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Summary

Structured knowledge is thought to form, in part, through the extraction and representation of 

regularities across overlapping experiences. However, little is known about how consolidation 

processes may transform novel episodic memories to reflect such regularities. In a multi-day fMRI 

study, participants encoded trial-unique associations that shared features with other trials. Multi-

variate pattern analyses were used to measure neural similarity across overlapping and non-

overlapping memories during immediate and one-week retrieval of these associations. We found 

that neural patterns in the hippocampus and medial prefrontal cortex represented the featural 

overlap across memories, but only after a week. Furthermore, after a week, the strength of a 

memory's unique episodic reinstatement during retrieval was inversely related to its representation 

of overlap, suggesting a trade-off between the integration of related memories and recovery of 

episodic details. These findings suggest that consolidation-related changes in neural 

representations support the gradual organization of discrete episodes into structured knowledge.
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Introduction

Our semantic knowledge is a highly structured network of associations that are, at least in 

some part, learned through the extraction and consolidation of common features across 

many episodic experiences. However, our understanding of how memories of discrete 

episodic events are transformed into structured information over time is crude at best. From 

a neuroscientific perspective, successful episodic memory retrieval is thought to be initially 
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supported by the hippocampus, but then may gradually be supported by distributed cortical 

regions through incremental, coordinated reactivation of memories across the hippocampus 

and cortex (Alvarez and Squire, 1994; Nadel et al., 2000). Evidence for such a mechanism 

has been explored in rodent replay studies (Pavlides and Winson, 1989; Wilson and 

McNaughton, 1994) and in human neuroimaging research, by measuring how changes in 

resting state connectivity after new learning relate to later memory (Tambini et al., 2010; 

Tambini and Davachi, 2013; Schlichting and Preston, 2014; Tompary et al., 2015). Such 

hippocampal-cortical dialogue has been hypothesized to enable the slow extraction of 

statistical regularities common across overlapping episodic events (McClelland et al., 1995). 

However, how this process transforms the neural traces of episodic memories over the 

course of consolidation remains unknown.

Behavioral research in rodents and in humans provides compelling evidence that the 

structure of episodic memories changes with time. In a recent experiment, rodents learned a 

set of platform locations that were sampled from a predetermined distribution of locations. 

After one day, the animals tended to navigate to specific platform locations, but after thirty 

days, their swim patterns more closely matched the underlying probability distribution of all 

platform locations (Richards et al., 2014). Prior work has also shown that rodents begin to 

generalize context-specific behaviors to novel environments with time (Wiltgen and Silva, 

2007). These findings suggest that recent memories are composed of distinct episodes, but 

remote memories become transformed and integrated into more generalized representations 

of related information. In humans, behavioral work has shown that rule acquisition and use 

is more evident with a temporal delay (Sweegers and Talamini, 2014). Similarly, other work 

suggests that sleep enhances transitive inference behavior (Ellenbogen et al., 2007; Lau et 

al., 2010) and benefits the extraction and generalization of statistical regularities across 

motor and acoustic patterns (Wagner et al., 2004; Durrant et al., 2011, 2013; Batterink and 

Paller, 2017). However, few studies to date have shed light on how the underlying neural 

representations of memories with shared features are transformed over time. In the present 

study, we examined whether neural representations of memories with overlapping features 

become more similar after a period of consolidation.

There is evidence that the medial prefrontal cortex (mPFC) likely plays an important role in 

the transformation of episodic memories over time, given its established involvement in two 

distinct mnemonic processes: retrieval of consolidated memories and encoding- or retrieval-

mediated integration. First, increased mPFC activation has been associated with retrieval of 

remote memories (Sterpenich et al., 2009; Takashima et al., 2006) and retrieval of memories 

stabilized through sleep or spaced learning (Sterpenich et al., 2007; Takashima et al., 2007). 

Furthermore, multivariate patterns of activity in mPFC have been shown to be more 

discriminable for remote autobiographical memories than for recent memories (Bonnici et 

al., 2012).

However, an entirely distinct line of work has implicated the mPFC in tasks that require or 

explicitly instruct the online integration of information with shared content. Activation of the 

mPFC and its connectivity with the hippocampus increases when encoding episodes 

containing stimuli that overlap with recently learned trials (Kuhl et al., 2010; Zeithamova et 

al., 2012; Schlichting and Preston, 2016). Activation of mPFC is also related to retrieval-

Tompary and Davachi Page 2

Neuron. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mediated integration and updating of existing memories both in humans and rodents (Tse et 

al., 2007, 2011; Zeithamova and Preston, 2010). Furthermore, increased hippocampal-mPFC 

connectivity has been observed during the retrieval of memories with regularities across 

episodes (Sweegers et al., 2014). Taken together, these results provide converging evidence 

that mPFC involvement in retrieval is modulated both by the age of the memory and the 

necessity of integration computations during learning (Preston and Eichenbaum, 2013). 

However, little work has examined how consolidation may promote such restructuring of 

overlapping memories in mPFC over time.

How hippocampal memory representations change over the course of consolidation is more 

contentious. Relational memory theory proposes that the hippocampus is uniquely equipped 

to encode and represent information with relational links (Cohen and Eichenbaum, 1993; 

Eichenbaum, 1999). Consistent with this theory, a large body of neuropsychological and 

neuroimaging work has implicated hippocampal processes in the encoding of associations 

across unique features of an experience (Ryan et al., 2000; Davachi et al., 2003; Ranganath 

et al., 2003; Staresina and Davachi, 2006, 2008; see Davachi, 2006 for a review). 

Furthermore, hippocampal activation during new learning appears to relate to the later 

integration of overlapping events (Shohamy and Wagner, 2008; Zeithamova and Preston, 

2010; Kuhl et al., 2010; Schlichting et al., 2014; Schlichting and Preston, 2016). But these 

findings may simply be an extension of the role of hippocampal processes in supporting the 

initial formation of episodic memories. In other words, the reactivation of older memories 

during new learning may create a new, integrated memory trace through the same associative 

binding processes that are thought to support new episodic associative encoding. But it is 

unclear whether and how those overlapping associations are stored and represented in the 

hippocampus as part of an enduring memory trace, and how they might change with 

consolidation.

Furthermore, theoretically, the development of hippocampal relational nodes is not easily 

reconciled with complementary learning systems (CLS) theory, in which the proposed role 

of hippocampus is to store detailed, orthogonalized episodic memories, from which 

relational information is slowly extracted and represented in cortical regions (McClelland et 

al., 1995). According to CLS, memories rich in episodic or contextual details continue to be 

reinstated in the hippocampus, while schematic and generalized information come to be 

represented in cortical regions (Frankland and Bontempi, 2005; Nadel and Moscovitch, 

1997; Winocur et al., 2010). Consistent with the notion that hippocampal representations 

maintain episodic specificity, recent imaging studies have shown that multivariate 

representations of specific memories are reinstated in the hippocampus during successful 

remembering (Tompary et al., 2016; Mack and Preston, 2016). With respect to univariate 

activation, some work highlights that hippocampal activation during retrieval decreases with 

the age of the memory (Takashima et al., 2006, 2009; Watanabe et al., 2012). At the same 

time, other work demonstrates that hippocampal activation is related to remote retrieval for 

memories that retain distinct episodic elements (Viard et al., 2007; Harand et al., 2012; 

Sterpenich et al., 2009). Furthermore, neural patterns in the hippocampus have been shown 

to carry information about distinct episodes for both recent and remote autobiographical 

memories (Bonnici et al., 2012, 2013), suggesting that the hippocampus may continue to 

represent episodic features of memories as they are transformed over time, consistent with 
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multiple trace theory (Nadel et al., 2000). Although there have been attempts to reconcile the 

dual roles of the hippocampus in integrating memories of overlapping episodes and 

separating memories of distinct episodes (Kumaran and McClelland, 2012; Schapiro et al., 

2017), further research is needed to reconcile these seemingly disparate hippocampal 

computations that occur during learning, and how the resulting memory traces may change 

with consolidation.

In the present study, we employed multi-variate pattern analyses to ask whether memories 

come to be represented more similarly to other memories with overlapping content over 

time. In this experiment, participants encoded trial-unique objects paired with one of four 

repeating scenes, such that multiple objects were studied with the same scene (‘overlapping 

memories’) and others were paired with a different scene (‘non-overlapping memories’). 

