35 dif-
ferent cancer (or immortalized) cell types. Here, we found subtle
differences in the canonical microRNAs relative to primary cells.
Only 22% of microRNAs (versus 33% of primary cells) had the
most abundant isomiR as the miRBase v21 canonical sequence
in 100% of cells. The diversity of most abundant microRNA se-
quences between samples (as characterized by Shannon entropy)
among cancer/immortalized cells was a ∼20% increase in disorder
over primary cells (P < 0.005, Wilcoxon rank-sum test), suggesting
increasedDICER1 andDROSHAmiscleavages (Fig. 4B; Supplemen-
tal Fig. S12; Supplemental Table S13). Nontemplated adenines
(62%) and uracils (30%) were again the dominant 3′ modifications
in immortalized/cancer cell samples but could vary widely be-
tween both primary and cancer/immortalized cells as a reflection
of either biological differences or technical factors (Fig. 4C,D).

Discussion

Here, we provide the first comprehensive delineation of cell-specif-
ic expression patterns of humanmicroRNAs. These ubiquitous and
cell-specific patterns of microRNA expression, identified by RNA-
seq data, are further supported by matching superenhancer data
and highlight that there are many fewer ubiquitous microRNAs
than currently believed. Of key importance is the specific expres-
sion patterns of certain microRNAs. Namely, miR-451a and miR-
144 are exclusively expressed in red blood cells, yet, because blood
is found in all tissues, they have been inappropriately assigned a
variety of functions in epithelial and mesenchymal cells based
on misinterpreted tissue-level data (Kent et al. 2014; Halushka
2016).

Having this encyclopedic knowledge of microRNA localiza-
tion provides additional benefits. We provided two examples, us-
ing colon and adipose tissue, of how cell-specific patterns can
de-convolute complex tissue expression patterns. As more data
are added to this growing cellular microRNAome, we can effective-
ly work to reduce expression heterogeneity in tissue samples across
large studies (McCall et al. 2016). This will improve the interpreta-
tion of tissue microRNA expression levels, which, to date, has sig-
nificantly muddied our understanding of microRNA localization
and biologically relevant function (Kent et al. 2014).

This study also has implications for the measurement and
manipulation of microRNA expression. By using cell, not tissue,
data, we could observe cell-specific differences in the isomiR com-
position of microRNAs. For 205 common microRNAs, the most
abundant sequence did not match the reported sequence in
mirBase.org. This difference, which has previously been reported
on a smaller scale (Morin et al. 2008), can have an important effect
on PCR- and hybridization-based strategies that may target a sec-

ondarily abundantmicroRNA in the isomiR family, altering the re-
ported expression level of a microRNA. This could explain some of
the variability of microRNA expression across methods demon-
strated by the miRQC project (particularly between RNA-seq and
hybridization approaches) (Mestdagh et al. 2014) and impact the
biologic activity of mimics and inhibitors relative to the true
microRNA 5p end (Guo et al. 2014).We also uncovered isomiR dif-
ferences at the +1 position related to different library preparation
kits. Further, we found these differences were significant in only
a small subset of microRNAs. This technical driver of isomiR type
will challenge those groups working toward a standard isomiR
nomenclature.

The identification of novelmicroRNAs fromdeep sequencing
data sets appears fraught with challenges. It is likely that there are
moremicroRNAs to be discovered in rare cell types and in develop-
mental stages that have not been assessed. However, the risk of
overinterpreting short RNAs as microRNAs is high. As we showed,
using the popular tool miRDeep2 to find novel microRNAs, we
could obtain 21,338 loci, which is ∼10× more than are present in
miRBase v21! Using a number of validation steps, we reduced
this number down to 495 highest confidence miRNAs, which is
roughly one newmicroRNA per sample evaluated. Althoughwe re-
port them as “highest confidence” putative novel microRNAs,
they are still not definitive microRNAs. Many are likely false posi-
tives and more proof of these RNA species acting as microRNAs
must come from in vivo studies, which were beyond the scope of
this project. We also likely lost some true positive microRNAs by
retaining only those microRNAs with multiple sources of evi-
dence. The PhyloP conservation data (Fig. 3B) show that, beyond
the most ideal microRNAs identified in miRGeneDB, there is a
lack of genetic conservation, with overlap in a large segment of
miRBase microRNAs and the novel microRNAs reported here and
in a prior large study (Londin et al. 2015). Either this suggests
that much of miRBase is inaccurate or that, while conservation
provides evidence for a microRNA to be authentic, it is not a re-
quirement. Human-specific microRNAs may represent a class of
underreported microRNAs. New methods, taking into account
our collective knowledge of known microRNA structures and
isomiR families, must be considered for the next generation of
novel microRNA detection algorithms (Backes et al. 2016).

