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Abstract

The accumulation of amyloid beta (Aβ) peptide (Amyloid cascade hypothesis), an APP protein

cleavage product, is a leading hypothesis in the etiology of Alzheimer’s disease (AD). In order

to identify additional AD risk genes, we performed targeted sequencing and rare variant bur-

den association study for nine candidate genes involved in the amyloid metabolism in 1886

AD cases and 1700 controls. We identified a significant variant burden association for the

gene encoding caspase-8, CASP8 (p = 8.6x10-5). For two CASP8 variants, p.K148R and p.

I298V, the association remained significant in a combined sample of 10,820 cases and 8,881

controls. For both variants we performed bioinformatics structural, expression and enzymatic

activity studies and obtained evidence for loss of function effects. In addition to their role in

amyloid processing, caspase-8 and its downstream effector caspase-3 are involved in synap-

tic plasticity, learning, memory and control of microglia pro-inflammatory activation and
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associated neurotoxicity, indicating additional mechanisms that might contribute to AD. As

caspase inhibition has been proposed as a mechanism for AD treatment, our finding that AD-

associated CASP8 variants reduce caspase function calls for caution and is an impetus for fur-

ther studies on the role of caspases in AD and other neurodegenerative diseases.

Introduction

Alzheimer’s Disease (AD) is the most common form of dementia and with general ageing of

the population, the incidence and prevalence of AD have been dramatically rising [1]. The

neuropathologic finding that amyloid beta (Aβ) peptide, an APP protein cleavage product, is a

component of amyloid plaques [2] and the observation that mutations in APP, and genes that

affect APP cleavage: PSEN1 and PSEN2, [3–5], cause early onset AD suggested that APP plays

a particularly important role in AD pathogenesis [6–9] and were the basis for the amyloid cas-

cade hypothesis of AD [10–12]. According to this hypothesis, dysregulation of APP metabo-

lism is the key event in the development of AD, which sequentially leads to aggregation of β-

amyloid, development of neurofibrillary tangles, disruption of synaptic connections, and even-

tually neuronal death that ultimately manifests clinically as dementia. The amyloid cascade

hypothesis spurred us to evaluate genes that might be involved in the APP metabolism for con-

tribution to risk for AD.

Based on a literature survey, we selected nine genes involved in the amyloid metabolism

and involved in APP cleavage to test for the association with AD. We chose APH1A, APH1B,

NCSTN and PSENEN [13] as they are members of γ-secretase complex that cleaves APP, as

well as β-secretase component BACE1 [14]. GSK3A and GSK3B were selected for their

involvement in Aβ production regulation through phosphorylation of APP and γ-secretase

complex proteins [15]. We selected CASP3 and CASP8 given the evidence that they are able to

cleave APP [16]. Caspases lead to elevated β-amyloid levels during apoptosis which can be

reduced down to and below normal levels by caspase inhibition [17]. On the other hand Aβ is

neurotoxic and can initiate apoptosis [18] which might lead to a positive feedback loop.

To our knowledge most of the subjects in our discovery cohort were not screened for muta-

tions in APP, PSEN1 or PSEN2 and TREM2 was only recently identified [19]. Thus we have

included APP, PSEN1, PSEN2 and TREM2 in our study to identify subjects where variants in

these genes might be causal and to assess the validity of our approach. The inclusion of these

known AD contributing genes where multiple rare alleles contribute to risk, should also allow

us to empirically test if our sequencing based approach is sufficiently powered to detect associa-

tions of known AD genes and thus if it is suitable for new gene detection. To evaluate the associ-

ation of amyloid metabolism genes with AD we used targeted sequencing and variant-burden

association analysis of rare, protein disrupting (canonical splice, truncating, stop) and missense

variants. After identifying a statistically significant variant-burden association with CASP8, for

two missense variants, K148R and I298V we performed a replication study to confirm the asso-

ciation and functional studies to evaluate how the identified variants affect caspase function.

Methods

Ethics statement

All procedures performed in studies involving human participants were in accordance with

the ethical standards of the institutional and/or national research committee and with the 1964
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Helsinki declaration and its later amendments or comparable ethical standards. This article

does not contain any studies with animals performed by any of the authors. Prior to com-

mencement the study was reviewed and approved by the University of Washington Institution

Review Board (IRB#33186). Informed consent was obtained from all individual participants

included in the study.

Subjects

Subjects in targeted sequencing and variant-burden association study were of European Amer-

ican descent. Samples were provided by NIA-LOAD, NCRAD, NACC, NIMH, ACT and

Washington University (WashU). Replication studies on CASP8 variants K148R and I298V

were performed with subjects from Finland, Germany and the Alzheimer’s Disease Genetics

Consortium (ADGC). Detailed information about subjects is presented in supplementary

materials, S1 File.

