

HHS Public Access

J Am Chem Soc. Author manuscript; available in PMC 2018 September 27.

Published in final edited form as:

Author manuscript

J Am Chem Soc. 2017 September 27; 139(38): 13276–13279. doi:10.1021/jacs.7b07808.

Copper(I)/NO(g) Reductive Coupling Producing a trans-Hyponitrite Bridged Dicopper(II) Complex: Redox Reversal Giving Copper(I)/NO(g) Disproportionation

Gayan B. Wijeratne§, **Shabnam Hematian**§, **Maxime A. Siegler**, and **Kenneth D. Karlin*** Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States

Abstract

A copper complex, $[Cu^I$ (tmpa)(MeCN)]⁺, effectively reductively couples NO_(g) at RT in methanol (MeOH), giving a structurally characterized hyponitrito-dicopper(II) adduct. Hydrogen-bonding from MeOH is critical for the hyponitrite complex formation and stabilization. This complex exhibits the reverse redox process in aprotic solvents, giving $Cu^I + NO_{(g)}$, leading to Cu^I -mediated $NO_{(g)}$ -disproportionation. The relationship of this chemistry to biological iron and/or copper mediated $NO_{(g)}$ reductive coupling to give $N_2O_{(g)}$ is discussed.

> The interactions and reactivity of redox active metal ions with nitrogen oxides (NO_x) have widespread implications/importance in environmental, practical, and biological chemistries. Iron and copper provide for facile redox shuttling and one and/or the other in the presence of proton sources chemically or enzymatically facilitates reactions such as reduction of nitrite (NO₂⁻) to nitrogen monoxide (NO_(g); nitric oxide), reductive coupling of NO_(g) to nitrous oxide (N₂O_(g)), and reduction of N₂O_(g) to N_{2(g)}.¹

Biological roles of $NO_{(g)}$ include it as a signaling agent, yet, it can be toxic under oxidative conditions; $NO_(g)$ is utilized in the human immune response, produced in elevated levels to effect invading pathogen biomolecule destruction (e.g., by oxidation or nitration).² Fighting back, bacteria/pathogens can upregulate NO-reductase (NOR) activity to eliminate toxic

Notes

The authors declare no competing financial interest.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b07808. Synthetic and analytical details (methodologies and UV–vis, EPR, NMR, and FT-IR spectra; gas chromatograms); X-ray diffraction data collection details (PDF) Data for C36H36Cl2Cu2N10O10 (CIF)

^{*}Corresponding Author: karlin@jhu.edu.

[§]**Author Contributions:** These authors contributed equally.

ORCID

Gayan B. Wijeratne: 0000-0001-7609-6406 Kenneth D. Karlin: 0000-0002-5675-7040

NO_(g) by its reductive coupling to give benign $N_2O_{(g)}$.³ Bacterial NOR's^{1d,4} possess heme/ nonheme diiron active sites, effecting the coupling through a putative hyponitrito ($N_2O_2^{2-}$) intermediate; ⁵ the metal ion centers provide electrons (diagram above). Evolutionarily related heme-Cu oxidases (HCO's) effect this reaction, albeit with lower efficiency.⁶

Our own interests encompass hemes and/or Cu , 2a,7 and in this report we focus on the latter. In addition to $HCO NO_{(g)}$ reductive coupling, copper nitrite reductases may also couple excess NO_(g) present to give N₂O_(g).^{1a} Further, in the presence of O_{2(g)}, Cu–NO reactivity can lead to peroxynitrite (O=NOO[−]).^{2b,8} Also, copper(I) complexes are efficient at NO_(g)disproportionation, $3NO_{(g)} + Cu^{I} \rightarrow N_{2}O_{(g)} + Cu^{II}(NO_{2})$, possibly also involving hyponitrite-type intermediates. ^{1b,9} As well, copper ion loaded zeolites are effective catalysts to decompose NO_x to $N_{2(g)}$ and $O_{2(g)}$; automobile catalytic converters may utilize Cu as a catalyst for NO_(g) reduction to N₂O_(g).¹⁰