There are important limitations to thiswork. Becausemuchof
the data is taken from public sources, in which the RNA-seq has
been performed across different platforms and with different se-
quencing methods, significant technical variation in microRNA
expression is present. To counter this, we performed extensive nor-
malization. Certain aspects of the data also helpedwith normaliza-
tion, including 98% of sequencing runs being performed on an
Illumina Genome Analyzer or HiSeq system and >74% of libraries
being generated using an Illumina sequencing kit. Our approach
to batch-effect adjustment and between-sample normalization re-
sulted in clustering by cell or tissue type even when those samples
came from multiple different experiments performed in different
laboratories. Our data matched certain “ground truths” about spe-
cific microRNA expression in certain cell types, includingmiR-192
in epithelial cells, miR-126 in endothelial cells and platelets, and
miR-9 in brain (McCall et al. 2011a; Haider et al. 2014; Kent et
al. 2014). As well, another recent paper investigating microRNA
RNA-seq across multiple laboratories found relative quantification
to be “remarkably accurate and reproducible” (Giraldez et al.
2017), consistent with ourwork. Despite this, technical factors cer-
tainly drive some of the variation and clustering in these samples.
In addition, some of these cell types have few to no replicates, and
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it will be important to continue adding data for these cells. It is also
unknown the extent to which microRNA expression patterns of
cultured cells match cells in vivo. Finally, we are only moving to-
ward a complete cellular microRNAome, as many cell types (hepa-
tocytes, neutrophils, pneumocytes) were not available for this
study.

These microRNA expression patterns from 42 cell types are
the first step toward a complete understanding of microRNA ex-
pression across all cells and establishing a human cell atlas. Our
data also demonstrate general consistencies, but not without
some concerning differences, between primary cells and immor-
talized/cancer cell lines. This work brings a new realization to
the importance of cellular microRNA localization and enhances
our understanding of this powerful regulatory RNA species.

Methods

Cell isolation and sequencing methods

Twenty-nine cell types were obtained from Lonza and cultured ac-
cording to the manufacturer’s specifications for no more than six
passages (Supplemental Table S14). Primary coronary endothelial
cells, smooth muscle cells, and fibroblasts from a 29-yr-old man
were isolated and cultured in ECM or SMC media (ScienCell),
and primary aortic endothelial cells were isolated and cultured
from a 10-yr-old girl as described (McCall et al. 2011a). Red blood
cells were isolated from whole blood by centrifugation at 900g
for 10 min at room temperature and then pipetted and collected.
Colonic epithelial cells were obtained by flow sorting (BD
FACSAria II) of EpCAM+ cells through amodification of the proto-
col of Dalerba et al. (2007). T lymphocytes were obtained by flow
sorting of a homogenized spleen sample for CD3+ cells. Cortical
neurons were grown from iPSCs using the methods described
(Xu et al. 2016). RNAs were isolated with the miRNeasy kit
(Qiagen) according to the manufacturer’s protocol. RNA integrity
was assessed using Agilent BioAnalyzer, and the RNA concentra-
tions were measured using a NanoDrop 2000 UV-Vis spectropho-
tometer. Small RNA libraries were prepared using the Illumina
TruSeq Small RNA Library Preparation kit according to the manu-
facturer’s protocol or purified using a Pippin Prep with a 3%
Agarose Gel Cassette (Sage Science) and a size selection of 122–
157 bp. Multiplexed sequencing was performed as single-read 50
bp, using rapid run mode and v2 chemistry on HiSeq 2000 or
HiSeq 2500 systems (Illumina) at either the Genome Technology
Center at the NYU School of Medicine or the Next Generation
Sequencing Center at the Johns Hopkins University School of
Medicine.

Differentiation of hES cells into dopamine neurons

H1 human embryonic stem cells (Wi Cell) were cultured using
standard protocols on inactivated mouse embryonic fibroblasts.
Differentiation of hES cells to dopamine neurons was done as de-
scribed (Kriks et al. 2011). Single-cell hES cells were cultured on
matrigel-coated plates at a density of 40,000 cells/cm2 in SRMme-
dia containing growth factors and small molecules, including
FGF8 (100 ng/mL), SHH C25II (100 ng/mL), LDN-193189 (100
nM), SB431542 (10 µM), CHIR99021 (3 µM), and Purmorphamine
(2 µM) for the first 5 d. Over the next 6 d, cells were maintained in
neurobasal medium containing B27 minus vitamin A, N2 supple-
ment along with LDN193189 and CHIR99021. In the final stage,
they were made into a single-cell suspension and seeded at a den-
sity of 400,000/cm2 on polyornithine- and laminin-coated plates
in a neurobasal media containing B27 minus vitamin A, BDNF
(20 ng/mL), GDNF (20 ng/mL), TGFB1 (1 ng/mL), ascorbic acid

(0.2 mM), cAMP (0.5 mM), and DAPT (10 µM) until maturation
(∼60 d).