Sequencing, genotyping and variant annotation

We employed molecular inversion probes (MIPs) [20] for targeted capture of coding exons of

selected genes. Following target capture, samples were individually barcoded and pooled 192

at a time for sequencing on an Illumina Hiseq 2000/2500 instrument. Reads were aligned with

BWA [21]. MIP-arms were removed and overlapping regions of the two sequences of a single

read were reduced to one sequence per MIP region. Duplicates were removed based on

sequence tags with Prinseq [22]. Variants were called with GATK unified genotyper, coverage

was determined with the GATK DepthOfCoverage tool. Variants were annotated for Seattleseq

137 annotation pipeline [23] and frequency in the 1000genome dataset. Replication studies of

p.K148R and p.I298V CASP8 variants were conducted by genotyping with Sequenom iPlexa

and TaqMan1 SNP genotyping assay in Finnish and Germans samples respectively and with

the Infinium HumanExome Beadchip for ADGC samples.

Detailed information about sequencing and genotyping can be found in supplementary

materials, S1 File.

Association analysis

Burden test of association was performed using a custom script in Python/R. In burden analy-

sis we aggregated all protein disrupting (start/stop variants, canonical splice sites and frame-

shift) and missense variants with minor allele frequency (MAF)� 0.01 in the 1000 Genomes

project for individuals of European ancestry (phase1_release_v3.20101123). Variants were

only used in the analysis, if the respecting sites were called in� 95% of cases and controls. Sig-

nificance for the variant-burden association was determined using one-sided Fisher’s exact

tests. The one sided Fisher’s exact test is appropriate for our prior specified hypothesis that

rare disruptive and missense variants are causal while logistic regression models might not

when the number of subjects with the variant is small [24,25]. Single variant association was

performed using one-sided Fisher’s test as well.

Structural modeling of caspase-8 domains

The modeled structure of the DED2 and p18 domains of caspase-8 were generated by Phyre2

web portal for protein modeling, prediction and analysis [26]. Met1-Asp177 and Ser202-Asp 359

aa sequences of caspase-8 were submitted to the Phyre2 server, and the structures resulting

from the analysis used as 3D models of caspase-8 2 and caspase-8 p18, respectively. 153 resi-

dues (97% coverage of the submitted Ser202-Asp359 sequence) and 176 residues (99% coverage
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of the submitted Met1-Asp177 sequence) were modelled with 100% confidence. Models were

depicted in the JSmol molecular viewer.

Plasmids and site directed mutagenesis

The pcDNA3-Casp8 plasmid encoding the human 479 aa procaspase-8 isoform was obtained

from the Addgene plasmid repository (#11817) [27]. The pcDNA3-Casp8 plasmid, hereafter

referred as Casp8 WT, was used as a template to generate plasmids encoding the naturally

occurring caspase-8 variants K148R and I298V, having amino acid substitutions at residue 148

in the second death-effector domain (DED) within the prodomain or residue 298 in the p18

enzyme subunit of caspase-8 respectively. Site directed mutagenesis was performed with

Quick Change II Site-Directed Mutagenesis Kit (#20052, Agilent Technologies) according to

the manufacturer’s protocol using primers (5’-GGATATTTTCATAGAGATGGAGAGGAGGGT
CATCCTGGGAG-3’ [forward]; 5’-CTCCCAGGATGACCCTCCTCTCCATCTCTATGAAAAT
ATCC-3’ [reverse]) for generation of the pcDNA3-Casp8-K148R plasmid and (5’-CAGTA
GAGCAAATCTATGAGATTTTGAAAGTCTACCAACTCATGG-3’[forward]; 5’-CCATGAGT
TGGTAGACTTTCAAAATCTCATAGATTTGCTCTACTG-3’ [reverse]) for the pcDNA3-Casp8-

I298V plasmid. Mutations were confirmed by sequencing (KI gene analysis facility, Karolinska

Institutet). Two clones (denoted a and b), for each caspase-8 variant, were used throughout the

experiments. The pCAX-FLAG-APP plasmid encoding the 695 amino acid amino-terminus

FLAG-tagged version of amyloid precursor protein [Homo sapiens (human)] was obtained

from the Addgene plasmid repository (#30154) [28].

Cell culture, transfection and treatment

Caspase-8-defective human neuroblastoma SK-N-BE(2) cells (ATCC1 CRL-2271) are avail-

able at ATCC (CRL-2271) and were obtained from Marie A. Henriksson (Karolinska Institu-

tet) and tested negative for mycoplasma contamination. Cells were maintained at 37˚C, 5%

CO₂, in DMEM/F12 medium (Gibco BRL) supplemented with 10% heat-inactivated fetal

bovine serum, 100U/ml penicillin and 100μg/ml streptomycin. Cells were seeded at 75,000

cells/well in 12 well plates 24 h prior to transfection. 2μl Lipofectamine 2000 were used

together with 0.5μg (Figs 1 and 2, S1 Fig) or 0,5–1,5μg (see supplementary materials, S1 File)

plasmid for transfection according to manufacturer´s descriptions. Cells were transfected with

plasmid(s) encoding Casp8 WT, Casp8-K148R (a or b clones), or Casp8-I298V (a or b clones),

with or without the FLAG-APP. Empty vector pcDNA3.1 was used as control. Twenty-four

hours after transfection cells were treated with 0.1 μM staurosporine (STS) or 200ng/ml tumor

necrosis factor (TNF).