With this background, we highlight the need to elucidate fundamental aspects of $NO_{(g)}$ reductive coupling, details/requirements for (i) N–N bond formation and (ii) N–O bond cleavage for hyponitrite formation and $N_2O_{(g)}$ elimination, respectively. Even though hyponitrite intermediates have been proposed/observed within enzymatic systems, details pertaining to their binding mode within the binuclear active site, protonation state(s), and the metal oxidation states, all remain elusive.¹¹ In this report, employing the copper(I) complex $[Cu^I(tmpa)(MeCN)](B(C₆F₅)₄)$ (MeCN = CH₃CN; TMPA = tris(2-pyridylmethyl)amine), we describe (i) the first example of a copper(I) complex whose $NO_{(g)}$ reactivity leads to efficient reductive coupling to give the hyponitrite complex $[\{Cu^{II}(tmpa)\} _{2}(\mu N_{2}O_{2}^{-2-})]^{2+}$, (ii) the first structurally characterized Cu-only hyponitrite complex, and (iii) the effective reversal of $NO_{(g)}$ reductive coupling occurring for the hyponitrite complex in tetrahydrofuran (THF), i.e., formation of a putative $\{[Cu^{I}(tmpa)]^{+} + NO_{(g)}\}$ solution mixture, followed by $NO_{(g)}$ -disproportionation (Figure 1).

When excess $NO_{(g)}$ is bubbled through a RT MeOH solution of $[Cu^{I}(tmpa)(MeCN)]^{+}$, the initial pale yellow solution immediately transforms to forest green giving electronic absorption features: $\lambda_{\text{max}} = 310$ ($\varepsilon = 3800$ M⁻¹ cm⁻¹), 675 ($\varepsilon = 250$ M⁻¹ cm⁻¹), and 870 nm $(e = 340 \text{ M}^{-1} \text{ cm}^{-1})$ (Figure 2). An EPR spectrum of the green solution reveals a classic reverse axial pattern ($g_{\perp} > g_{\parallel}$) indicating a d_{z2} ground state, with a single type of mononuclear copper(II) environment occurring in a trigonal bipyramidal (TBP) geometry; this also indicates that the copper(II) ions are electronically site-isolated, i.e., no magnetic/ electronic interaction between the two copper (II) ions occurs. Upon solvent removal, this new complex was obtained in near stoichiometric yields (>97%), and it is the hyponitrito complex $[\{Cu^{II}(\text{tmpa})\} \text{2}(\mu-\text{N}_2\text{O}_2^2)](\text{B}(C_6F_5)\text{4}) \text{2} \cdot 2\text{H}_2\text{O} \cdot 2\text{MeOH}$ (eq 1).¹²

$$
[\text{Cu}^{\text{I}}(\text{tmpa})]^+ + \text{xs. NO}_{\text{(g)}} \rightarrow [\{\text{Cu}(\text{tmpa})(\text{NO})\}^+]_n
$$

$$
\rightarrow [\{\text{Cu}^{\text{II}}(\text{tmpa})\}_2(\mu - \text{N}_2\text{O}_2^{-2})]^2^+
$$
 (1)

With the intention of further supporting our complex formulation, we probed the $Cu^{I}/NO_{(g)}$ stoichiometry; $\text{[Cu}^{\text{I}} \text{ (tmpa)}(\text{MeCN})$ ⁺ was titrated with varying amounts of NO_(g) from a

NO_(g)-saturated MeOH solution { $[NO_(g)] = 14.5$ mM at RT}.¹² The data clearly indicates that the Cu^I/NO_(g) stoichiometry, as measured in this manner, lies between 1 and 1.5, very close to the expected 1:1 stoichiometry.^{12,13} It is presumed that $NO_{(g)}$ reaction with $[Cu^{I}(tmpa)(MeCN)]^{+}$ initially gives a Cu^I–NO adduct, perhaps like that previously reported on (but in EtCN),¹⁴ prior to NO_(g)-coupling in the present case to give the hyponitritodicopper(II) complex (eq 1).⁵