Publicly available RNA-seq data

Sequence Read Archive and Array Express were searched for the
terms “human” and “microRNA” or “miRNA,” and the records
were evaluated for any human primary cell type, cancer cell line,
transformed/immortalized cell line, or normal human tissue.
These generally represented the “control” materials in experi-
ments. In total, 655 SRA files were downloaded and converted
into FASTQ files using fastq-dump of the SRA Toolkit. Sequencing
was performed on Illumina systems (Genome Analyzer I, II, IIx,
HiSeq 1000, HiSeq 2000, HiSeq 2500, MiSeq) and AB SOLiD Sys-
tems. Solexa colorspace data were converted to standard FASTQ
format using SOLiD2Std.pl. Data searches and collection ended
on Feb. 18, 2016. Additional RNA-seq data were obtained from
project PRJNA352864 for a de-convolution study. The cell line
H1264, which is a lung carcinoma cell line, has been reported as
being cross-contaminated with H157, which is a separate human
lung carcinoma cell line (ICLAC.org). However, in the context of
the way data from this cell line were used, that distinction is of
no consequence here.

microRNA annotation via miRge

miRge was used as described (Baras et al. 2015). Briefly, miRge re-
moves sequence adapters and performs quality control through
CutAdapt (Chen et al. 2014). Then, reads are collapsed together
and undergo a five-step alignment to customized RNA libraries,
utilizing Bowtie and designed to optimally capture microRNAs
and their isomiRs (Langmead et al. 2009). For microRNAs with
high sequence similarity (e.g., hsa-let-7a-5 and hsa-let-7c-5p),
miRge reports them together (e.g., hsa-let-7a-5p/7c-5p). The gener-
ally used command line for miRge was perl miRge.pl –adapter illu-
mina –species human –CPU 8 –SampleFiles a.fastq,b.fastq… In all,
694 RNA-seq FASTQ files were run in batches or individually. Prior
to the run, the presence and type of adapter was noted for each
FASTQ file. A variety of sequencing methods resulted in a range
of adapters used. For some FASTQ files, adapters were removed us-
ing the stand-alone version of CutAdapt. A consensus adapter se-
quence could not be determined for 45 samples, and the
sequences were trimmed to 21 bp using the CutAdapt –u com-
mand (e.g., $ cutadapt <FILE>.fastq -u -14 -o <FILE>_cut.fastq for
a 35-bp read length). These samples were excluded from isomiR
analyses. The 159 samples that had less than 1 million
microRNA reads were excluded and are not represented in the
data.We also removed five tissue samples (SRR1635903-8) with ex-
treme technical skewing ofmicroRNA reads (>60%of all readswere
microRNA let-7b-5p).

DEXUS analysis

The DEXUS algorithmwas used to fit a mixture of five negative bi-
nomial distributions to the RNA-seq counts from all cell-type sam-
ples (dexus R/BioC package version 1.14.0) (Klambauer et al.
2013). We then selected microRNAs that had at least one highly
expressed distribution (highest mean > 50,000). The most likely
distribution from which each microRNA/sample value came
(called responsibilities in the dexus package) was used as a discre-
tized measure of expression. Distributions with a mean less than
2500 were merged into a background/unexpressed distribution.
This type of expression discretization has been shown to greatly re-
duce batch effects when combining data across studies and tech-
nologies (McCall et al. 2011b, 2014).
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Remove unwanted variation normalization of microRNA samples

The remove unwanted variation algorithm (Risso et al. 2014) using
replicate samples (RUVSeq R/BioC package version 1.8.0) was used
to estimate five latent factors separately for combined primary cell
and cancer cell line data and tissue data. Replicate sampleswere de-
fined using biologically based clusters of tissues and cells. We ver-
ified the ability of the five estimated latent factors to capture and
adjust for batch effects by examining biological clusters comprised
of multiple experiments. The RUV-normalized data clustered by
biological cluster and not experimental batch.

Surrogate variable analysis to address batch effects in microRNA

samples

The surrogate variable analysismethod (Leek and Storey 2007) was
used to identify, estimate, and adjust for latent sources of varia-
tion, e.g., batch effects, after accounting for biological differences
between tissues and cell types.

t-stochastic neighbor embedding

t-SNE was performed using the Rtsne package (version 0.11) in R
on RPM-corrected cell data and RUV-normalized data for primary
cells, cancer/immortalized cells, and tissue samples with perplexi-
ty set at 10 after evaluations of perplexity values of 1–40 for each
(van der Maaten and Hinton 2008). All RUV data were normalized
to summed counts and log2-transformed.

Determining the ubiquity of microRNAs

All 162 primary cell runs were collapsed into their 46 unique cell
types, keeping the maximum RPM value for each microRNA.
This method was replicated for the 26 tissue types. The frequency
of a microRNA being >100 RPM across each common cell type was
determined in a histogram.

Calculation of 5p, 3p dominance

The sum of eachmicroRNA’s RPM value across all 162 primary cell
runswas generated.microRNAs that had fewer than 1000 summed
RPMs were excluded. Equivalent levels represent the reads for 5p
and 3p being within 10% of each other.