Immunofluorescence

Cells grown on coverslips were fixed using 4% paraformaldehyde for 15 min, and blocked/per-

meabilized for 1 hour at room temperature in PBS-T with 10 mM HEPES, 0.3% Triton X-100,

and 3% BSA. Thereafter, cells were incubated overnight at 4˚C with primary cleaved Caspase-

8 antibody (#9496, Cell Signaling) in the same buffer, followed by 1h incubation in RT with

Alexa 594 conjugated secondary antibody (Invitrogen). Hoechst 33342 (2 μg/ml, Invitrogen)

was used as a nuclear counterstain (10 min incubation). Samples were mounted onto glass

slides and analyzed under Zeiss LSM700 confocal laser scanning microscopy equipped with

ZEN Zeiss software.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0185777 October 6, 2017 4 / 20

https://doi.org/10.1371/journal.pone.0185777


Fig 1. Caspase-8 modeling and expression. (A) Schematic illustration of pro-caspase-8 protein and its

p43, p18 and p10 fragments resulting from proteolytic processing and activation. (B) Protein folding (top) and

3D model (bottom) of caspase-8 DED2 (left side) and p18 domain (right side). The K148 and I298 variants are

Caspase-8, association with Alzheimer’s Disease
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depicted in red color. F122 and L123 of the hydrophobic FL motif within the DED2 is shown in purple, and critical

H317 and C360 active site residues within the p18 domain are in green. (C) SK-N-BE(2) cells were transfected

with expression vectors encoding WT-, K148R-, or I298V-caspase-8 and mock as control. Corresponding

immunoblot analysis, 24 h post-transfection, indicating the expression levels for pro-caspase-8 and its p43,

p18 and p10 fragments. For the LOAD caspase-8 variant, two clones (a and b) are presented.(D)

Representative confocal images of SK-N-BE(2) cells transfected as described in panel C. The cleaved

caspase-8 is labeled red and Hoechst counterstained nuclei are blue. Images were taken 24 h after

transfection.

https://doi.org/10.1371/journal.pone.0185777.g001

Fig 2. Caspase-8 enzymatic activity. SK-N-BE(2) cells were transfected with expression vectors encoding WT-, K148R-, or I298V-caspase-8 and mock

as control. (A) Caspase-8 (LETDase) and (B) Caspase-3-like (DEVDase) activities were measured 24 h post-transfection. Data are presented as fold over

mock untreated. Statistics and error bars: mean±s.d. n = 8 of biological replicates. Data was analyzed as comparison to Caspase-8 WT using two-sided

student’s t-test. *P< 0.05; **P< 0.01 and ***P< 0.001.

https://doi.org/10.1371/journal.pone.0185777.g002
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Immunoblotting

Total protein extracts were made directly in Laemmli loading buffer, sonicated and boiled

before resolved on 8%, 12% or 15% sodium dodecyl sulfate-polyacrylamide gels and blotted

onto 0.2 μm or 0.45 μm nitrocellulose membranes (Bio-Rad). Membranes were blocked in 5%

milk for 1h at room temperature before incubation with primary antibodies directed against

Caspase-8 (#4790, Cell Signaling), cleaved Caspase-8 (#9496, Cell Signaling), cleaved Caspase-

3 (#9664, Cell Signaling), cleaved PARP (#9544, Cell Signaling), FLAG (#F3165, Sigma), APP

(3E9) (#ADI-NBA-100-E, ENZO), APP ΔC31 (#ENZ-ABS445-0100, ENZO) or GAPDH

(#2275PC-100, Trevigen) overnight at 4˚C. Incubation with appropriate horseradish-peroxi-

dase conjugated secondary antibodies (Pierce) was done in 2.5% milk for 1 h at room tempera-

ture and protein visualization was done using enhanced chemiluminesence (ECL, Pierce) by

digital Image Quant LAS 4000 (GE healthcare).

Caspase activity measurement

Caspase activities were measured using the Caspase-Glo18 (#G8201) and Caspase-Glo13/7

(#G8093) assays from Promega, following the manufacturer’s instructions. Equal volumes of

cell suspension, and Caspase-Glo1 reagent were placed in 96-well plates and incubated for 45

min at room temperature before luminescence was monitored using a Perkin Elmer Wallac

microplate reader. Cell numbers were calculated at time of harvest and used to normalize the

assay results. Figures were prepared using CorelDRAW X6.

Ethical approval

All procedures performed in studies involving human participants were in accordance with

the ethical standards of the institutional and/or national research committee and with the 1964

Helsinki declaration and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Results

Targeted sequencing

The coding regions of the selected genes were sequenced in a series of 2026 Caucasian cases

and 1786 Caucasian controls from 6 cohorts. After removing samples that could not be geno-

typed for� 95% of the variants and variants that could not be genotyped in� 95% of the

remaining samples, a total of 1886 AD cases and 1700 controls remained for variant-burden

analysis. The demographic information including age at onset for cases, age at last evaluation

for controls, APOE 3/4 and 4/4 genotype for subjects that remained in analysis are presented

in Table 1. The mean age of AD onset for cases was 70.75±9.0 years (Table 1). Mean age of

controls was 77.94±8.48 years. The sequencing resulted in�20x coverage of 66–100% coding

base pairs for the evaluated genes (Table 2).