Participants were later scanned during cued associative retrieval of individual scenes 

associated with each object. Critically, memory for half of the object-scene associations was 

tested immediately after learning (recent memories), and memory for the other half was 

tested after a week delay (remote memories, Figure 1A). Manipulating the time between 

encoding and retrieval allowed us to attribute any differences between the two retrieval 

periods to the additional influence of consolidation processes on the retrieval of remote 

memories. Our analysis approach is different from past work using multivariate patterns to 

characterize episodic events: rather than computing the neural similarity of items within and 

across categories (LaRocque et al., 2013), we computed the neural similarity between 

distinct memories with and without overlapping features. This allowed us to quantify the 

degree to which multi-voxel representations of recent and remote episodic memories reflect 

their commonalities.

We asked two distinct but complementary questions: (1) how does the neural 

representational similarity between overlapping and non-overlapping memory 

representations change over time, and (2) how do these changes relate to the reinstatement of 

specific episodic information captured during encoding? We predicted that ongoing 

consolidation processes would promote greater representational similarity in mPFC between 

overlapping memories, compared to non-overlapping memories. We predicted that this effect 

would be evident only for remote memories, as they will have undergone more 

consolidation. We also explored neural similarity in the hippocampus over time, as it is less 

clear how hippocampal memory representations evolve as a result of ongoing consolidation 

processes. We then asked how neural similarity between overlapping and non-overlapping 

memories relates to measures of episodic reinstatement to probe whether the restructuring of 

overlapping memories promotes or interferes with the maintenance of features that are 

unique to each memory. Finally, to more closely target consolidation processes, we 

investigated the relationship between the restructuring of overlapping memories and changes 

in functional connectivity during rest periods after learning.

Results

Memory performance

On average, participants correctly chose the scene studied with the object cue for 94.2% 

(SD: 6.0%) of the recently learned pairs, and for 54.1% (SD: 14.6%) of the remotely learned 
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pairs. As expected, participants' performance was significantly better for recent compared to 

remote memories (t(21)=15.05, p<10 × 10−13) but, importantly, the percentage of correctly 

recalled scenes was significantly greater than chance (25%) for both retrieval tests (recent: 

t(21)=38.16, p<0.001; remote: t(21)=8.79, p<0.001; Figure 1C). Object recognition was 

computed with d′. Recognition was above chance (50%) both for recent memories (mean d

′: 6.28, SD: 1.28; t(21)=22.93, p<0.001) and for remote memories (mean d′: 2.31, SD: 1.28; 

t(21)=13.81, p<0.001). As with cued recall, object recognition was also significantly greater 

for recent memories relative to remote memories (t(21)=17.92, p<0.001).

Retrieval similarity over time

To examine the consolidation-dependent reorganization of overlapping memory 

representations, two measures of retrieval similarity were calculated during both recent 

(immediately after encoding) and remote (1 week after encoding) cued associative retrieval 

(Figure 2). The multivariate pattern of activation evoked by each trial-unique object during 

retrieval was correlated with (1) the patterns of all other objects studied with the same scene 

(overlapping similarity) and (2) the patterns of all other objects studied with a different 

scene (non-overlapping similarity). These two correlations were computed separately for 

each object whose scene was confidently remembered (HC correct) in each retrieval session.

To ask whether mPFC comes to represent commonalities across memories, we first defined a 

region in mPFC modulated by retrieval of remote memories. To do this, we performed a 

univariate analysis that indexed activation during the remote retrieval session (Figure S1A). 

Voxels in this mPFC region exhibited greater activation during successful retrieval of remote 

memories relative to unsuccessful attempts at retrieval. We then submitted participants' 

retrieval similarity in this region to a 2 (Time: recent, remote) × 2 (Overlap: overlapping, 

non-overlapping) repeated-measures ANOVA, limiting the analysis to HC correct trials. This 

revealed a main effect of overlap (F(1,18)=5.62, p=0.03), qualified by an interaction between 

time and overlap (F(1,18)=7.33, p=0.01; Figure 3A). This interaction was driven by greater 

similarity amongst overlapping memories relative to non-overlapping memories during 

remote retrieval (t(18)=2.55, p=0.02), and no difference in retrieval similarity during recent 

retrieval (t(18)=0.79, p=0.45). The finding that mPFC shows greater similarity in retrieval 

patterns across overlapping memories compared to non-overlapping memories only after a 

week suggests that over time, neural patterns of memories in mPFC become organized 

according to their commonalities with other memories.

The same 2 × 2 ANOVA also revealed an interaction in bilateral hippocampus (F(1,18)=4.89, 

p=0.04, Figure 3C). Interestingly, this interaction was also driven in part by a trend for 

decreased retrieval similarity for overlapping relative to non-overlapping trials (t(18)=−1.78, 

p=0.09) during recent retrieval, perhaps suggestive of pattern separation of overlapping 

memories immediately. There was no reliable difference between overlapping and non-

overlapping similarity for remote memories (t(18)=1.66, p=0.11). A 2 (Overlap: overlapping, 

non-overlapping) × 2 (Time: recent, remote) × 2 (Hemisphere: right, left) ANOVA revealed 

no interaction with hemisphere (Table 1), suggesting that the relationship between feature 

overlap and time does not differ significantly in the right or left hippocampus.
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There is a growing interest in functional specialization along the long axis of the 

hippocampus (Poppenk et al., 2013). In particular, past work suggests that anterior 

hippocampus is more involved in integrative computations while the posterior hippocampus 

is more likely to represent specificity in the environment. Based on this research, we 

investigated whether there were corresponding differences in retrieval similarity across the 

long axis of the hippocampus. We computed a 2 (Overlap: overlapping, non-overlapping) × 

2 (Time: recent, remote) × 2 (Region: anterior, posterior) ANOVA and found an interaction 

between region and time (F(1,18)=6.11, p=0.02) in addition to a strong interaction between 

overlap and time (F(1,18)=20.93, p<0.001; Table 1). To unpack these effects, we computed a 

2 (Overlap: overlapping, non-overlapping) × 2 (Time: recent, remote) ANOVA separately for 

patterns in anterior and posterior hippocampus. In posterior hippocampus, there was a no 

main effect of time (F(1,18)=2.50, p=0.13) and a main effect of overlap (F(1,18)=11.93, 

p=0.002), qualified by an interaction (F(1,18)=19.72, p<0.001). This interaction was driven 

by greater overlapping similarity relative to non-overlapping similarity for remote 

(t(18)=4.13, p<0.001) but not recent (t(18)=0.02, p=0.98) memories, and greater retrieval 

similarity for remote trials relative to recent trials that were overlapping (t(18)=2.96, 

p<0.001) but not non-overlapping (t(18)=0.22, p=0.83). Thus, posterior hippocampus looked 

qualitatively similar, but with stronger effects, than the results from the whole hippocampus.

In anterior hippocampus, there was a marginal main effect of time (F(1,18)=3.42, p=0.08) and 

a main effect of overlap (F(1,18)=7.71, p=0.01), qualified by an interaction (F(1,18)=8.10, 

p=0.01). Consistent with posterior hippocampus and mPFC, retrieval similarity was 

significantly greater for overlapping relative to non-overlapping items for remote (t(18)=3.06, 

p=0.006) but not recent (t(18)=−0.34, p=0.74) memories. However, in contrast to these other 

regions, retrieval similarity in anterior hippocampus decreased over time for non-

overlapping trials (t(18)= −2.82, p=0.01) but not overlapping trials (t(18)=−0.72, p=0.48).