Superenhancer analysis

Superenhancer genomic location data were obtained from the
dbSUPER website (Khan and Zhang 2016) for 11 cells (primary
or cancer/immortalized) in which there were matched RNA-seq
data. As microRNA RPM data can be variable between samples,
the specific samples used were SRR5127214, SRR5127200,
SRR1264358, SRR1575597, SRR1200888, SRR5127213, SRR020
286, SRR5127233, SRR873410, SRR1055962, and SRR5127217.
The distance between 939 microRNA loci (hg19) and all superen-
hancers was determined and only those of distance <40 kb to a
microRNA loci were evaluated. The RPM (log2) of the mature
microRNA strand was obtained for each genomic microRNA loci.
Because somemicroRNAs are expressed frommultiple genomic lo-
cations (e.g., let-7a-1, let-7a-2, and let-7a-3 on Chromosomes 9,
11, and 22) and there is no way to distinguish the genomic source
of the mature microRNA, we assigned the mature microRNA ex-
pression value (let-7a-5p) to all sites. We caution that the activity
of these superenhancers on adjacent genes and microRNAs is gen-
erally unknown, and these reported correlations are not proof of
activity of the superenhancer on the microRNA.

CIBERSORT analysis

The CIBERSORT (Newman et al. 2015) web application, cibersort.
stanford.edu, was used to create a signature gene matrix using the
following parameters: a maximum condition number of 20, q val-
ue threshold of 0.5, and between five and 50 signature genes per
cell type. This signature gene matrix was then used to estimate
the composition of tissue samples from a study of inflammatory
bowel disease (Lin et al. 2016) and the METSIM study (Civelek
et al. 2013).

Immortalized/cancer vs. normal cells

RUV-corrected microRNA data were plotted using the pheatmap
function in R. A H7 ESC sample was used as an outgroup for
each correlation. AMAplot was generated for the average of 12 pri-
mary fibroblast cell cultures vs. three immortalized fibroblast cell
cultures. A separate MAplot was generated for eight primary T
cell cultures vs. 14 T cell leukemias/lymphomas.

Novel microRNA discovery—miRDeep2

All reads of length 18–25 bp thatwere initially unmappedwere col-
lected using a python script from each appropriate run (479 files).
Samples that were trimmed to 21 bp in the initial miRge run were
excluded. The SRA was searched for all instances of Argonaut
(Ago)-precipitated RNA, identifying 105 reads from 19 tissues
and cells (Supplemental Table S15). This includes 43 reads used
in Londin et al. (2015). All reads of length 18–25 bpwere also taken
from the ∼1.7 billion unmapped Ago CLIP-seq reads. Of note, dis-
tinguishing linker sequences in this data set was not necessarily
feasible, and 54% of reads were adjusted by CutAdapt to only
21- or 22-bp lengths using the command described above, likely
resulting in an overidentification of Ago-bound microRNAs.
Both the 479 standard small microRNA RNA-seq unmapped sam-
ples and the 108 Ago reads were processed in miRDeep2 for novel
microRNAdetection and aligned to the human genome (GRCh38/
hg38). microRNA locations were compared to known repeat ele-
ments using the RepeatMasker track from the UCSC Genome
Browser.

Novel microRNA discovery—miRanalyzer

All reads of length 18–25 bpwere taken from the unmappedmiRge
files as above. Using a python script, reads were clustered together
based on their alignment to the human genome. Clusters were re-
moved if they (1) were <10 total reads; (2) were <3 unique reads; (3)
were >30nt in total length; (4) overlapped a repeat element; (5) had
a poly(A) tract≥ 5 in the 5′ end; and (6) had a poly(T) tract≥5 in the
3′ end. Remaining reads were processed by miRanalzyer for novel
microRNA detection run locally (Hackenberg et al. 2011).

NovoMiRank

A subset of the 21,338 initial microRNA loci and all 495 best puta-
tive novel microRNA loci were evaluated using novoMiRank. The
calculated z-scores of these novel microRNAs were compared to
the z-score values of all miRBase versions (Backes et al. 2016).

PhyloP

Basewise conservation scores across microRNAs were calculated
from PhyloP data downloaded from http://hgdownload.cse.ucsc.
edu/goldenPath/hg38/phyloP20way/ (Tyner et al. 2017) using
the PHAST package (Hubisz et al. 2011). This species set contained
information on 17 primates, tree shrew, mouse, and dog. For each
microRNA, the mean of PhyloP values across the entire mature
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microRNAwas calculated. This was performed for all miRBase, TJU
novel microRNAs (Londin et al. 2015) and 495 novel microRNAs
in this study.

DICER1-modulated novel microRNAs

SRA samples from BioProject PRJNA312310 were obtained and
processed through miRge. All 495 novel microRNAs were com-
pared to the unmapped reads file, and the total number of reads
were counted per sample and based upon the 3p or 5p status of
the driver microRNA.

Pri-microRNA localization

pri-miRNA localization was performed using the UCSC tracks gen-
erated by Chang et al. (2015).

Comments on novel microRNA localization

For many novel putative microRNAs, the sequence reads over-
lapped, with several bases of extension/difference between sam-
ples. Thus, the exact chromosome location of each novel
microRNA is from a single sample of the collection and may
not reflect the best absolute location on GRCh38/hg38. The
microRNAs designated as .5p/.3p were named as such, as each of
these microRNA loci was identified in more than one sample,
with two different pre-miRNA structures designating the sequence
to the 5p or 3p arm. Therewere no “passenger” reads to distinguish
the correct structure, so either location remains plausible.