 $[{Cu^{II}(tmpa)}₂(\mu-N₂O₂ ²$ -)²⁺ can also be generated by a metathesis reaction involving the $Cu^{II}-OH$ complex, $[Cu^{II}(tmpa)(OH)]⁺$, generated and isolated by reaction of tetrabutylammonium hydroxide with $\text{[Cu}^{\text{II}}(\text{tmpa})(\text{MeCN})\text{]}$ -(ClO₄)₂ in MeCN at RT (v_{0-H} = 3533 cm⁻¹).¹² Freshly generated [Cu^{II}(tmpa)(OH)]⁺ mixing with 1/2 equiv Ag₂N₂O₂ in MeOH, with sonication, gave a color change from light green to forest green. The UV–vis changes correspond with those seen for the hyponitrito-dicopper(II) complex obtained via the $\{[Cu^{I} + NO_{(g)}\}$ reaction.¹² Isolation of the solid product and redissolution into a MeOH/ EtOH = 1:1 solution also gives the same EPR spectrum (20 K).¹²

X-ray quality crystals of $[\{Cu^{II}(tmpa)\} _2(\mu N_2O_2^{2-})]$ (ClO₄)₂ could be obtained from MeOH at −35 °C, and the structure of the dicationic portion is shown in Figure 3.12 The complex possesses a dicopper-bridged η ¹-*O-trans*-hyponitrite species with a Cu \cdots Cu distance of 5.5648(7) Å; the dication possesses a centrosymmetric structure. Each copper(II) ion is pentacoordinate, with the four N atoms from the TMPA chelate plus the anionic hyponitrito O atom (O1 or O1'; Figure 3). However, there also exists a clear interaction of Cu ions with the distal N atom of the N₂O₂^{2–} moiety, (Cu–N = 2.851(2) Å), i.e., Cu1 interacts with N5['], with Cu₁^{\prime} interacting with N5 (Figure 3, shown in broken lines). See the SI (page S₁₀) for information and arguments in support of this point. We hypothesize that this weak interaction transforms into a "true" metal-ligand bond when $[\{Cu^{II}(tmpa)\} _{2}(\mu N_{2}O_{2}^{2-})]^{2+}$ is put into aprotic solvents (vide inf ra; Scheme 1).

Thus, the copper (II) ions in this structure are distorted octahedrally ligated (six-coordinate), which contrasts greatly with other many well characterized $\text{[Cu}^{\text{II}}(\text{tmpa})(X)]^{n+}$ species such as those with $X = Cl^{-} (n = 1)$, ¹⁵ $X =$ nitrito (NO₂⁻, *O*bound; $n = 1$)¹⁶ and $X = NCCH_3 (n = 1)$ 2).¹⁷ Recall that methanolic solutions of $[\{Cu^{II}(\text{tmpa})\}](\mu - N_2O_2)^{2-}]^{2+}$ possess a welldefined TBP coordination geometry, as distinctly and unambiguously observed from frozen solution EPR spectra (*vide supra*). In fact, this hyponitrito-dicopper(II) complex, $[{C\mu^{II}(tmpa)}_2^2/(\mu-N_2O_2^2^-)]^2^+}$, is only stable in alcoholic solvents; we thus conclude that the latter observation indicates that MeOH hydrogen-bonds to the $N_2O_2^{2-}$ ligand of the complex, probably with the lone pairs on the central N atoms. Such an interaction has recently been suggested by Liaw and co-workers¹⁸ although in that case H-bonding to the Co^H –NO O atom is proposed, which aids the formation of a hyponitrite metastable species. Such H-bonding in solution would "relieve" the structurally observed weak interaction between N5 or N5′ with the copper(II) ions, leaving only the O1-to-Cu1 (and O1′-to-Cu1′) bond interaction in addition to N4 ligation from TMPA, allowing for strict TBP coordination (as expected from EPR spectra).