We next asked whether the time-dependent reorganization across memories was selective to 

mPFC and hippocampus, or if other brain regions, specifically those in the classic retrieval 

network (Rugg and Vilberg, 2013), showed similar results. We chose posterior medial cortex 

(PMC), a critical region in the recollection network that has been shown to reinstate 

encoding patterns during retrieval (Bird et al., 2015; Kuhl et al., 2011; Long et al., 2016; 

Chen et al., 2017) to serve as a control region. Critically, we defined this region from the 

same contrast as the mPFC ROI. We applied the same 2 (Overlap: overlapping, non-

overlapping) × 2 (Time: recent, remote) ANOVA to HC correct trials and found no effects or 

interactions (all F's<0.05, all p's>0.82, Figure 3B). Importantly, because we defined PMC 

from the same contrast as mPFC, this finding serves as an effective control and suggests that 

using this particular univariate contrast did not bias our multivariate results. When we 

expanded this region to include all voxels in PMC regardless of retrieval success, there were 

still no effects of time or overlap (all F's<0.2.37, all p's>0.14). Thus, while PMC was more 

engaged during successful remote retrieval relative to unsuccessful attempts, patterns of 

activation in this region did not reflect overlap, as was observed in mPFC and hippocampus.

Prior work has demonstrated that univariate activation in mPFC and hippocampus changes 

with consolidation (Takashima et al., 2006; Sterpenich et al., 2007). Based on this, we 

examined whether overall univariate activation in these regions was related to, or could 
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explain, the changes in similarity that emerged over time. We found no significant 

differences in activation during successful retrieval over time (Figure S1B, S1C). 

Furthermore, activation did not reliably influence the relationship between retrieval 

similarity, overlap, and time (Table S1). Finally, all pair-wise tests of retrieval similarity 

were confirmed with non-parametric permutation tests (Table S2).

The cued retrieval task required successful retrieval of the scene that was associated with 

each target object. Thus, it is unclear whether the time-dependent changes in retrieval 

similarity track how strategic retrieval processes change over time, or whether they might 

still be evident without demands on associative retrieval. To examine this, we computed the 

same similarity analyses on object recognition trials, where reactivation of the overlapping 

scene is not required or necessary to perform the task. We found a similar but weaker pattern 

of effects in the hippocampus and mPFC (Figure S2, Table S3). This suggests that retrieval 

similarity in this experiment is sensitive to a mixture of information: signal corresponding 

perhaps more to the memory trace itself, as well as signal corresponding to the explicit 

retrieval of the corresponding scene image.

Encoding similarity

In prior work using the associative inference (AB-BC) paradigm, memory representations in 

the hippocampus have been shown to be reinstated when encoding a new event that contains 

features from a prior event (Schlichting et al., 2014). While we did not observe difference in 

retrieval similarity across recent memories, there is still the possibility that this effect 

emerged during learning and contributed to the remote retrieval effects. To assess this 

possibility, we computed overlapping and non-overlapping similarity across encoding. We 

found evidence of pattern separation signals in hippocampus – specifically, greater non-

overlapping similarity relative to overlapping similarity – and no effects in mPFC. 

Furthermore, encoding similarity did not relate to retrieval similarity on a trial-by-trial basis 

(Figure S3).

However, past work using similar approaches has found that other regions are able to 

represent overlapping memories during encoding (Xue et al., 2010; Ward et al., 2013; Xiao 

et al., 2017) or during retrieval immediately after (Kuhl and Chun, 2014). To find evidence 

for this in our own experiment, we examined pattern similarity in PPA, a ventral temporal 

region that codes for scene information (Epstein and Kanwisher, 1998), and in exploratory 

searchlights. We found that visually-sensitive regions exhibited greater similarity for 

overlapping trials relative to non-overlapping trials, with no reliable changes over time 

(Figure S4, Table S4). This hints at how different features of memories may be represented 

in distinct regions: regions that may be more sensitive to specific visual content show 

evidence of representational overlap at both recent and remote time points, but memory 

representations in the hippocampus and mPFC appear to undergo transformations and come 

to represent overlap in memory more strongly after a delay.

Episodic reinstatement during retrieval

Past research has found that encoding-retrieval similarity (ERS), measured as the similarity 

between the neural pattern of a paired associate during encoding and the pattern evoked by 
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its successful retrieval, has been related to successful memory retrieval (Staresina et al., 

2012; Ritchey et al., 2013; Tompary et al., 2016). Our results so far show that memories 

become reorganized with time, raising the question of whether encoding patterns associated 

with each memory are still reinstated during remote retrieval despite such reorganization. To 

address this question, we computed ERS for each object-scene pair by correlating each trial's 

encoding pattern, averaged across the three encoding presentations, with the pattern evoked 

by its later retrieval (‘same-memory ERS’). To identify the extent to which ERS reflects 

reinstatement signals that may be shared across different memories, we correlated the 

average correlation between the pattern of each retrieval trial and all patterns of encoding 

trials that shared the same scene (‘same-scene ERS’). By comparing these two measures, we 

were able to isolate the extent to which memory-specific information is reinstated during 

retrieval (Figure 4A, left). Based on past findings that episodic memory representations are 

reinstated specifically in the right hippocampus (Mack and Preston, 2016; Tompary et al., 

2016), we examined whether neural patterns in right hippocampus remained sensitive to the 

reinstatement of individual memories after a week.

We first focused on remote retrieval. A 2 (Accuracy: HC correct, incorrect) × 2 (ERS: same-

memory, same-scene) ANOVA revealed an interaction between accuracy and ERS 

(F(1,18)=5.94, p=0.03), and a trend for a main effect of accuracy (F(1,18) =3.59, p=0.07) but 

not ERS (F(1,18)=0.42, p=0.52; Figure 4A, right). The interaction was driven by greater 

same-memory ERS for remembered pairs relative to forgotten pairs during remote retrieval 

(t(18)=2.25, p=0.04), consistent with the past work described above. Furthermore, the 

interaction was driven by greater same-memory ERS relative to same-scene ERS in 

remembered pairs (t(18)=2.47, p=0.02), suggesting that the right hippocampus exhibits 

memory-specific reinstatement at this time point.

To investigate whether there were changes in successful memory reinstatement over time, 

we computed all ERS values for HC correct trials into a 2 (Time: recent, remote) × 2 (ERS: 

same-memory, same-scene) ANOVA. We found a trending interaction between time and 

ERS (F(1,18)=3.36, p=0.08), a trending main effect of ERS (F(1,18)=4.14, p=0.06), and no 

effect of time (F(1,18)=0.09, p=0.77). Like in the above paragraph, this interaction was driven 

by greater same-memory ERS than same-scene ERS for remote memories (t(18)=2.47, 

p=0.02) but not recent memories (t(18)=0.11, p=0.91). Interestingly, there was also a reliable 

decrease in same-scene ERS over time (t(18)=2.68, p=0.02), but no reliable difference in 

same-memory ERS over time (t(18)= −0.75, p=0.46).

The modulation of memory-specific ERS by remote memory in right hippocampus remained 

significant when accounting for variability in univariate activation across trials (Table S5) 

and was not driven by variability in the number of trials in each condition across participants 

(Table S6). By contrast, in left hippocampus, mPFC, and PMC, ERS was not modulated by 

remote memory success and did not differ between recent and remote retrieval (all p's>0.34). 

When considered with the retrieval similarity, these findings suggest that the hippocampus 

continues to reinstate details of individual memories, while also representing structure across 

memories.
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Relationship between retrieval similarity and ERS

Interestingly, the hippocampus showed evidence both for memory-specific reinstatement and 

for the consolidation-dependent reorganization of related memories. To directly assess the 

relationship between these two effects in the hippocampus, we entered trial-level estimates 

of memory-specific ERS (same-memory – same-scene), time (recent, remote), and retrieval 

similarity (overlapping – non-overlapping) into a mixed-effects linear regression. For both 

anterior and posterior hippocampus, this model revealed an interaction between ERS and 

time (anterior: χ2=7.42, p=0.006, posterior: χ2=8.66, p=0.003, Figure 4B). Focusing on 

remote memory, we found an inverse relationship between ERS in right hippocampus and 

retrieval similarity in both anterior and posterior hippocampus (anterior: χ2=5.32, p=0.02, 

posterior: χ2=5.44, p=0.02), such that trials with greater ERS in right hippocampus 

exhibited a smaller difference in retrieval similarity for overlapping relative to non-

overlapping memories. This relationship was not apparent when applying the same model to 

recent memory (anterior: χ2<0.001, p=0.99, posterior: χ2=0.085, p=0.77), and ERS in right 

hippocampus did not relate to restructuring in mPFC (χ2=0.016, p=0.90). These findings 

highlight a potential trade-off between memory-specific reinstatement, perhaps reflecting the 

fidelity of detailed episodic recovery, and consolidation-dependent memory restructuring 

evident across related memories. Such a trade-off suggests that that over time, memories 

whose patterns more closely match their initial encoding state may be less likely to be 

integrated with related memories.