Novel microRNA seed region analysis

The seed region (bases 2–7) was identified on each purported novel
microRNA. The novel microRNA driver strand seed region was
compared to all seed regions of microRNAs in miRBase v21.

Amplification of novel microRNAs

Amplification of novel PCRs was based on the stem–loop method
of reverse transcriptase (RT) followed by PCR amplification of the
microRNA as performed (Londin et al. 2015). miR-21-5p, a ubiqui-
tous and abundantmicroRNA, was used as a positive control for all
RNA sources. All RT primers, PCR primers, and PCR conditions are
provided in Supplemental Table S16.

IsomiR analysis

A Perl script was generated that took the mapped.csv file and
counted the reads for each microRNA’s canonical microRNA se-
quence (from miRBase v21), length variants from −4 to +4 bp
around the canonical sequence, additional canonical sequences,
and the number of reads for nontemplated (nongenomic) nucleo-
tide additions (A,G,C,U) to the maximal count canonical length
variant.OnlymicroRNAswith 1000+ total reads and >10%of reads
that were canonical length variants were evaluated. One hundred
twenty-six primary cell samples (15,897 microRNA reads) and 82
cancer cell samples from 35 unique cancer (or immortalized) cell
types had appropriate data for analysis. The nomenclature C−4,
C−3, C−2, C−1, C, C+1, C+2, C+3, C+4 indicate the length of
the dominant templated microRNA species relative to the canoni-
cal (C) sequence.

Nontemplated nucleotide addition correlations

The library preparation method and sequencing machine type
were obtained from the Sequence Read Archive site, referenced
manuscript, or postulated from the adapter sequence for each sam-
ple. Some library data were incomplete or unknown, and some

sequencer data were inconsistent. We divided the samples into
those that were prepared by any Illumina library system (v1,
v1.5, DGE, TruSeq) versus any other method, including NEBNext
or “homebrew” protocols. The vast majority of samples (>80%)
used an Illumina system. We also divided the samples by whether
they were sequenced on an older Genome Analyzer system (I, II,
IIx) or a newer HiSeq system (1000, 2000, 2500). All microRNAs
with sufficient reads obtained for both library method types (n =
272) or sequencer types (n = 267) were analyzed for the percent
of nontemplated adenines or uracils added at the +1 position. A
paired t-test for means was determined for the two comparisons.

Entropy analysis

The distribution of the lengths of microRNA species detected from
a given microRNA family (locus) was characterized relative to the
length of the canonical sequence as (≤−4, −3, −2, −1, 0, 1, 2, 3,
≥4). The degree of disorder in the cell line culture samples was
characterized relative to the median Shannon entropy of the pri-
mary cell culture samples; this was used as the reference point in
the calculation of percent maximal information loss (relative
and normalized entropy calculation).

Data access

The sequencing data from this study have been submitted to
the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject) under accession number PRJNA358331 (SRA accession
numbers SRR5127200-36 and SRR5139121). All custom scripts
from this study are available as Supplemental Material. All read in-
formation has been submitted to Bioconductor and is available at:
https://github.com/mccallm/microRNAome or https://bioconductor.
org/packages/devel/data/experiment/html/microRNAome.html and
as Supplemental Material. All RPM data from primary and cancer
cells have been submitted to the UCSC Genome Browser (https
://genome.ucsc.edu/cgi-bin/hgHubConnect) as regular tracks and
barChart tracks for primary cells and cancer/immortalized cells un-
der the titles“HumancellularmicroRNAome”and“Humancellular
microRNAome barChart.”

Acknowledgments

The authors thank C. Porter and L. Blosser for their work in isolat-
ing colonic epithelium; Gourav Dey for illustrations; Srikanth
Manda for cell culture and bioinformatics; both Josh Hertel and
Tai C. Huang for RNA isolation; Bastian Fromm, Dongwon Lee,
and Ashish Kapoor for helpful conversations; and Adriana Heguy
andtheNYUMCGenomeTechnologyCenter.M.K.H.was support-
ed by the American Heart Association [13GRNT16420015]. The
NYUMC Genome Technology Center is partially supported by
the National Institutes of Health (NIH) Cancer Center Support
Grant, P30CA016087, at the Laura and Isaac Perlmutter Cancer
Center. A.P. was supported by NCI’s Clinical Proteomic Tumor
Analysis Consortium initiative (NIH Grants U24CA160036 and
U24CA210985). P.L-R. was supported by the National Fund for
Scientific and Technological Development, FONDECYT 1151008,
Government of Chile. M.N.M. was supported by NIH Grants
R00HG006853, R01GM083084, and UL1TR002001. This work
was supported by grants from MSCRFII-0429 and MSCRFII-0125
to V.L.D., 2013-MSCRF-0054 to J.X., 2014-MSCRF-0665 to M.K.,
and NIH/NINDS NS67525, NS37388 to T.M.D. and V.L.D. T.M.D.
is the Leonard andMadlyn Abramson Professor in Neurodegenera-
tive Diseases.