Further aspects of the solid-state structure of $[\{Cu^{II}(\text{tmpa})\} \, _2(\mu\text{-}N_2O_2^{2-})]^{2+}$ are as follows: (a) The N–N and N–O distances of the *trans*-hyponitrite moiety are 1.257(3) \AA and 1.361(2)

Å, respectively, which compare well with the N=N double bond (1.256(2) \AA) and N–O single bond (1.3622(11) Å) distances of *trans*-sodium hyponitrite.^{5c} (b) The Cu $\cdot\cdot\cdot$ Cu distance of 5.565 Å is much shorter compared with the Fe–Fe distance (6.7 Å) in $[(\text{OEP})\text{Fe}^{\text{III}}]$ ONNOFe^{III}(OEP)] (OEP = octaethylporphyrinate), with extended hyponitrito; O_1O' bonding to iron(III) occurs, but there are no Fe \cdots N_(hyponitrite) interactions.^{20c} (c) The Cu \cdots Cu distance here is virtually identical to that (5.566 Å) of the Agapie's¹⁹ copper–yttrium complex with bridged copper-bound hyponitrite adduct. (d) A number of differing structures have been proposed based on computational analyses for HCO, NOR or other protein hyponitrite species (see diagram below; $M = Fe$ or Cu).^{4e,6d,20}

When solid samples of $[{C\mu^{II}(tmpa)}_2^2/(\mu^2N_2O_2^{2-})]^2^+($ as $(B(C_6F_5)_4$ ⁻ or ClO₄⁻ salts) are dissolved in THF, or excess THF is added to the complex already dissolved in MeOH, a reaction takes place, and a mixture of products are formed (Figure 1), which we hypothesize to arise from a rearrangement of electron density on the bridging $N_2O_2^{2-}$ ligand,²¹ followed by transformations leading to the products seen from reaction of $[Cu^{I}(tmpa)]^{+} + NO_{(g)}$ in nonalchoholic solvents, namely $NO_{(g)}$ -disproportionation, $3NO_{(g)} + Cu^{\text{I}} \rightarrow N_2O_{(g)} + Cu^{\text{II}}$ NO₂⁻. We speculate that either THF effects a "reverse" reaction to give a $\{[Cu^{I}(tmpa)]^{+} +$ NO_(g)} solution, or $[\{Cu^{II}(\text{tmpa})\}](\mu - N_2O_2^{-2})]^2$ ⁺ reacts to give $N_2O_{(g)}$ and the Cu^{II}-nitrito complex by an as yet undetermined mechanism. However, because there is only one equiv of NO_(g) per Cu(I) ion present, excess $\{[Cu^{I}(tmpa)]^{+}$ is left over, giving the mixture of products described by Scheme 1.

Experiments carried out on the final product solution confirm the identity, yields and relative-yields of the transformation of $[{C\mu^{II}(tmpa)}_2(\mu-N_2O_2^{2-})]^{2+}$ originally formed by the ${Cu^I + NO_(g)}$ reaction (*vide supra*) (with stoichiometry of Scheme 1). (a) Cooling the decay product mixture in THF to −80 °C and bubbling with O_{2(g)} led to the formation of the well-known *trans*-peroxo-dicopper(II) complex, $[\{Cu^{II}(\text{tmpa})\}](\mu-O_2^2)^{-1}]^{2+1}$;²² with known molar absorptivities, one could relate back to the finding of a 96% yield of $[Cu^I(tmpa)]^{+.12,22}$ (b) Previously published methodologies¹⁶ were followed to determine and quantify the nitrite content in the final decay mixture, giving $>85\%$ yields,¹² and (c) the headspace of the decay product mixture was sampled by gas chromatographic analysis for the identification and quantitation of product $N_2O_{(g)}$; yields of ~85% were obtained.¹² The decay of $[{C\u^{\text{II}}(\text{tmpa})}\2(\mu-\text{N}_2\text{O}_2^2-)]^{2+}$ originally formed by the ${C\u^{\text{II}}-OH + Ag_2N_2O_2}$ method (*vide supra*), gave 96% [Cu^I(tmpa)]⁺, > 85% yield of nitrite and 98% yield N₂O_(g),¹² again all based on the Scheme 1 reaction stoichiometry.