Relationship between retrieval similarity and rest connectivity

Prior work has shown that early indicators of memory consolidation can be measured during 

immediate post-encoding rest periods (Tambini et al., 2010; 2013; Schlichting and Preston, 

2014; Tompary et al., 2015). Thus, we aimed to test to what extent post-encoding 

connectivity may be related to long-term memory reorganization. Our first approach was to 

query whether there were global changes in connectivity with the hippocampus and mPFC 

as a result of encoding. To do this, we conducted exploratory seed analyses by entering the 

average timecourses of hippocampal and mPFC activation into separate voxel-wise GLMs 

for each rest scan. When comparing post-encoding connectivity (averaged over the three 

post-encoding rest scans) against baseline pre-encoding connectivity, we found evidence for 

significant increases in hippocampal connectivity with regions including but not limited to: 

left middle frontal gyrus, left inferior frontal gyrus, and left lateral occipital cortex (Figure 

5B, left). There were also increases in mPFC connectivity with anterior cingulate gyrus, left 

supramarginal gyrus, and others (Figure 5B, right). For a full list of regions identified in 

these two analyses, see Table S7.

Having established that encoding induced lingering changes in connectivity with these 

regions during rest, we developed a more targeted ROI-based approach to identify whether 

such encoding-related changes in rest connectivity related to changes in retrieval similarity 

over time. To do this, we correlated the timecourse of activation between the hippocampus 

(whole, anterior, and posterior) and mPFC before and after encoding for each participant 

(Figure 5A). We then related the change in connectivity after encoding (post-encoding – pre-

encoding) to the difference in retrieval similarity (overlapping – non-overlapping) across 

participants. This approach revealed a positive correlation between mPFC-anterior 
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hippocampus connectivity and retrieval similarity in anterior hippocampus (Figure 5C). This 

relationship was present for remote memories (r(17)=2.56, p=0.02) and not recent memories 

(r(17)=−0.04, p=0.96). Specifically, participants with a greater increase in mPFC-anterior 

hippocampus connectivity immediately after learning exhibited a greater difference in 

similarity for overlapping versus non-overlapping memories (i.e. more restructuring) after a 

week. This relationship between connectivity and retrieval similarity was numerically but 

not significantly greater for remote memories relative to recent (William's Test: t(18)=1.66, 

p=0.11). No other ROI pairs exhibited a relationship between connectivity and remote 

retrieval similarity (all p's>0.26).

Together these exploratory findings suggest that immediate post-learning changes in 

connectivity may reflect a consolidation mechanism that plays an active role in shaping 

memories over time, in a way that prioritizes their commonalities.

Discussion

In the present study, we examined how representations of individual memories are 

transformed with consolidation. We found that memory representations in medial prefrontal 

cortex and in the hippocampus came to represent commonalities across memories only after 

a period of consolidation. Specifically, the neural patterns evoked during retrieval of 

overlapping memories were more similar to each other relative to patterns evoked by non-

overlapping memories. Critically, this was evident only for memories retrieved one week 

after encoding. At the same time, reinstatement of encoding patterns was still evident in 

right hippocampus at one week, as indexed by greater encoding-retrieval similarity (ERS) 

for object-scene pairs remembered with high confidence relative to forgotten pairs.

These findings provide evidence in support of the theory that cortical regions come to store 

an extracted and transformed version of episodic memory traces over time (McClelland et 

al., 1995; Winocur et al., 2010). To date, most consolidation research supporting this theory 

has shown that mPFC becomes increasingly engaged during remote versus recent retrieval, 

such that there is greater activation in mPFC and greater mPFC-hippocampal connectivity 

when retrieving consolidated memories relative to newly formed ones (Sterpenich et al., 

2007, 2009, Takashima et al., 2006, 2007; Sweegers et al., 2014). Additionally, one study 

has shown that personal autobiographical memories can be successfully decoded in ventral 

mPFC, with greater accuracy for older compared to newer memories (Bonnici et al., 2012). 

Taken together, this past research provides compelling evidence of the growing involvement 

of cortical regions in storing and retrieving memories over the course of consolidation. 

However, little was known about whether this transformation is sensitive to the content of 

memories and whether memories with featural overlap are represented differently than 

memories without overlap. Here, we show that mPFC represents the central tendencies 

across episodic experiences, but only after a period of consolidation.

We also found greater similarity for overlapping memories relative to non-overlapping 

memories in the hippocampus, and, again, this difference was only present for remote 

memories. This finding is striking given theoretical and empirical work concerning the 

function of the hippocampus in memory consolidation. Most theories posit that the 
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hippocampus orthogonalizes incoming information in order to avoid interference from 

related past experiences (O'Reilly and McClelland, 1994). Indeed, there is now a growing 

body of evidence for pattern separation signals in the hippocampus during encoding 

(Leutgeb et al., 2007; Bakker et al., 2008; LaRocque et al., 2013; Favila et al., 2016; 

Chanales et al., 2017) and work showing that variability in neural patterns across repeated 

testing is related to long-term retention (Wirebring et al., 2015). In the present experiment, 

hippocampal similarity across encoding was lower for overlapping trials relative to non-

overlapping trials, consistent with this theoretical and empirical work. On the other hand, 

Cohen and Eichenbaum's relational memory theory (1993) hypothesizes that the 

hippocampus may support access to related memories through relational ‘nodes’ or neural 

ensembles that link overlapping memories. Research consistent with this theory finds that 

retrieval of overlapping memories is associated with hippocampal univariate activation 

during transitive inference (Heckers et al., 2004; Greene et al., 2006) and associative 

inference tasks (Preston et al., 2004) with greater activity for trials with features that 

overlapped with prior encoding trials. One potential explanation for why this is not evident 

in our results is that the difference in the necessity or expectation of integration at encoding 

may dictate whether stimuli are integrated or separated (Richter et al., 2016). Another factor 

that may bias encoding processes towards integration is the memory strength of past 

overlapping episodes. For instance, in an associative inference design, Schlichting and 

colleagues (2015) found that neural patterns in a hippocampal cluster was biased towards 

integration only if the AB pairs were strongly learned in a separate block before participants 

were presented with BC pairs. Interestingly, in our study, encoding patterns in the 

hippocampus represented overlapping memories more distinctively than non-overlapping 

memories, but then after a week of consolidation, retrieval patterns came to reflect 

integration. More work is needed to reconcile discrepancies between separation and 

integration signals in the hippocampus during encoding and how and when such signals may 

shift over the course of consolidation.

What time-dependent mechanisms may support the restructuring of overlapping memories? 

One possibility is that through active consolidation mechanisms, such as coordinated replay 

of memories in hippocampus and cortex, the associative links across memories with shared 

features may become strengthened. This strength could emerge through the distribution and 

representation of these links in cortical regions (Figure 6, bold lines). While few studies to 

date have investigated what dictates the reactivation or replay of specific features of 

memories, it may be that the overlapping components across different memories are 

prioritized over one-time, episode-specific features. The findings from the present 

experiment provide preliminary evidence for such a mechanism, as measured by changes in 

connectivity during periods of awake rest. Specifically, we found that connectivity with the 

hippocampus and mPFC was strengthened after encoding, relative to a pre-encoding 

baseline. Further, across participants, the encoding-related change in connectivity between 

mPFC and anterior hippocampus related to the representation of overlap in anterior 

hippocampal after one week. This suggests that restructuring of memories over time may be 

driven in part by consolidation mechanisms.