Author contributions: M.K.H., A.P., and K.H.B. conceived the
project. M.S.K., P.L-R., T.M.D., J.X., M.K., and V.L.D. generated

Human microRNAome

Genome Research 1779
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222067.117/-/DC1
https://www.ncbi.nlm.nih.gov/bioproject
https://www.ncbi.nlm.nih.gov/bioproject
https://www.ncbi.nlm.nih.gov/bioproject
https://www.ncbi.nlm.nih.gov/bioproject
https://www.ncbi.nlm.nih.gov/bioproject
https://www.ncbi.nlm.nih.gov/bioproject
https://www.ncbi.nlm.nih.gov/bioproject
https://www.ncbi.nlm.nih.gov/bioproject
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222067.117/-/DC1
https://github.com/mccallm/microRNAome
https://github.com/mccallm/microRNAome
https://github.com/mccallm/microRNAome
https://github.com/mccallm/microRNAome
https://bioconductor.org/packages/devel/data/experiment/html/microRNAome.html
https://bioconductor.org/packages/devel/data/experiment/html/microRNAome.html
https://bioconductor.org/packages/devel/data/experiment/html/microRNAome.html
https://bioconductor.org/packages/devel/data/experiment/html/microRNAome.html
https://bioconductor.org/packages/devel/data/experiment/html/microRNAome.html
https://bioconductor.org/packages/devel/data/experiment/html/microRNAome.html
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222067.117/-/DC1
https://genome.ucsc.edu/cgi-bin/hgHubConnect
https://genome.ucsc.edu/cgi-bin/hgHubConnect
https://genome.ucsc.edu/cgi-bin/hgHubConnect
https://genome.ucsc.edu/cgi-bin/hgHubConnect
https://genome.ucsc.edu/cgi-bin/hgHubConnect


cell data. A.H.P., C.J.M., A.S.B., Y.L., D.E.A., A.Z.R., and M.N.M.
performed computational analysis. M.A. validated novel
microRNAs, and M.K.H. and M.N.M. wrote the paper.

References

Agarwal V, Bell GW, Nam JW, Bartel DP. 2015. Predicting effective
microRNA target sites in mammalian mRNAs. eLife 4: e05005.

Ambros V. 2004. The functions of animal microRNAs. Nature 431:
350–355.

Backes C,Meder B, HartM, LudwigN, Leidinger P, Vogel B, Galata V, Roth P,
Menegatti J, Grasser F, et al. 2016. Prioritizing and selecting likely novel
miRNAs from NGS data. Nucleic Acids Res 44: e53.

Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, Einav U,
Gilad S, Hurban P, Karov Y, et al. 2004. MicroRNA expression detected
by oligonucleotide microarrays: system establishment and expression
profiling in human tissues. Genome Res 14: 2486–2494.

Baran-Gale J, Kurtz CL, Erdos MR, Sison C, Young A, Fannin EE, Chines PS,
Sethupathy P. 2015. Addressing bias in small RNA library preparation
for sequencing: a new protocol recovers microRNAs that evade capture
by current methods. Front Genet 6: 352.

Baras AS, Mitchell CJ, Myers JR, Gupta S, Weng LC, Ashton JM, Cornish TC,
Pandey A, Halushka MK. 2015. miRge - A multiplexed method of pro-
cessing small RNA-seq data to determine microRNA entropy. PLoS One
10: e0143066.

Baskerville S, Bartel DP. 2005.Microarray profiling ofmicroRNAs reveals fre-
quent coexpression with neighboring miRNAs and host genes. RNA 11:
241–247.

Chang TC, PerteaM, Lee S, Salzberg SL,Mendell JT. 2015. Genome-wide an-
notation of microRNA primary transcript structures reveals novel regu-
latory mechanisms. Genome Res 25: 1401–1409.

Chen C, Khaleel SS, Huang H, Wu CH. 2014. Software for pre-processing
Illumina next-generation sequencing short read sequences. Source
Code Biol Med 9: 8.

Cheng WC, Chung IF, Tsai CF, Huang TS, Chen CY, Wang SC, Chang TY,
Sun HJ, Chao JY, Cheng CC, et al. 2015. YM500v2: a small RNA se-
quencing (smRNA-seq) database for human cancer miRNome research.
Nucleic Acids Res 43: D862–D867.

Civelek M, Hagopian R, Pan C, Che N, Yang WP, Kayne PS, Saleem NK,
Cederberg H, Kuusisto J, Gargalovic PS, et al. 2013. Genetic regulation
of human adipose microRNA expression and its consequences for met-
abolic traits. Hum Mol Genet 22: 3023–3037.

Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A,
Huang EH, Simeone DM, et al. 2007. Phenotypic characterization of
human colorectal cancer stem cells. Proc Natl Acad Sci 104: 10158–
10163.

Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. 2012.
miRDeep2 accurately identifies known and hundreds of novel
microRNA genes in seven animal clades. Nucleic Acids Res 40: 37–52.

Fromm B, Billipp T, Peck LE, JohansenM, Tarver JE, King BL, Newcomb JM,
Sempere LF, Flatmark K, Hovig E, et al. 2015. A uniform system for the
annotation of vertebrate microRNA genes and the evolution of the hu-
man microRNAome. Annu Rev Genet 49: 213–242.

Giraldez MD, Spengler RM, Etheridge A, Godoy PM, Barczak AJ, Srinivasan
S, De Hoff PL, Tanriverdi K, Courtright A, Lu S, et al. 2017. Accuracy, re-
producibility and bias of next generation sequencing for quantitative
small RNA profiling: a multiple protocol study across multiple laborato-
ries. bioRxiv doi: https://doi.org/10.1101/113050.

Guo L, Zhao Y, Yang S, Zhang H, Chen F. 2014. A genome-wide screen
for non-template nucleotides and isomiR repertoires in miRNAs
indicates dynamic and versatile microRNAome. Mol Biol Rep 41:
6649–6658.

Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. 2011. miRanalyzer: an
update on the detection and analysis of microRNAs in high-throughput
sequencing experiments. Nucleic Acids Res 39: W132–W138.

Haider BA, Baras AS, McCall MN, Hertel JA, Cornish TC, Halushka MK.
2014. A critical evaluation of microRNA biomarkers in non-neoplastic
disease. PLoS One 9: e89565.

HalushkaMK. 2016.MicroRNA-144 is unlikely to play a role in bronchiolitis
obliterans syndrome. J Heart Lung Transplant 35: 543.

He Y, Jiang X, Chen J. 2014. The role of miR-150 in normal and malignant
hematopoiesis. Oncogene 33: 3887–3893.

Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehner LP, Desruisseau D,
Jarzembowski JA, Wikenheiser-Brokamp KA, Suarez BK, Whelan AJ,
et al. 2009. DICER1 mutations in familial pleuropulmonary blastoma.
Science 325: 965.

Hubisz MJ, Pollard KS, Siepel A. 2011. PHAST and RPHAST: phylogenetic
analysis with space/time models. Brief Bioinform 12: 41–51.

Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K,
van der Meer AJ, Patick AK, Chen A, Zhou Y, et al. 2013. Treatment of
HCV infection by targeting microRNA. N Engl J Med 368: 1685–1694.

Kent OA, McCall MN, Cornish TC, Halushka MK. 2014. Lessons from miR-
143/145: the importance of cell-type localization of miRNAs. Nucleic
Acids Res 42: 7528–7538.

Khan A, Zhang X. 2016. dbSUPER: a database of super-enhancers in mouse
and human genome. Nucleic Acids Res 44: D164–D171.

Kim YK, Kim B, Kim VN. 2016. Re-evaluation of the roles of DROSHA,
Exportin 5, and DICER in microRNA biogenesis. Proc Natl Acad Sci 113:
E1881–E1889.

Klambauer G, Unterthiner T, Hochreiter S. 2013. DEXUS: identifying differ-
ential expression in RNA-Seq studies with unknown conditions. Nucleic
Acids Res 41: e198.

Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L,
Auyeung G, Antonacci C, Buch A, et al. 2011. Dopamine neurons de-
rived from human ES cells efficiently engraft in animal models of
Parkinson’s disease. Nature 480: 547–551.

Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T.
2002. Identification of tissue-specific microRNAs from mouse. Curr
Biol 12: 735–739.

Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice
A, Kamphorst AO, Landthaler M, et al. 2007. A mammalian microRNA
expression atlas based on small RNA library sequencing. Cell 129:
1401–1414.

Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol 10: R25.

Leek JT, Storey JD. 2007. Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS Genet 3: 1724–1735.

Leucci E, Zriwil A, Gregersen LH, Jensen KT, Obad S, Bellan C, Leoncini L,
Kauppinen S, Lund AH. 2012. Inhibition of miR-9 de-represses HuR
and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in
vivo. Oncogene 31: 5081–5089.

Lin J, Zhang X, Zhao Z, Welker NC, Li Y, Liu Y, Bronner MP. 2016. Novel
microRNA signature to differentiate ulcerative colitis from Crohn dis-
ease: a genome-wide study using next generation sequencing.
MicroRNA 5: 222–229.

Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru
CD, ShimizuM, Zupo S, DonoM, et al. 2004. An oligonucleotide micro-
chip for genome-widemicroRNAprofiling in human andmouse tissues.
Proc Natl Acad Sci 101: 9740–9744.

Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, Hatzimichael E,
Kirino Y, Honda S, Lally M, et al. 2015. Analysis of 13 cell types reveals
evidence for the expression of numerous novel primate- and tissue-spe-
cific microRNAs. Proc Natl Acad Sci 112: E1106–E1115.