Finally, to further verify the solvent effect for the $\{[Cu^I(tmpa)]⁺ + NO_(g)\}$ reaction, we carried out separate experiments. When $[Cu(tmpa)(MeCN)]^+$ is subjected to excess $NO_{(g)}$ in THF solution at RT, the pale yellow solution immediately turns to an olive green color exhibiting the UV–vis features corresponding to the nitrito complex $\lbrack Cu^{II}(tmpa) (NO_2)$]⁺ (96% yield) λ_{max} = 303 (ε = 3360 M⁻¹ cm⁻¹), 420 (ε = 1340 M⁻¹ cm⁻¹) nm. $N_2O_{(g)}$ is also produced, so we can conclude that $NO_{(g)}$ -disproportionation occurs.^{1b} As described in detail above, in MeOH as solvent, the hyponitrito-dicopper (II) complex forms. It is remarkable how the reactivity between $[Cu^{I}(tmpa)]^{+}$ and $NO_{(g)}$ modify to such great extent merely by altering the solvent properties.

In summary, herein we report the first Cu-only system that mediates the reductive coupling of $NO_{(g)}$, stoichiometrically yielding the corresponding hyponitrito-dicopper(II) complex in MeOH at RT. We suggest that H-bonding to the N_2O_2 ²⁻ ligand is key to its stabilization and this course of reaction. Unlike other synthetic bioinspired examples, 5a, 7b, 19, 23 this reaction does not require any low-temperature conditions, and is independent of the equiv of added $NO_(g)$. The new hyponitrito complex possesses versatile synthetic pathways, and is characterized by X-ray crystallography. Dissolution in aprotic solvents triggers its decay with essentially the reversal of NO_(g) coupling, leading to products of Cu^I-mediated NO_(g)disproportionation. We should also note that addition of HCl to $[\{Cu^{II}(tmpa)\}](\mu-\mu)$ $N_2O_2^{2-1}$ ²⁺ in MeOH gives rise to the release of $N_2O_{(g)}$.¹² Such unique redox behavior involving copper and $NO_{(g)}$ is unprecedented, and may have implications in metalloenzyme related $NO_{(g)}/NO_x$ biochemistry. A deeper understanding is needed as pertains to the $NO_{(g)}$ coupling mechanism (N–N bond formation), the oxidation and/or protonation state of the N₂O₂-type intermediate formed,^{6a,9,11,24} and the mechanism of (N–O bond cleavage) N₂O_(g) formation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The research support of the National Institutes of Health (GM 060353) is gratefully acknowledged.