Discovery sample case-control association

The variant-burden test reached nominally significant association for PSEN1, TREM2, APH1B
and CASP8 (Table 2). Among genes known to cause AD, we did not detect an association for

APP and PSEN2. Variant-burden analysis of PSEN1 showed strong association in our dataset;

Caspase-8, association with Alzheimer’s Disease
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we observed 23/1886 rare variants in cases and 6/1700 in controls (burden test p = 0.0027,

OR = 3.49, CI = 1.42–8.58). Most of the detected PSEN1 variants were rare and observed only

once or twice. For TREM2, we observed 114/1886 rare variants in cases and 52/1700 in con-

trols (burden test p = 1.2x10-5, OR = 2.04, CI = 1.46–2.85). This strong association is driven by

three variants that are seen multiple times and are individually associated with AD in our sam-

ple rs75932628 (p.R47H) 44/1886 cases, 16/1700 controls (p = 9x10-4, OR = 2.51, CI = 1.41–

4.47), rs143332484 (p.R62H) 49/1886 cases, 27/1700 controls (p = 0.026, OR = 1.65, CI = 1.03–

2.66) and (rs2234255) (p.H157T) with 7/1883 cases and 0/1697 controls (p = 0.011, OR = n/a,

CI = n/a).

Among the evaluated candidate genes we found evidence for association with APH1B and

CASP8. For APH1B, 17/1886 rare variants in cases and 6/1700 in controls were observed

(p = 0.031, OR = 2.57, CI = 1.01–6.53). However, this association failed the threshold for

Table 1. Age and ApoE4 genotypes for subjects in discovery sample.

Age ± SD % ApoE3/E4 % ApoE4/E4

Cohort CA CO CA CO CA CO CA CO

NIA-LOAD 685 384 71.9±7.83 75.8±8.22 48.18 20.05 23.80 1.30

NCRAD 333 69.12±8.9 54.35 23.12

NACC 297 329 70.41± 9.85 77.57±5.65 43.10 23.10 16.84 2.74

NIMH 354 383 71.72±8.42 70.64±7 51.13 20.89 16.67 1.31

ACT 469 86.12±2.94 19.19 0.21

WashU 217 135 72.55±10.16 77.21±8.34 41.94 22.22 11.06 3.70

All cohorts 1886 1700 70.75±9.0 77.94±8.48 47.74 21.09 18.30 1.85

CA, cases; CO, controls; SD, Standard deviation. Age describes onset for cases and last evaluation or when samples were collected for controls

https://doi.org/10.1371/journal.pone.0185777.t001

Table 2. Coverage, aggregated variant count and variant-burden test of association in discovery sample.

Gene Coverage %a

CA CO Var/CA Var/CO pb

APP 98 98 18/1886 19/1700 0.74

PSEN1 91 94 23/1886 6/1700 0.0027**

PSEN2 94 92 44/1886 46/1700 0.79

TREM2 100 100 114/1886 52/1700 1.2x10-5**

APH1A 90 90 1/1886 1/1700 0.78

APH1B 84 84 17/1886 6/1700 0.031*

BACE1 100 100 20/1886 15/1700 0.36

CASP3 69 73 4/1886 3/1700 0.56

CASP8 100 100 26/1886 4/1700 8.6x10-5**

GSK3A 78 78 5/1886 4/1700 0.56

GSK3B 74 82 4/1886 3/1700 0.56

NCSTN 98 98 34/1886 32/1700 0.62

PSENEN 98 98 1/1886 1/1700 0.78

a Coverage: Percentage of coding nucleotide sites that were included in analysis for each gene
b p-value was determined by one-sided Fisher exact test, significant p-Values are marked in bold

Var/CA and Var/CO, Number of aggregated rare disrupting and missense variants in cases/controls and total number of subjects

* nominally statistical significance

** Significance after Bonferroni correction

https://doi.org/10.1371/journal.pone.0185777.t002
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significance when corrected for multiple testing (multiple correction threshold for 9 candidate

genes, p = 0.0055). In addition, none of the rare APH1B variants was observed more than 3

times.

For CASP8, a significant association with AD was observed after correction for multiple

testing. In variant-burden analysis, we observed 26/1886 variants in cases and 4/1700 in con-

trols (p = 8.6x10-5, OR = 5.93, CI = 2.06–17.02; Bonferroni correction for 9 genes p = 8x10-4).

One variant rs146286958 (p.I298V) was observed in 10/1860 cases and 0/1693 controls, reach-

ing significance for single variant association (p = 0.0015, OR = n/a, CI = n/a). Without I298V,

the variant burden association remains significant (16/1886 cases; 4/1700 controls; p = 0.011,

OR = 3.63, CI = 1.21–10.87). All CASP8 variants identified in cases and controls were con-

firmed with capillary sequencing. The subjects with CASP8 variants did not carry rare or path-

ogenic variants in PSEN1, PSEN2, APP or TREM2 genes. All variants that were identified and

included in the variant burden analysis are presented in supplementary materials, S1 File.

Replication analysis

For two CASP8 variants rs148697064 (p.K148R) and rs146286958 (p.I298V), which were

observed multiple times in our sample, we performed replication study to further evaluate evi-

dence for association. In a German sample, p.K148R was seen in 0/1143 cases and 1/850 con-

trols and p.I298V was seen in 4/1151 cases and 4/851 controls. In a Finnish sample of 384

cases and 384 controls, all subjects were monomorphic for both variants. In the ADGC dataset

p.K148R was found in 18/8779 cases and 5/7041 controls (p = 0.021, OR = 2.89, CI = 1.07–

7.79) and p.I298V in 24/8782 cases and 11/7041 controls (p = 0.081, OR = 1.75, CI = 0.86–

3.58).