Lu J, Getz G,Miska EA, Alvarez-Saavedra E, Lamb J, PeckD, Sweet-CorderoA,
Ebert BL, Mak RH, Ferrando AA, et al. 2005. MicroRNA expression pro-
files classify human cancers. Nature 435: 834–838.

Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C,
Rheinheimer S, Meder B, Stahler C, Meese E, et al. 2016. Distribution
of miRNA expression across human tissues. Nucleic Acids Res 44:
3865–3877.

McCall MN, Kent OA, Yu J, Fox-Talbot K, Zaiman AL, Halushka MK. 2011a.
MicroRNAprofiling of diverse endothelial cell types. BMCMed Genomics
4: 78.

McCall MN, Uppal K, Jaffee HA, Zilliox MJ, Irizarry RA. 2011b. The Gene
Expression Barcode: leveraging public data repositories to begin catalog-
ing the human and murine transcriptomes. Nucleic Acids Res 39:
D1011–D1015.

McCall MN, Jaffee HA, Zelisko SJ, Sinha N, Hooiveld G, Irizarry RA, Zilliox
MJ. 2014. The Gene Expression Barcode 3.0: improved data processing
and mining tools. Nucleic Acids Res 42: D938–D943.

McCall MN, Illei PB, Halushka MK. 2016. Complex sources of variation in
tissue expression data: analysis of the GTEx lung transcriptome. Am J
Hum Genet 99: 624–635.

Mendell JT, Olson EN. 2012. MicroRNAs in stress signaling and human dis-
ease. Cell 148: 1172–1187.

Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C,
Cheo D, D’Andrade P, DeMayo M, Dennis L, et al. 2014. Evaluation of
quantitativemiRNA expression platforms in themicroRNA quality con-
trol (miRQC) study. Nat Methods 11: 809–815.

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-
Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, et al.
2008. Circulating microRNAs as stable blood-based markers for cancer
detection. Proc Natl Acad Sci 105: 10513–10518.

Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu
AL, Zhao Y, McDonald H, Zeng T, Hirst M, et al. 2008. Application of
massively parallel sequencing to microRNA profiling and discovery in
human embryonic stem cells. Genome Res 18: 610–621.

McCall et al.

1780 Genome Research
www.genome.org

https://doi.org/10.1101/113050
https://doi.org/10.1101/113050
https://doi.org/10.1101/113050
https://doi.org/10.1101/113050
https://doi.org/10.1101/113050


Mullokandov G, Baccarini A, Ruzo A, Jayaprakash AD, Tung N, Israelow B,
Evans MJ, Sachidanandam R, Brown BD. 2012. High-throughput assess-
ment of microRNA activity and function using microRNA sensor and
decoy libraries. Nat Methods 9: 840–846.

Neilsen CT, Goodall GJ, Bracken CP. 2012. IsomiRs—the overlooked reper-
toire in the dynamic microRNAome. Trends Genet 28: 544–549.

Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD,
Diehn M, Alizadeh AA. 2015. Robust enumeration of cell subsets from
tissue expression profiles. Nat Methods 12: 453–457.

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. 2010. Detection of non-
neutral substitution rates on mammalian phylogenies. Genome Res 20:
110–121.

Risso D, Ngai J, Speed TP, Dudoit S. 2014. Normalization of RNA-seq data
using factor analysis of control genes or samples. Nat Biotechnol 32:
896–902.

Suzuki HI, Young RA, Sharp PA. 2017. Super-enhancer-mediated RNA pro-
cessing revealed by integrative microRNA network analysis. Cell 168:
1000–1014.e15.

Tan GC, Chan E, Molnar A, Sarkar R, Alexieva D, Isa IM, Robinson S, Zhang
S, Ellis P, Langford CF, et al. 2014. 5′ isomiR variation is of functional
and evolutionary importance. Nucleic Acids Res 42: 9424–9435.

Tyner C, Barber GP, Casper J, Clawson H, Diekhans M, Eisenhart C, Fischer
CM, Gibson D, Gonzalez JN, Guruvadoo L, et al. 2017. The UCSC

Genome Browser database: 2017 update. Nucleic Acids Res 45: D626–
D634.

Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. 2006. Control of transla-
tion and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:
515–524.

van derMaaten L, Hinton G. 2008. Visualizing data using t-SNE.Mach Learn
Res 9: 2579–2605.

WhyteWA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, KageyMH, Rahl PB,
Lee TI, Young RA. 2013.Master transcription factors andmediator estab-
lish super-enhancers at key cell identity genes. Cell 153: 307–319.

Witwer KW, Halushka MK. 2016. Toward the promise of microRNAs—
Enhancing reproducibility and rigor in microRNA research. RNA Biol
13: 1103–1116.

Xu JC, Fan J, Wang X, Eacker SM, Kam TI, Chen L, Yin X, Zhu J, Chi Z, Jiang
H, et al. 2016. Cultured networks of excitatory projection neurons and
inhibitory interneurons for studying human cortical neurotoxicity. Sci
Transl Med 8: 333ra48.

Received February 28, 2017; accepted in revised form August 7, 2017.

Human microRNAome

Genome Research 1781
www.genome.org