References

- 1. (a) Averill BA. Chem Rev. 1996; 96:2951. [PubMed: 11848847] (b) Wasser IM, de Vries S, Moënne-Loccoz P, Schröder I, Karlin KD. Chem Rev. 2002; 102:1201. [PubMed: 11942794] (c) Ford PC, Lorkovic IM. Chem Rev. 2002; 102:993. [PubMed: 11942785] (d) Moënne-Loccoz P. Nat Prod Rep. 2007; 24:610. [PubMed: 17534533] (e) Ford PC. Inorg Chem. 2010; 49:6226. [PubMed: 20666383] (f) Timmons AJ, Symes MD. Chem Soc Rev. 2015; 44:6708. [PubMed: 26158348] (g) Merkle AC, Lehnert N. Dalton Trans. 2012; 41:3355. [PubMed: 21918782]
- 2. (a) Schopfer MP, Wang J, Karlin KD. Inorg Chem. 2010; 49:6267. [PubMed: 20666386] (b) Szabo C, Ischiropoulos H, Radi R. Nat Rev Drug Discov. 2007; 6:662. [PubMed: 17667957] (c) Barry SM, Kers JA, Johnson EG, Song L, Aston PR, Patel B, Krasnoff SB, Crane BR, Gibson DM, Loria R, Challis GL. Nat Chem Biol. 2012; 8:814. [PubMed: 22941045] (d) Radi R. Acc Chem Res. 2013; 46:550. [PubMed: 23157446]
- 3. (a) Justino MC, Ecobichon C, Fernandes AF, Boneca IG, Saraiva LM. Antioxid Redox Signal. 2012; 17:1190. [PubMed: 22236381] (b) Kakishima K, Shiratsuchi A, Taoka A, Nakanishi Y, Fukumori Y. Biochem Biophys Res Commun. 2007; 355:587. [PubMed: 17307144]
- 4. (a) Watmough NJ, Field SJ, Hughes RJL, Richardson DJ. Biochem Soc Trans. 2009; 37:392. [PubMed: 19290869] (b) Shiro Y. Biochim Biophys Acta, Bioenerg. 2012; 1817:1907.(c) Al-Attar S, de Vries S. FEBS Lett. 2015; 589:2050. [PubMed: 26149211] (d) Hayashi T, Lin MT, Ganesan K, Chen Y, Fee JA, Gennis RB, Moënne-Loccoz P. Biochemistry. 2009; 48:883. [PubMed: 19187032] (e) Bhagi-Damodaran A, Petrik I, Lu Y. Isr J Chem. 2016; 56:773. [PubMed: 27994254]
- 5. (a) Arikawa Y, Onishi M. Coord Chem Rev. 2012; 256:468.(b) Wright AM, Hayton TW. Inorg Chem. 2015; 54:9330. [PubMed: 25928662] (c) Arulsamy N, Bohle DS, Imonigie JA, Sagan ES. Inorg Chem. 1999; 38:2716.
- 6. (a) Pinakoulaki E, Ohta T, Soulimane T, Kitagawa T, Varotsis C. J Am Chem Soc. 2005; 127:15161. [PubMed: 16248657] (b) Varotsis C, Ohta T, Kitagawa T, Soulimane T, Pinakoulaki E. Angew Chem, Int Ed. 2007; 46:2210.(c) Pinakoulaki E, Varotsis C. J Inorg Biochem. 2008; 102:1277. [PubMed: 18334269] (d) Ohta T, Soulimane T, Kitagawa T, Varotsis C. Phys Chem Chem Phys. 2015; 17:10894. [PubMed: 25820937]
- 7. (a) Moënne-Loccoz P, Richter O-MH, Huang H-w, Wasser IM, Ghiladi RA, Karlin KD, de Vries S. J Am Chem Soc. 2000; 122:9344.(b) Wang J, Schopfer MP, Puiu SC, Sarjeant AAN, Karlin KD. Inorg Chem. 2010; 49:1404. [PubMed: 20030370] (c) Schopfer MP, Mondal B, Lee DH, Sarjeant AAN, Karlin KD. J Am Chem Soc. 2009; 131:11304. [PubMed: 19627146]
- 8. (a) Pacher P, Beckman JS, Liaudet L. Physiol Rev. 2007; 87:315. [PubMed: 17237348] (b) Su J, Groves JT. Inorg Chem. 2010; 49:6317. [PubMed: 20666389]
- 9. Metz S. Inorg Chem. 2017; 56:3820. [PubMed: 28291346]
- 10. (a) Kwak JH, Tran D, Szanyi J, Peden CHF, Lee JH. Catal Lett. 2012; 142:295.(b) Gao F, Mei D, Wang Y, Szanyi J, Peden CHF. J Am Chem Soc. 2017; 139:4935. [PubMed: 28288511] (c) Granger P, Parvulescu VI. Chem Rev. 2011; 111:3155. [PubMed: 21417301] (d) Mohiuddin AKM. Adv Mater Res. 2015; 1115:462.
- 11. (a) Yi J, Morrow BH, Campbell ALOC, Shen JK, Richter-Addo GB. Chem Commun. 2012; 48:9041.(b) Daskalakis V, Ohta T, Kitagawa T, Varotsis C. Biochim Biophys Acta, Bioenerg. 2015; 1847:1240.
- 12. See Supporting Information.
- 13. NO_(g)-saturated solutions used likely lose some NO_(g) into the headspace of the Ar-filled cuvette containing $\left[\text{Cu}^I(\text{tmpa})(\text{MeCN})\right]^+$ during each experiment, while NO_(g) equilibrates between the liquid–gas interface. Thus, the actual $Cu^I:NO_{(g)}$ stoichiometry could be slightly smaller than the experimentally observed ratio.
- 14. Paul PP, Karlin KD. J Am Chem Soc. 1991; 113:6331.
- 15. Karlin KD, Hayes JC, Juen S, Hutchinson JP, Zubieta J. Inorg Chem. 1982; 21:4106.
- 16. Hematian S, Siegler MA, Karlin KD. J Am Chem Soc. 2012; 134:18912. [PubMed: 23130610]
- 17. Fox S, Nanthakumar A, Wikström M, Karlin KD, Blackburn NJ. J Am Chem Soc. 1996; 118:24.
- 18. Chuang CH, Liaw WF, Hung CH. Angew Chem, Int Ed. 2016; 55:5190.
- 19. Lionetti D, de Ruiter G, Agapie T. J Am Chem Soc. 2016; 138:5008. [PubMed: 27028157]
- 20. (a) Blomberg MRA, Siegbahn PEM. J Comput Chem. 2016; 37:1810. [PubMed: 27130561] (b) Blomberg MRA. Biochemistry. 2017; 56:120. [PubMed: 27959492] (c) Xu N, Campbell ALO, Powell DR, Khandogin J, Richter-Addo GB. J Am Chem Soc. 2009; 131:2460. [PubMed: 19191487]
- 21. (a) Hyponitrite N-ligation, proposed for hemes, 21b are possible, although the calculations of Richter-Addo and Lehnert suggest it to be higher energy than that for O-coordination. Berto TC, Xu N, Lee SR, McNeil AJ, Alp EE, Zhao J, Richter-Addo GB, Lehnert N. Inorg Chem. 2014; 53:6398. [PubMed: 24971721]
- 22. Tyeklár Z, Jacobson RR, Wei N, Murthy NN, Zubieta J, Karlin KD. J Am Chem Soc. 1993; 115:2677.
- 23. Collman JP, Yang Y, Dey A, Decréau RA, Ghosh S, Ohta T, Solomon EI. Proc Natl Acad Sci U S A. 2008; 105:15660. [PubMed: 18838684]