We used our discovery sample and all 3 replication samples to perform the combined analy-

sis. Some of the cohorts from the discovery sample were included in the ADGC dataset as well.

Thus, for combined analysis we restricted the discovery samples to individuals not present in

the ADGC sample. The combined analysis detected K148R in 19/10823 cases and 6/8882 con-

trols (p = 0.025, OR = 2.6, CI = 1.04–6.57) and I298V in 33/10845 cases and 15/8881 controls

(p = 0.037, OR = 1.8, CI = 0.98–3.32) (Table 3).

Bioinformatics structural analysis

The 479 aa protein procaspase-8 isoform 1, including its domains, active sites and mutations

that were studied for function, is graphically presented in Fig 1A. Model structures of caspase-

8 including DED2 and p18 domains were generated using Phyre2, a web-based tool for predict-

ing and analyzing protein structure and function [26]. These domain models revealed that cas-

pase-8 residues Lys148 and Ile298 are both localized in an alpha helix secondary structure.

Three-dimensional modeling also showed that these two residues are exposed on the surface

and accessible.(Fig 1B).

Expression analysis and functional studies

To investigate functional effects, p.K148R and p.I298V point mutations were inserted in an

expression vector encoding the 479 aa caspase-8 isoform 1, tagged with a flag epitope and

transfected into caspase-8-defective human neuroblastoma SK-N-BE(2) cells.

The cellular expression and processing ability of p.K148R and p.I298V caspase-8 was inves-

tigated by immunoblotting. Autoproteolytic processing of procaspase-8 generates caspase-8

fragments, including p43, p18 and p10. While mock transfected SK-N-BE(2) cells were nearly

devoid of pro-caspase-8, robust expression of the pro-form was seen in WT, p.K148R and p.

I298V transfected cells. Processing of procaspase-8 into the p43, p18 and p10 fragments could
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be detected in all caspase-8 transfected cells. Increased levels of protein fragments were

observed for p.K148R as compared to WT and p.I298V (Fig 1C).

Protein expression and localization of transfected caspase-8 were further evaluated with

immunofluorescence. Whereas mock-transfected cells did not exhibit an immunofluorescence

signal, a distinct signal for cleaved/active Asp374 caspase-8 was observed in wild-type (WT)-, p.

K148R- and p.I298V-caspase-8 transfected cells. The signal intensity appeared to be stronger

for p.K148R, but lower for p.I298V, as compared to caspase-8 WT (Fig 1D).

We evaluated caspase-8 enzymatic activity directly and indirectly through monitoring of

caspase-3 activity. Caspase-3 is a predominant effector for caspase-8 and has been implicated

in APP proteolysis and the generation of a neurotoxic C31 APP fragment [16,17,29]. Caspase-

8 activity was monitored with Caspase-Glo18 assay, which uses a substrate that contains a

Leu-Glu-Thr-Asp sequence (i.e. LETDase activity) and caspase-3 activity was monitored with

the Caspase-Glo13/7 assay and Asp-Glu-Val-Asp substrate (i.e. DEVDase activity). The p.

I298V variant exhibited significantly reduced caspase-8 enzymatic activities as compared to

WT (Fig 2A). Furthermore, for caspase-3 we observed significantly decreased activity for both

p.K148R and p.I298V variants (Fig 2B). We further evaluated caspase-8 and caspase-3 enzy-

matic activity when cells were treated with two distinct caspase-8 activators, staurosporine

(STS) and tumor necrosis factor (TNF). STS and TNF treatments increased LETDase (S1A

and S1B Fig) and DEVDase activities (S1C and S1D Fig) for WT, p.K148R and p.I298V cas-

pase-8 transfected cells as expected. Of note, for the most part, on exposure to these stimuli,

the difference between caspase-8 WT as compared to p.K148R and p.I298V, were not

significant.

The ability of the caspase-8 p.K148R and p.I298V variants to cleave APP was investigated in

SK-N-BE(2) cells that were co-transfected with an expression vector encoding a Flag-tagged

version of the 695 aa APP isoform and caspase-8 variants. When APP processing was exam-

ined by immunoblotting, WT caspase-8 was found to cleave APP and potentially lead to its

degradation in a dose dependent manner (S2A Fig). With our assay, p.K148R and p.I298V

caspase-8 showed comparable ability to cleave APP as compared to WT (S2B Fig). To look

Table 3. Variant count and association of CASP8 K148R and I298V.