Forgetting may also play a role. Specifically, forgetting of unique details that differentiate 

related events may also result in the merging of overlapping memories over time. Such 
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episode-unique features may be more likely to be represented in the hippocampus (Figure 6, 

faded dots). Selective forgetting of these details may be adaptive because it enables the 

creation of models of past experiences that are not over-fitted; rather, by selectively retaining 

overlapping information and forgetting episode-unique information, our past experiences 

can be sculpted into a less detailed but more generalizable model that can inform decisions 

about new experiences in the current environment (Richards and Frankland, 2017). However, 

the fact that we see immediate increases in post-encoding connectivity that relate to memory 

restructuring in hippocampus at one week suggests that measurable, active consolidation 

processes also play a role. Most likely, both consolidation mechanisms and selective 

forgetting work together to shape memories over time, but future work is needed to measure 

the how each of these processes separately contributes to time-dependent changes in long-

term memory representations.

We also found evidence that neural patterns in right hippocampus, but not the mPFC, 

reflected the successful reinstatement of episodic memories after one week of consolidation. 

This finding extends the growing body of work using encoding-retrieval similarity (ERS) 

approaches to assess episodic reinstatement during memory retrieval in the hippocampus 

(Mack and Preston, 2016; Tompary et al., 2016) as well as in sensory regions across cortex 

(Johnson et al., 2009; Staresina et al., 2012; Ritchey et al., 2013; Kuhl and Chun, 2014; 

Danker et al., 2016). Furthermore, by computing ERS in addition to similarity across 

retrieval, we were able to quantify different aspects of representational information for each 

memory. The comparison of these two measurements revealed an interesting trade-off within 

remote memories: episodes whose neural patterns during retrieval better matched their initial 

encoding experience exhibited lower similarity with other overlapping memories. This 

consolidation-dependent trade-off between episodic reinstatement and the merging of related 

memories with consolidation in the hippocampus raises interesting questions concerning 

how different elements of memories are shaped with consolidation.

Moreover, these two processes may operate independently, such that the relative strength of 

memory traces in hippocampus and cortex determine the elements of memory that can be 

retrieved, as predicted by trace transformation theory (Winocur et al 2010). For example, 

neural patterns in the hippocampus are able to support successful decoding of vivid and 

perceptually rich autobiographical memories for at least 10 years (Bonnici et al., 2013), 

suggesting that the hippocampus retains some differentiated episodic information well after 

encoding. At the same time, schema research provides additional evidence for the idea that 

stronger cortical representations come to represent generalized memories. Anatomically, the 

ventral aspect of the mPFC region reported in our experiment partially overlaps with several 

other clusters found to be involved in schema-supported processing (van Kesteren et al., 

2010a, 2014). In this body of work, mPFC activation during encoding is enhanced for 

content belonging to a schema (van Kesteren et al., 2010b, 2014; Bein et al., 2014) and is 

modulated by the retrieval of schematic information (van Kesteren et al., 2010a). While 

these studies do not consider how schematic memory interacts with episodic reinstatement, 

recent neuropsychological studies have demonstrated that damage to ventral mPFC reduces 

the schematic influence of associated information during episodic memory tests (Warren et 

al., 2014; Spalding et al., 2015), suggesting that ventral mPFC plays a necessary role in 

modulating episodic memory reinstatement for recent experiences. Future work, ideally 
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using behavioral tests that are sensitive to the recovery of different elements of episodic 

memories, is necessary to investigate whether and how reinstatement of unique details in the 

hippocampus would interfere with the retrieval of more generalized, flexible information 

represented in the hippocampus and in cortex.

One limiting factor in our experiment stems from the comparison of high-confident correct 

memories retrieved immediately after encoding versus after a week delay. Memories 

retrieved immediately after encoding may be a mix of strong and weak memories, some of 

which would have been forgotten if they had been tested a week after encoding. In contrast, 

memories that were successfully retrieved after a week were likely limited to those that were 

the strongest and most enduring. With the present design, it is unclear whether the stronger 

memories retrieved immediately after encoding might also show evidence for overlap (e.g. 

exhibit greater overlapping versus overlapping similarity). If this were the case, an argument 

could be made that only traces of strong memories show representational overlap, without 

undergoing any time- or consolidation-dependent transformations. Alternatively, it may be 

that retrieval strength alone is not related to the representation of overlap, and instead some 

consolidation-dependent transformation is necessary for this representation to emerge. 

Indeed, one could argue that the strongest memories may be those with the most distinctive 

episodic content and hence be less likely to show overlap with other related memories. More 

research is needed to adjudicate between these two interpretations.

We found that over time, memory representations in anterior and posterior hippocampus 

diverged, such that after a week of consolidation, neural patterns of non-overlapping 

memories were less similar in anterior hippocampus, while neural patterns of overlapping 

memories were more similar in posterior hippocampus. This finding is difficult to reconcile 

with some recent findings implicating anterior hippocampus in memory integration, not 

separation. In humans, anterior hippocampus exhibits greater activation during the encoding 

(Shohamy and Wagner, 2008) and retrieval of overlapping associations (Heckers et al., 2004; 

Preston et al., 2004; Greene et al., 2006). Furthermore, neural patterns in anterior 

hippocampus have been shown to reflect learning of overlapping and sequential associations 

(Schapiro et al., 2012; Schlichting et al., 2015). In rodents, receptive fields in dorsal 

hippocampus are smaller than ones found in ventral hippocampus (Kjelstrup et al., 2008). 

Taken together, this research suggests that anterior hippocampus may be more involved in 

integrative computations while the posterior hippocampus represents specificity in the 

environment (Poppenk et al., 2013). However, our results are more consistent with theories 

that situate hippocampal computations within larger functional networks. Anatomically, 

perirhinal cortex (PRC) and parahippocampal cortex (PHC) show preferential connectivity 

with anterior and posterior hippocampus, respectively, through connections with lateral and 

medial entorhinal cortex (Burwell and Amaral, 1998; Suzuki and Amaral, 1994; Witter et 

al., 2000). A model of medial temporal lobe function based on this anatomy suggests that 

anterior hippocampus and PRC are part of a larger anterior-temporal network that is 

sensitive to specific items, concepts and their salience, while posterior hippocampus and 

PHC are part of a larger posterior-medial network that may be more sensitive to spatial and 

temporal contexts (Davachi, 2006; Ranganath and Ritchey, 2012). Within this framework, 

one may predict a greater sensitivity to distinct features of memories in anterior 

hippocampus, and a bias towards representing overlapping information in posterior 
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hippocampus, particularly when the overlapping information content are scenes - consistent 

with our findings. While these exploratory anterior-posterior differences should be 

interpreted with caution, they are suggestive of two opposing functions within the 

hippocampus that may drive the emergence of structure across memories: integration of 

related memories and separation of distinct memories.

In summary, the present results demonstrate that neural representations of related memories 

merge with consolidation. These findings raise new questions about the features of episodic 

memories that are prioritized by consolidation mechanisms. While more work on this topic 

needed, we suggest that the reorganization of overlapping memory representations may play 

an important role in the creation of structured general knowledge.

Star Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Lila Davachi (ld44@nyu.edu).

Experimental Model and Subject Details

Participants—Twenty-two students from New York University (10 female, mean age: 

26.8, range: 21 – 34) participated in the experiment. All participants were right-handed 

native English speakers with normal or corrected to normal vision. The New York University 

Institutional Review Board approved all consent protocols.

Method Details

Experiment design—Participants completed two fMRI sessions separated by one week. 

In the first session, participants were scanned while encoding pairs of objects and scenes, 

and then performing object recognition and scene recall tests for half of the pairs. In the 

second session one week later, they completed the same recognition and recall tests on the 

other half of the pairs (Figure 1A).

Encoding—Participants were presented with images of 128 objects, each paired with one 

of four scenes: beach, city, bedroom or jungle (Figure 1B). They were explicitly instructed 

to associate each object-scene pair by vividly imagining the object interacting in the scene. 

The object-scene pairings were randomized across participants, and the order of the pairs 

was pseudo-randomized such that no back-to-back pair shared the same scene. Participants 

studied each pair three times across encoding, split across six encoding scans. Each 

presentation of all 128 pairs was pseudo-randomly divided over two 10.5 m scans, such that 

the number of trials containing each scene associate was equated across the two scans. 

Participants viewed each pair for 3 s, and then rated the vividness of their mental image on a 

scale of 1 to 4 (1: ‘not vivid’, 4: ‘very vivid’) using an MRI-compatible button box. The 

response mappings were counterbalanced across participants. Participants were given the 

option of pressing the thumb button to indicate that they failed to create a vivid scenario of 

the object in the scene. The response window lasted for 2 s and was followed by a jittered 

fixation period lasting 3, 4.5 or 6 s.