- 24. (a) Even the N₂O₂^{1–} radical form of the intermediate in NO reductive coupling has been observed spectroscopically^{$24b,c$} or proposed.^{6,9}Brozek CK, Miller JT, Stoian SA, Dincä M. J Am Chem Soc. 2015; 137:7495. [PubMed: 25988850] Poskrebyshev GA, Shafirovich V, Lymar SV. J Am
- Chem Soc. 2004; 126:891. [PubMed: 14733565]

Figure 1.

Divergent synthetic routes to $[{Cu^{II}(tmpa)}_2(\mu N_2O_2^{2-})]^{2+}$ in MeOH, and its unique redox behavior in THF, effecting Cu^I-mediated NO_(g)-disproportionation.

Figure 2.

Top: Electronic absorption spectrum resulting from the $NO_{(g)}$ reactivity with 1 mM $[Cu^I(tmpa)(MeCN)]⁺$ in MeOH at RT. Bottom: EPR spectra (experimental (green) and simulated (red)) of $[{Cu}^{II}(\text{tmpa})\}_2(\mu N_2O_2^{2-})]^{2+}$ (2 mM in MeOH/EtOH = 1:1 glass) at 20 K (g_⊥ = 2.18, g_{||} = 1.99; A_⊥ = 82 G, A_{||} = 90 G).

Figure 3.

X-ray diffraction ORTEP diagram (50% probability thermal ellipsoids) of $[\{Cu^{II}(\text{tmpa})\}_2(\mu-\text{target}])$ $N_2O_2^{2-}$)²⁺ along with the atom numbering scheme. Hydrogen atoms and noncoordinating perchlorate counteranions are omitted for clarity.¹²

Scheme 1.

Proposed Decay of $[\{Cu^{II}(\text{tmpa})\}](\mu - N_2O_2)^{-1}]^{2+}$ when Placed in THF, Giving a Final Product Mixture Consisting of $[Cu^{I}(tmpa)]^{+}$, $[Cu^{II}(tmpa)(NO₂)]^{+}$, and $N_{2}O_{(g)}$