Variant c.443A>G, p.K148R

CA CO p OR(95% CI)

Discovery sample 3/1851 0/1631 0.15 -

Discovery uniquea 1/517 0/607 0.46 -

German & Finish 0/1527 1/1234 1 -

ADGC 18/8779 5/7041 0.021* 2.89(1.07–7.79)

Combinedb 19/10823 6/8882 0.025* 2.6(1.04–6.57)

c.892A>G, p.I298V

CA CO P OR(95% CI)

Discovery sample 10/1860 0/1693 0.0015* -

Discovery uniquea 5/528 0/605 0.022* -

German & Finish 4/1535 4/1235 0.75 0.8(0.2–3.22)

ADGC 24/8782 11/7041 0.081 1.75(0.86–3.58)

Combinedb 33/10845 15/8881 0.037* 1.8(0.98–3.32)

a Discovery unique excludes subjects that are in cohorts represented in the ADGC sample
b Combined sample includes Discovery unique, German, Finnish and ADGC subjects

* nominally statistical significance

Numbering according to GenBank Accession No. NM_033355.3 for K148R and NM_033355.3

https://doi.org/10.1371/journal.pone.0185777.t003
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closer at APP processing by caspase-8, an antibody against the caspase cleavage product of

APP, APPΔC31, was employed. Co-transfection of cells with Flag-APP and WT, p.K148R or p.

I298V caspase-8 resulted in the cleavage of APP and appearance of the APPΔC31 fragment

(S2C and S2D Fig).

Discussion

Our study was aimed at evaluating the contribution of rare protein disrupting and missense

variants in nine candidate genes involved in the amyloid metabolism (APH1A, APH1B,

BACE1, CASP3, CASP8, GSK3A, GSK3B, PSENEN, and NCSTN). As our assumption was that

individual variants responsible for the disease are rare, we have used targeted sequencing and

gene based variant-burden case-control association to assess the candidate genes. In addition

we have evaluated the association of rare protein disrupting and missense variants in know

AD genes (APP, PSEN1, PSEN2 and TREM2) in our sample. The replication of the association

of PSEN1 and TREM2 shows the validity of our variant-burden approach. For PSEN1, except

for the known pathogenic A79V variant, the remainder of variants we identified is observed

only once or twice. Our variant-burden approach focused had sufficient power to detect

PSEN1 association although none of the variants was individually associated with AD. In con-

trast to PSEN1 the association with TREM2 was due to three variants that were seen in multiple

cases. For two of the variants that carry the bulk of the association in our sample, R47H and

R62H, the association with AD is well described and replicated [30]. One additional variant,

rs2234255 (H157T) shows nominal association in our sample and currently there is no conclu-

sive evidence for its association with AD [31,32]. Interestingly, in the ExAC data set this vari-

ant is reported to be at a two magnitudes higher frequency in Latino samples (MAF = 0.032) as

compared to non-Finnish Europeans (MAF = 0.0003) (23). This indicates that an association

study in Latino population would have excellent power to determine if this variant has a role

in AD and that H157T variant might have a significant contribution to AD in Latino popula-

tion due to high population frequency.

Our variant-burden analysis identified a nominally significant association of APH1B and

significant association of CASP8 with AD. For APH1B we have not observed any variant more

then 3 times. This indicates that a larger re-sequencing study would be needed to obtain statis-

tically significant evidence for APH1B association with AD.

We observed a strong variant-burden association for CASP8 with AD. To follow up on vari-

ant-burden analysis we performed replication association and functional studies on p.K148R

and p.I298V variants. These two variants were selected as we have seen them multiple times in

our discovery sample, are present on HumanExome chip and are suitable for functional stud-

ies. The p.K148R and p.I298V variants are present on 479 amino acid procaspase-8 isoform 1

(Uniprot identifier Q14790-1), which is predominantly expressed in cells and is available as an

expression vector. Variant p.P25A (rs34210251) which was also present in multiple cases in

variant burden analysis was not selected for further studies as this variant is present on the cas-

pase-8 isoform 9, also referred as 8L (Uniprot identifier: Q14790-9). For isoform 9 a backbone

expression vector is not available which makes p.P25A less practical for use in functional

studies.

The association of rare variants in CASP8 with AD has not previously been reported. Large

GWAS meta-analyses of 74,046 individuals has been successful in identification of genome-

wide significant association of more then 20 loci with AD [33] and GWAS studies have con-

tributed to understanding the mechanisms of AD [34]. Although GWAS studies are originally

designed to detect common variants, use of genotype imputation allows for increase in resolu-

tion and detection of association of rare alleles, as demonstrated by detection of suggestive
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association (1x10-6 < p < 1x10-8) of rs9381040, which is 24 kb from TREM2 and AD [33].

However, ongoing systematic meta-analyses of Alzheimer disease genetic association studies

in AlzGene database [35], and recent high-resolution exome variant microarray GWAS [36]

have not identified association of chromosome 2q33.1 region which contains CASP8 with AD,

indicating that it is unlikely that our results are a consequence of LD with another locus in the

region.