Tompary and Davachi Page 14

Neuron. Author manuscript; available in PMC 2018 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rest scans—The experiment began with an 8 m baseline rest scan, followed by the first 

presentation of the pairs across two encoding scans. Each of the three presentations of the 

stimulus set was followed by another 8 m resting state scan, for a total of 6 encoding scans 

interleaved with 4 rest scans. During the rest scans, participants fixated a small black dot in 

the center of a gray screen and were instructed to remain awake and think about whatever 

they like.

Object recognition—After the final rest scan, participants completed an object 

recognition test in two 10.5 m scans. They viewed 64 of the encoded objects intermixed with 

64 novel foils and were asked to endorse each object as old or new. The five response 

options included a measure of confidence (‘confident old’, ‘unsure old’, ‘unsure new’, 

‘confident new’, ‘don’t know') and the response mappings were counter-balanced across 

participants. On each trial, the object cue was presented for 3 s, and then the response 

options were displayed during a 2 s window. Each trial was followed by a jittered fixation 

period ranging from 3 to 6 s. All trials included in the retrieval and recognition similarity 

findings were correctly recognized during this test (with trials included in retrieval similarity 

analyses requiring high-confident scene retrieval in addition to successful recognition).

Scene recall—The object recognition task was followed by the scene recall task, which 

comprised two 6 m scans. Participants viewed 64 of the encoded objects and were asked to 

choose which of the four scenes had been associated with each object. As in the object 

recognition, the stimulus presentation lasted for 3 s. During the following 2 s response 

window, participants viewed a prompt with the response options (‘beach’, ‘city’, ‘bedroom’, 

‘jungle’, ‘don’t know'), which were counter-balanced across participants. After this 

response, participants were prompted to judge the confidence of their choice on a scale of 1 

to 4 (1: ‘not confident’, 4: ‘very confident’). These responses were collapsed into two bins 

(1-2: low-confident, 3-4: high-confident). This second response window lasted for 2 s and 

was followed by a jittered fixation period ranging from 3 to 6 s.

Remote retrieval session—Participants returned to the scanner one week later and 

completed the object recognition and scene recall tasks on the other 64 object-scene pairs 

that had not been tested in the first session. All timing, test order, and stimulus presentation 

parameters were identical to the memory tests from the first session.

Participants then completed two 10 m localizer scans. During the localizer scans, 

participants viewed 5 blocks each of faces, scenes, objects and scrambled images. Each 

block contained 12 images that appeared on screen for 1.5 s. Two out of every 12 images 

repeated back-to-back, and participants were instructed to press a button when they noticed 

an immediate repetition of any image. The order of the blocks was randomly generated for 

each participant and each block was separated by a 12 s fixation period.

fMRI parameters—All scanning was performed using a 3T Siemens Allegra MRI system 

with a whole-head coil. Visual stimuli were projected onto a screen that was viewed through 

a mirror attached to the participant's head coil. Functional echo-planar imaging (EPI) scans 

were oriented to intersect the anterior and posterior commissures (2000-ms TR, 15-ms TE, 

flip angle=82°, FOV=192×240, 34 slices, 3-mm isotropic voxels). For both sessions, a 
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customized calibration scan was collected using the same slice prescription as the EPI scans 

for use as an in-plane spin-density image as well as an estimate of any inhomogeneities in 

the magnetic field. At the end of the second scan, a T1-weighted magnetization-prepared 

rapid-acquisition gradient echo (MPRAGE) sequence (1 mm isotropic voxels, 176 sagittal 

slices) was collected.

Preprocessing—All scans underwent the same preprocessing steps using FSL (FEAT: 

http://www.fmrib.ox.ac.uk/fsl). The first 6 volumes of each EPI were discarded to allow for 

scanner stabilization. Then, each scan was slice-time corrected, realigned to correct for 

motion within each run, and smoothed. Data to be used for similarity analyses were 

smoothed with a 3mm FWHM Gaussian kernel. For data to be used in univariate or 

connectivity analyses, a 6mm kernel was applied. The data were high-pass filtered at 0.01 

Hz to remove low-frequency drifts in signal.

Regions of interest—We identified mPFC and PMC using a univariate contrast at remote 

retrieval, which identified voxels with greater activation for high-confident (HC) correct 

relative to incorrect trials (see Supplemental Data). PMC was further constrained by 

masking the voxels in this contrast by the PMC region defined by a probabilistic atlas 

(Shirer et al., 2012; Chen et al., 2016). Bilateral hippocampus was anatomically defined 

using FSL's automatic subcortical segmentation protocol (FIRST). The hippocampus was 

segmented along its long axis by dividing the number of coronal slices in each hemisphere 

into three sections. The most anterior third of the coronal slices was designated as anterior 

hippocampus, and the most posterior third of the coronal slices was designated as posterior 

hippocampus. The localizer scans were used to functionally define PPA (see Localizer 

section of Methods). All ROIs were resampled, masked to exclude voxels outside of the 

brain, and aligned with the functional volumes.

Quantification and Statistical Analysis

Retrieval activation—To investigate how univariate activation related to successful 

retrieval over time, the retrieval scans were entered into to voxel-wise GLMs (FEAT). Trials 

were modeled with 3 s boxcars locked to the onset of each trial and convolved with FEAT's 

hemodynamic response function (HRF). Three regressors were included in each GLM to 

account for source recall accuracy: (1) high-confident correct responses, (2) low-confident 

correct responses, and (3) incorrect, missing, or ‘don’t know' responses. To account for 

potential artifacts from head motion, the 6 motion regressors derived from the motion 

correction procedure were included in each GLM along with their temporal derivatives, as 

well as stick function regressors to account for sudden head movements. These stick 

functions were generated by FSL's Motion Outliers algorithm, which identifies large 

displacements in head position by measuring the difference in intensity between each 

volume and the preceding volume.

The resulting statistical maps were aligned to MNI space by concatenating a rigid-body 

transformation from each functional run to the participant's MPRAGE with a non-linear 

transformation from the MPRAGE to MNI space with a 10 mm warp resolution. These 

aligned images were entered into group-level analyses and corrected for multiple 
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comparisons using cluster-mass thresholding (p<0.05, cluster-forming threshold z=2.3). 

Average t values were extracted across all ROIs separately for the recent and remote retrieval 

sessions.

Localizer—Two localizer scans were used to functionally define PPA. Each scan was 

entered into a voxel-wise GLM with regressors corresponding to the four categories of 

stimuli, their temporal derivatives, and the same motion regressors that were derived for 

retrieval scans. Each of the four regressors of interest was modeled as 18 s boxcars locked to 

the onset of each block and convolved with Feat's HRF. Parameter estimates from the two 

scans were averaged together. Bilateral PPA was defined from a contrast of scenes>faces 

within each participant. Each ROI was created by growing an 8-mm sphere around the most 

scene-selective voxel in each hemisphere of the posterior parahippocampal gyrus.

Pattern similarity estimates—All preprocessed encoding, recognition, and retrieval 

scans were modeled in separate GLMs in each participant's native space. For each trial, a 

separate regressor was generated, using a 3 s boxcar at the onset of the trial and convolved 

with Feat's HRF (Mumford et al., 2012). This resulted in 2 GLMs each for remote retrieval, 

recent retrieval, recent recognition, and remote recognition, each with 32 boxcar regressors, 

and 6 GLMs for encoding, each with 64 boxcar regressors. For recognition scans, an extra 

regressor was included, with 3 s boxcars that corresponded to the onsets of all novel foils in 

each run. The equivalent regressors that were included to account for head motion in the 

univariate activation GLMs were included in these models as well.

This procedure resulted in a separate map of t values for each trial during encoding, 

recognition, and retrieval. Then, for each trial, the resulting spatial pattern of activity across 

each ROI was extracted into a vector and z-scored. Similarity between different vectors was 

computed using Pearson correlations. All correlations were Fisher-transformed prior to 

statistical testing. Four measures of pattern similarity were computed: retrieval similarity 

(correlations amongst retrieval patterns), recognition similarity (correlations amongst 

recognition patterns), encoding similarity (correlations amongst encoding patterns), and 

encoding-retrieval similarity (correlations between encoding patterns and retrieval patterns).