Caspase-8 belongs to a family of cysteine aspartate-specific proteases, which play essential

roles in apoptosis, inflammation, and cellular differentiation. Caspase-8 is synthesized within

the cell as an inactive zymogen, procaspase-8, and requires proteolytic activation. Procaspase-

8 consists of a long prodomain harboring two critical protein interaction domains, DED1 and

DED2, followed by one large (p18) and one small (p10) catalytic subunit. Our structural analy-

sis shows that the K148R and the I298V caspase-8 variants affect exposed amino acid residues

in the DED2 prodomain and p18 catalytic subunit of the enzyme, respectively. I298V is not far

from the caspase active site, which includes the critical histidine H317 and cysteine C360 resi-

dues. Functional analysis revealed that the CASP8 I298V variant is associated with a significant

reduction in caspase-8 activity, as demonstrated by reduced LETDase activity, indicating that

the functional effect of CASP8 I298V may be due to a direct effect on its enzymatic activity. In

contrast, K148R did not appear to affect caspase-8 enzymatic activity. Immunofluorescence

analysis revealed that the K148R variant causes accumulation of cleaved caspase-8 in aggre-

gate-like structures. Collectively, these data suggest that the CASP8 K148R variant might affect

the localization and/or turnover of caspase-8. Interestingly, the DED2 of procaspase-8 contains

a F122L123 hydrophobic motif, in proximity to the K148R residue, and it has been proposed

that FL motif is implicated in the recruitment of multiple procaspase-8 molecules as chains

[37,38]. Consequently, one could envisage reduced functionality of caspase-8 K148R due to its

sequestration. Reduced functionality of both mutant proteins is supported by our observation

of reduced activation of caspase-3, a substrate and downstream effector of caspase-8.

There are several mechanisms that might lead to AD phenotype due to the moderate loss of

caspase-8 function we have described. One such mechanism is caspase-8 effect on the function

of caspase-3. Caspase-3 has been implicated in AD through involvement in APP proteolysis

and the generation of a neurotoxic C31 APP related fragment [16,17,29]. However, we were

not able to demonstrate statistically significant changes in APP processing, possibly due to

insufficient sensitivity of our experimental model. Beside effects on APP proteolysis, caspases

have been implicated in neurodegeneration and AD due to their central role in apoptosis and

importance in non-apoptotic processes [39–42]. The caspase-8 was reported to mediate Aβ-

induced neuronal apoptosis in-vivo [43] and there is extensive evidence for involvement of

caspase 3 in AD. The caspase-3 is activated in Aβ-treated neuronal cultures [44], the increased

levels of caspase-3 expression [45] and activated caspase-3 have been observed in AD brains

[46].

The non-apoptotic caspases functions, which could lead to neurodegeneration, include

effects on neuronal plasticity and structural remodeling such as axon pruning and synapse

elimination, and non-neuronal functions such as role in the microglia activation [40–42]. Nor-

mal brain functions depend on proper synaptic activity and synaptic loss is one of the best

pathological correlate of the cognitive decline in AD. Several studies have implicated caspases

in the regulation of synaptic plasticity [47,48] thus establishing a non-apoptotic disease mecha-

nism. In similar way, the enhancement of baseline non-apoptotic caspase-3 functions was

associated with the early synaptic dysfunction in a mouse model of AD at the onset of memory

decline [49].

The role for caspases in control of microglial cell activation has also been identified and

related to neurodegenerative diseases including AD. Microglia act as ‘housekeepers’ in the
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CNS by constantly scavenging for damaged neurons, plaques and infectious agents. Thereby

changes in microglial function might be detrimental for the brain homeostasis. Our group has

reported that the orderly activation of caspase-8 and caspase-3 regulates microglia activation

through a protein kinase C (PKC)-δ-dependent pathway [50]. We found that exacerbation of

this caspase-signaling pathway was associated with neurotoxicity and that caspase-8 and cas-

pase-3 were activated in microglia in the frontal cortex of individuals with AD, providing fur-

ther mechanistic evidence for the involvement of caspases in AD. In addition to effects

through caspase-3, caspase-8 cleaves additional proteins that might have a role in AD. Cas-

pase-8 cleaves BID (BH3-Interacting Domain Death Agonist OMIM #601997) a protein

whose effects mediate cytochrome-c release resulting in mitochondrial damage [51], is

involved in the TNF signaling pathway [52] and it affects autophagic cell death [53]. This

opens a possibility that mitochondrial metabolism, TNF signaling and autophagic cell death

might be the mechanisms that are involved in CASP8 effects in AD [54–56].

In summary, using targeted sequencing and variant-burden test we identified an associa-

tion of CASP8 with AD. For two variants, p.I298V and p.K148R the association remained sig-

nificant in a large combined sample. With functional studies we showed that p.I298V and p.

K148R variants have effects on caspase-8 and caspase-3 activity and thus can affect, directly or

indirectly, multiple cellular processes that are regulated through caspases. In the context of

majority of literature postulating an increase in caspase activity as a mechanism in AD and

neurodegeneration [43–46,49,57–62], the results of our functional studies are unexpected. The

variants we have identified confer a significant, although moderate, loss of CASP8 function.

This suggests that for carriers of CASP8 variants, moderate loss of function over the course of

lifespan leads to late-onset AD. Notably, a hypothesis for mechanism by which moderate inhi-

bition of caspase activity may have profound implications in age related disorders in vivo has

been proposed [63,64]. Under such hypothesis, in slow-developing neurodegenerative dis-

eases, neuronal damage loss is preceded by non-lethal neuronal injury resulting in decreased

connectivity and function. Once a cell-damage threshold is surpassed, apoptotic process and

caspase activation quickly remove the damaged neurons, which in turn facilitates reorganiza-

tion of surrounding neurons and/or replacement by neurogenesis. Inhibition of apoptosis by

local mediators, energy loss or caspase inhibition could delay removal of severely damaged

cells and interfere with reorganization of surrounding neurons and/or replacement by neuro-

genesis. The loss of function variants we have identified here could be one such mechanism

that leads to decreased caspase activation. In CASP8 loss of function variant carriers, the inhi-

bition of apoptosis and other caspase mediated functions such as axon pruning and synapse

elimination could lead to AD pathogenesis by decreased removal of damaged cells. Such dam-

aged neurons could affect brain function due to decreased connectivity and cell function. Fur-

thermore, as caspases are involved in microglial function [40–42], the disruption in microglial

activation may result in sustained inflammation which is deleterious to neurons, and is

increasingly recognized as a feature of chronic neurodegenerative diseases including AD [65–

67].

Limitations and future directions

Our study design has several limitations. We have evaluated only a limited number of candi-

date genes in sequencing variant-burden association study. The amyloid cascade hypothesis,

on which we based our candidate gene selection, involves complex biological processes that

regulate balance between Aβ production and clearance. Despite the importance of amyloid

hypothesis, the exact number and role of the genes and pathways involved is not known. The

KEGG database [68], a collection of manually curated knowledge on the molecular interaction,

Caspase-8, association with Alzheimer’s Disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0185777 October 6, 2017 13 / 20

https://doi.org/10.1371/journal.pone.0185777


reaction and relation networks for disease currently includes 171 genes in Alzheimer disease

pathway (KEGG PATHWAY: hsa05010). The PANTHER is another classification system,

which was designed to group proteins based on function or biological processes using human

curating and sophisticated bioinformatics algorithms [69]. In a similar way PANTHER AD

Amyloid Secretase (P00003) and AD Presenilin (P00004) pathway gene sets include 55 and 98

proteins respectively, indicating that large number of genes might be involved in amyloid cas-

cade. To balance the number of candidate genes and number of cases and controls to include

in our study, we have opted to a strategy that includes relatively small number of candidate

genes (9 genes) and large number of cases and controls (3586 subjects) analyzed. In compara-

ble fashion, Sassi et al. [70] have recently reported analysis of 29 genes they selected as relevant

for amyloid hypothesis in 332 cases and 676 controls (1008 subjects). Two genes on our respec-

tive lists overlapped (BACE1 and APH1B). Sassi et al, have not reported significant association

when corrected for multiple testing and subsequently have not followed their results with rep-

lication study or variant in-vitro functional analysis. Their design covered larger number of

genes in smaller sample, which decreases power as compared to our design where we have

identified a statistically significant association with CASP8.

Additional weakness of our study is a lack of true replication. Due to cost of sequencing we

have replicated two CASP8 variants that were present on exome chip. For both variants, in rep-

lication sample we have found excess of heterozygous carriers in cases as compared to controls,

although this excess was not statistically significant. In order to obtain a true replication a

larger re-sequencing study of CASP8 is needed.

To further the understanding of the mechanisms of human disease, animal models have

been invaluable. Several dozens of AD mouse models have been developed based on human

AD mutations in APP, presenilins, and/or tau protein [71–73]. Although transgenic AD mod-

els developed show Aβ accumulation, gliosis, neuronal loss, tau pathology, and/or cognitive

impairments, no single transgenic AD model recapitulates all aspects of AD pathology. Fur-

thermore as AD is a late onset disease, to show AD pathology and phenotype in mice models

like 5xFAD and 3xTg include multiple pathogenic mutations in APP, PSEN1 and MAPT

genes.

For in-vivo validation of our findings and to understand the disease mechanisms, the gener-

ation of Casp8 mouse models would be invaluable. Recent discovery of TREM2 as AD suscep-

tibility gene shows the complexities and path toward development of such models [74]. To

tackle the role of TREM2 in context of AD the investigators have examined TREM2 deficient

mice that also carry mutations in human APP and PSEN1 such as 5xFAD and APPPS1 mice

[75–78]. Interestingly, such studies have produced broad spectrum of results, with both

increased and decreased amyloid pathology, possibly depending on the stage of disease pro-

gression. For Casp8 a knockout mouse model has been developed as well, showing no apparent

phenotype for heterozygous mice and embryonic lethality for homozygous mutants [79]. As a

next step in biological validation of association of CASP8 and AD one could envision studies

of Casp8 haploinsufficiency in transgenic AD mouse. Such studies could more precisely exam-

ine AD mechanisms that could lead to AD such as, apoptotic changes, Aβ accumulation, axon

pruning and synaptic elimination or changes in microglia function [39–42].

Although the role of caspases in AD has been proposed, our study for the first time shows

genetic association of rare variants in CASP8 with AD and proposes a mechanism of action

mediated by decreased enzyme activity. Furthermore, we have shown that the enzymatic activ-

ity of AD associated caspase-8 variants K148R and I298V increases when exposed to activators

such as STS and TNF. One could propose that in theory some caspase activators with high

specificity and low toxicity (i.e. which would not promote inappropriate cell death) could

increase and "normalize" caspase activity in individuals carrying variants that impair caspase
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function and possibly be used in AD prevention and treatment. Our finding is even more

interesting as caspase inhibition, as opposed to activation has been proposed as a mechanism

for AD treatment [80,81]. This indicates that further studies in investigating the role of cas-

pases in neurological disease might be needed before caspase activity modulation is considered

for AD treatment.
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