Retrieval similarity—Retrieval similarity was computed for every HC correct retrieval 

trial whose corresponding object was also correctly recognized. Each trial's retrieval vector 

was correlated with (1) the retrieval vectors of all other objects with a shared scene 

(overlapping similarity), and (2) the retrieval vectors of all objects with a different scene 

(non-overlapping similarity). The resulting r values were then averaged to create one 

measure of overlapping similarity and one measure of non-overlapping similarity for each 

trial. To avoid inflated correlations as a function of temporal proximity with each scan 

(Mumford et al., 2014), correlations were limited to trials occurring in different scans.

These correlations were calculated separately for objects presented in each retrieval period 

(recent and remote). Importantly, only objects that were successfully recognized and whose 

scenes were recalled with high confidence were included in this analysis. Low-confident 

correct trials were excluded because at the group level, low-confident responses were more 

likely to be incorrect than correct during remote retrieval (t(18)=−3.39, p<0.01), and were 
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equally likely to be correct relative to incorrect during recent retrieval (t(18)=0.36, p=0.92), 

suggesting that some unknown proportion of the low-confident correct responses were not 

based on intact memory and instead were guesses. Recognition similarity was computed in 

the same way as retrieval similarity, but instead included all recognition trials where 

participants endorsed the target object as ‘old’ with high confidence.

Encoding similarity—Encoding similarity was computed in a similar fashion as retrieval 

similarity. First, for each trial, the three vectors corresponding to each encoding presentation 

were averaged into one pattern. Then, overlapping and non-overlapping similarity scores 

were computed separately for each trial without considering subsequent memory or whether 

it would be tested immediately or after one week. In other words, the average pattern evoked 

by an object-scene pair during encoding was correlated with (1) the average encoding 

vectors of all objects with a shared scene and (2) the average encoding vectors of all objects 

with a different scene.

Encoding-retrieval similarity—Encoding-retrieval similarity (ERS; Xue et al., 2010; 

Staresina et al., 2012; Ritchey et al., 2013) was computed for every object-scene pair. To do 

this, each trial's average encoding vector was correlated with its corresponding retrieval 

vector, resulting in one ERS value for each object-scene pair (‘same-memory ERS’). The 

correlations were then sorted by retrieval period (recent and remote) and memory 

performance (HC correct retrieval and correct recognition, versus incorrect recognition 

and/or retrieval) and averaged across trials within each condition for each participant.

As a control comparison, we computed ERS across trials with different objects but shared 

scenes (‘same-scene ERS’). To do this, each trial's retrieval vector was correlated with the 

average encoding vector of each trial that shared the same scene and memory status (HC 

correct retrieval and correct recognition, versus incorrect retrieval). These correlations were 

averaged together to create a measure of same-scene ERS for each trial, then averaged 

across trials within each condition for each participant. To index the extent to which ERS 

captures the reinstatement of trial-specific information, same-scene ERS was subtracted 

from same-memory ERS for each trial, and for each participant (‘memory-specific ERS’).

Searchlight analyses—To explore the influence of overlap and time on pattern similarity 

outside of our a priori ROIs, we conducted whole-brain searchlight analyses on the four 

retrieval scans. These analyses were conceptually similar to the main retrieval similarity 

analysis, only conducted for spheres corresponding to each voxel in the brain instead of 

targeted ROIs. First, correlations between overlapping and non-overlapping trials were 

computed in each participant's native space. For each retrieval trial, a sphere with a 3-voxel 

radius was moved through every voxel throughout the brain (64 voxels per sphere). In 

spheres where at least 32 voxels were situated within the brain, voxels in the sphere were 

extracted and reshaped into a vector. Then, for each sphere, each the pattern corresponding 

to each retrieval trial was correlated with all retrieval patterns of trials studied with the same 

scene, and all retrieval patterns of trials studied with a different scene. These correlations 

were averaged to create a measure of overlapping and non-overlapping similarity for each 

trial. These measures were assigned to the middle voxel within each sphere, and then 

averaged across trials, resulting in whole-brain maps of overlapping and non-overlapping 
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similarity for each participant at each retrieval period. As with the ROI analysis, only trials 

whose objects were correctly recognized and whose associated scenes were remembered 

with high confidence were included, and only correlations of trials across runs were 

considered.

The resulting Fisher-transformed maps were aligned to MNI space with the same set of 

transformations used for the univariate retrieval analyses. Because the increased spatial 

blurring of the maps, caused by computing similarity across highly overlapping spheres, 

group-level statistics were conducted using FSL's randomise function. Reported clusters 

were identified using Threshold-Free Cluster Enhancement (TFCE) and were controlled for 

family-wise error rate (p<0.05).

Rest connectivity analysis—The rest scans were used to measure encoding-related 

changes in functional connectivity, as indexed by low-frequency correlations between ROI 

pairs (Albert et al., 2009; Tambini et al., 2010; Tompary et al., 2015). Preprocessed data 

from the four rest scans were entered into separate GLMs to model nuisance signals. As 

with all other scans, 6 motion regressors, their temporal derivatives, and stick functions 

accounting for sudden head movements were included. Additional regressors were included 

to account for nuisance signals from white matter tissue cerebral spinal fluid (CSF). To 

create these regressors, each participant's MPRAGE was segmented into separate masks 

comprising gray matter, white matter and CSF, using FSL's FAST function. The gray matter 

and CSF masks were aligned to each participant's functional volumes and then eroded using 

FSL's fslmaths function, ensuring that these masks did not contain voxels that partially 

overlapped with gray matter. Then, the average timecourse across all voxels in each mask 

was extracted from the preprocessed rest scans. These timecourses were entered into each 

run's GLM along with their temporal derivatives.

The residuals of these GLMs were bandpass-filtered, leaving signal ranging from 0.01 and 

0.1 Hz, which is the frequency range known to correspond to correlations between gray 

matter regions in functional neuroimaging data (Cordes et al., 2001). Then, average mean 

time-course for every volume in each rest run was extracted for each ROI. These 

timecourses were then correlated (Pearson correlation), Fisher transformed, and entered into 

statistical tests.

Statistical tests—All correlations were Fisher transformed before being submitted to 

statistical tests. For the majority of group-level comparisons, where there was sufficient data 

in each bin for each participant, repeated-measures ANOVAs and paired t-tests were used to 

characterize the data. These statistics were replicated using non-parametric permutation tests 

to account for the different numbers of correlations that comprise the overlapping and non-

overlapping similarity scores for each trial, and for the different numbers of trials that were 

remembered and forgotten in the case of the ERS analyses (see Supplemental Data). Three 

participants were excluded from all similarity analyses due to an insufficient number (< 10) 

of remote memories that were both correctly recognized and whose scenes were 

remembered with high confidence.
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Trial-level relationships between similarity measures or between similarity and univariate 

activation were tested with mixed-effects linear regressions using the lme4 package in R 

(http://cran.r-project.org/web/packages/lme4/). Significance was determined using model 

comparisons, resulting in χ2 values and corresponding p values, or with likelihood ratio 

tests. Intercepts and slopes for each participant were specified as random effects, and model 

comparisons were conducted to determine which experimental variables, if any, were 

included as by-participant random factors.

Non-parametric tests of retrieval similarity—Each trial's overlapping similarity and 

non-overlapping similarity consisted of an average measure computed across pair-wise 

correlations with patterns from different trials. The number of pair-wise correlations for each 

trial varied over time and by memory performance across participants. Because correlations 

were only computed between trials across different retrieval runs, each retrieval trial was 

correlated with up to 8 patterns from overlapping trials and up to 24 patterns from non-

overlapping trials, depending on how many of those trials were remembered with high 

confidence. To ensure that the variability in the number of correlations used for each trial 

cannot explain the interaction between overlap and time relating to retrieval similarity, we 

developed two control analyses.

First, we computed a permutation test by creating a null distribution of retrieval similarity 

for each participant, while retaining the number of comparisons entered into each trial's 

overlapping and non-overlapping similarity measure. To do this, we shuffled each run's 

vector of patterns across all trials within the run, such that each trial's pattern was assigned 

to a different trial's scene and memory status. We repeated this procedure 10,000 times per 

participant and re-computed overlapping and non-overlapping similarity for each HC correct 

trial at each permutation. These values were averaged across trials for each participant, 

resulting in null distributions of overlapping and non-overlapping similarity for each 

retrieval period. The values were then subtracted to create a null distribution of the 

difference between overlapping and non-overlapping similarity. We then calculated the true 

difference in overlapping and non-overlapping similarity for each participant and computed 

the z-score of the true difference relative to that participant's distribution of shuffled 

differences. We then submitted the z-scores to t-tests against zero for each retrieval session, 

where a reliable difference above zero indicates that across participants, the true difference 

between overlapping and non-overlapping similarity is greater than the shuffled distributions 

across participants.

Second, we developed a sub-sampling procedure to reduce the number of comparisons used 

to calculate non-overlapping similarity to match the number used to calculate overlapping 

similarity for each participant. Specifically, for each participant and retrieval session, the 

number of comparisons originally used to compute overlapping similarity for a given trial 

was identified, and then the same number of non-overlapping trials were randomly drawn to 

compute non-overlapping similarity. This procedure was repeated 10,000 times to compute a 

distribution of non-overlapping similarity on that trial. These distributions were averaged 

across trials separately for recent and remote retrieval, resulting in a distribution of non-

overlapping similarity for each participant at each time-point. Then, each participant's true 

overlapping similarity score was computed as a z-score relative to that participant's 
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distribution of non-overlapping similarity. These z-scores were submitted to pair-wise t-tests 

against zero for each retrieval session, where a significant difference from zero indicates that 

true overlapping similarity is robustly different than the distribution of non-overlapping 

similarity.

Non-parametric test of ERS—When computing ERS as a function of remote memory in 

the right hippocampus, the number of HC correct and incorrect trials entered into the 

analysis varied across participants. We implemented a non-parametric test to confirm that 

the variability in the number of trials used to compute ERS across participants could not 

explain the modulation of ERS by memory. We generated null distributions of ERS for each 

condition within participants by shuffling each participant's memory performance across 

runs 10,000 times and re computing ERS separately for HC correct and incorrect trials. We 

then computed the z-score of each participant's true difference in ERS between HC correct 

and incorrect trials, relative to the shuffled distribution of differences. This z-score was 

submitted to a t-test against zero, where a significant difference above zero would indicate 

that the true difference in ERS between HC correct and incorrect trials is reliably greater 

than the difference computed using shuffled values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experiment design. A. During the first session, participants encoded 128 object-scene pairs 

and then completed object recognition and scene recall tests for 64 of the pairs (recent 

retrieval). A week later, they returned to complete the same retrieval tasks for the other 64 

pairs (remote retrieval). B. At encoding, participants viewed each object-scene pair and rated 

how vividly they imagined the object in the scene. During scene recall, participants were 

asked to choose which of the four scenes was studied with each object. C. Memory 

performance during the scene recall task. ** indicates p<0.01. Error bars signify SEM. D. 
Images of the four scene associates.
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Figure 2. 
Analysis approach. Several similarity measures were computed for each trial. During 

retrieval, overlapping similarity (blue) was computed by correlating the pattern of activation 

evoked by each object-scene pair with all other patterns from pairs studied with the same 

scene, and then computing the average across those correlations. Non-overlapping similarity 

(orange) was computed by averaging all correlations between that pair's pattern of activation 

and the patterns of all pairs studied with a different scene. ERS (green) was computed for 

each pair by correlating its pattern at retrieval with its average pattern across its three 

encoding presentations.
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Figure 3. 
Retrieval similarity. A. Retrieval similarity in mPFC. Similarity for overlapping trials was 

greater than similarity for non-overlapping trials during remote but not recent retrieval. B. 
Retrieval similarity in PMC. C. Retrieval similarity in hippocampus. In posterior 

hippocampus, similarity for overlapping trials increased over time. In anterior hippocampus, 

similarity for non-overlapping trials decreased over time. ** indicates p<0.01. * indicates 

p<0.05. ∼ indicates p<0.10. Error bars signify SEM. ⊗ indicates significant interaction 

(p<0.05).
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Figure 4. 
Encoding-retrieval similarity. A. Same-memory and same-scene ERS during recent and 

remote retrieval. In the right hippocampus, same-memory ERS was greater for HC correct 

trials relative to same-scene ERS and relative to incorrect trials during remote retrieval. * 

indicates p<0.05. Error bars signify SEM. B. Relationship between memory-specific ERS 

and retrieval similarity. Retrieval similarity was inversely correlated with ERS during remote 

retrieval, but not recent retrieval. Gray points represent all trials included in the analysis. 

Green lines represent the best fit line representing the relationship between retrieval 

similarity and memory-specific ERS. Gray ribbons signify 95% confidence intervals. * 

indicates p<0.05.
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Figure 5. 
Rest connectivity. A. Rest connectivity approach. Rest scans were preprocessed, stripped of 

nuisance signals, and band-pass filtered. The mean residual signal was extracted from each 

ROI for each volume of each scan. Functional connectivity were measured either by entering 

the mean time-course of a seed region in a whole-brain voxelwise GLM (5B), or by 

correlating the mean time-courses of two regions (5C). B. Encoding-related changes in 

connectivity. Clusters indicate regions whose connectivity with the whole hippocampus 

(left) and mPFC (right) is greater after encoding relative to a pre-encoding baseline. Clusters 

survived correction for multiple comparisons using cluster-mass thresholding (p<0.05, 

cluster-forming threshold z=2.3). C. Across participants, the change in connectivity between 

anterior hippocampus and mPFC (post-encoding – baseline rest) positively correlated with 

the average difference in retrieval similarity (overlapping – non-overlapping) in anterior 
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hippocampus, only for remote memories. Gray dots represent participants. Gray ribbons 

signify 95% confidence intervals. * indicates p<0.05.
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Figure 6. 
Schematic of the theorized neural transformation of overlapping episodic memories. Three 

memories share an overlapping element (image of a rainforest). The representation of each 

memory consists of nodes representing features shared with other memories (green) or 

features unique to that memory (multi-colored). The thickness of line between two nodes 

represents the likelihood of coordinated activation of those nodes. Initially, the encoding and 

retrieval of each memory may recruit an overlapping subset of nodes as well as a distinct 

subset. Through consolidation mechanisms and other time-dependent processes, such as 

forgetting, memory representations may change along several dimensions: through loss of 

episodic details (fading or disappearance of nodes), or through strengthening of connections 

between overlapping features (thickening of lines between nodes). Schematic memories may 

lose the majority of unique nodes and retain strongly connected overlapping nodes. 

Memories that remain vividly episodic may retain unique nodes, but the connections 

between overlapping nodes may not be strengthened. Variations in how memories are 

transformed along these two dimensions may support the extraction and representation of 

gist-level or semantic memory over time.
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Table 1

Results of repeated-measures ANOVAs predicting pattern similarity in the hippocampus. Top: Time (recent, 

remote), Overlap (overlapping, non-overlapping), Hemisphere (right, left), and all interactions were included 

as factors. Bottom: Time (recent, remote), Overlap (overlapping, non-overlapping), Region (anterior, 

posterior), and all interactions were included as factors.

Effects: Hemisphere DFn DFd F p

Time 1 18 0.059 0.811

Overlap 1 18 2.041 0.170

Hemisphere 1 18 4.494 0.048*

Time × Overlap 1 18 6.895 0.017*

Time × Hemisphere 1 18 0.032 0.859

Overlap × Hemisphere 1 18 0.396 0.537

Time × Overlap × Hemisphere 1 18 0.118 0.735

Effects: Long axis organization DFn DFd F p

Time 1 18 0.037 0.850

Overlap 1 18 13.030 0.002*

Region 1 18 11.770 0.003*

Time × Overlap 1 18 20.930 <0.001*

Time × Region 1 18 6.107 0.024*

Overlap × Region 1 18 1.063 0.316

Time × Overlap × Region 1 18 0.410 0.530

*
indicates p<0.05.
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