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heart chamber dilation, cardiomyocyte 
death, systolic dysfunction and conduc-
tion abnormalities (2). Loss of H3K27 
methyltransferase EZH2 in cardiac pre-
cursors results in cardiac hypertrophy 
and fibrosis (3). These studies indicate 
that histone modifications have critical 
roles in the pathologic processes of DCM 
and cardiac remodeling.

Histone modifications, including meth-
ylation, acetylation, phosphorylation and 
ubiquitination, play a critical role in gene 
transcription regulation (4). Among them, 
histone methylation was newly found; it 
is balanced by methyltransferases and  
demethylases, which add or remove 
methyl groups from specific lysine or  
arginine. Methylation at different sites has 
diverse biological functions. For exam-
ple, methylation at histone H3 lysine 27 
(H3K27) is usually associated with gene 
repression, while di- and trimethylation  

control key cellular processes (eg, cell 
cycle, survival, proliferation and dif-
ferentiation), especially histone modifi-
cation, on DCM was largely unknown. 
Recently, pioneering work by Nguyen 
et al. demonstrated that cardiac-specific 
DOT1L (an H3K79-specific histone meth-
yltransferase) deficiency led to DCM-like 
pathological changes in mice, including 

INTRODUCTION
Dilated cardiomyopathy (DCM) is 

characterized by left ventricular enlarge-
ment or dilatation and systolic dysfunc-
tion, and remarkable progress had been 
made in understanding its genetic basis 
(1). However, the effect of post-transla-
tional modifications of proteins, common 
and typical regulatory mechanisms that 
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at histone H3 lysine 4 (H3K4) often 
occur in coding regions of active genes 
(4,5). In mammals, there are at least nine 
H3K4-specific histone methyltransferases 
(HMTs), including mixed lineage leuke-
mia (MLL) families consisting of MLL, 
MLL2, MLL3, MLL4, MLL5, SETD1A and 
SETD1B (6–8). The MLL family members, 
each possessing the highly conserved sup-
pressor of variegation, enhancer of zeste, 
trithorax (SET) domain responsible for 
HMT activity, exist as distinct multipro-
tein complexes (namely complex of pro-
teins associated with Set1, or COMPASS) 
with several common subunits, including 
Ash2, Wdr5, Rbbp5 and Dpy30 (9,10). 
MLLs have been credited as key H3K4 
mono-, di- and trimethyltransferases 
at enhancers or promoters to facilitate 
gene expression (9,10). Previous studies 
demonstrated that MLLs contribute to 
several types of cancers, acute myeloid 
leukemia, embryo development, circadian 
rhythm and brown adipocyte differenti-
ation (11–17). However, the role of MLLs 
in clinical DCM remains unknown.

In the present study, we aimed to in-
vestigate the expression pattern of MLLs 
in human normal and DCM hearts, and 
in mouse hypertrophic hearts. Our re-
sults show that there was no significant 
change in mRNA expression levels of all 
MLLs, except MLL3, in mouse hypertro-
phic hearts and in human DCM hearts 
compared with the control group. MLL3 
mRNA level was positively correlated 
with left ventricular end diastolic diam-
eter (LVEDD), but negatively correlated 
with left ventricular ejection fraction 
(LVEF). Furthermore, H3K4me2 and pro-
tein expression levels of Smad3, GATA4 
and EGR1, which are downstream of 
MLL3, were significantly elevated in 
human DCM hearts compared with nor-
mal hearts.

MATERIALS AND METHODS

Human Heart Samples
The human sample study was ap-

proved by Tongji Hospital, Tongji Med-
ical College, Huazhong University of 
Science and Technology, China. The left 

ventricle samples of DCM were col-
lected from patients undergoing heart 
transplantation (18,19). The normal left 
ventricle controls were obtained from 
donor hearts that were not suitable for 
transplantation for noncardiac reasons 
(18,19). Informed consent was obtained 
from the families of all subjects. All the 
procedures related to human samples 
complied with the principles outlined in 
the Declaration of Helsinki.

Cardiac Remodeling Mouse Model
Transverse aortic constriction (TAC) 

was performed as previously re-
ported to induce a cardiac remodeling 
mouse model (20). Briefly, male mice 
(C57BL/6J) 8–10 wks old with body 
weight 24–27 g were anesthetized. The 
mice were connected to a MouseVent 
Automatic Ventilator (Kent Scientific) 
after endotracheal intubation. Then, 
after thoracotomy was performed, the 
sternum was retracted using a chest re-
tractor. After freeing the aortic arch, TAC 
was performed between the right innom-
inate and left carotid artery using 6.0 silk 
suture against a 27-gauge blunt needle, 
which was removed after constriction 
was completed. Finally, sternal closure 
and skin coverage were performed. A 
similar procedure, but without con-
stricting the aorta, was performed in 
the sham-operated group. A Vevo-2100 
High-Resolution Micro-Imaging System 
(VisualSonics, Toronto, ON, Canada) 
was used to measure cardiac function.

Histological Staining
Human and mouse heart sections 

were stained with hematoxylin and eosin 
(H&E) for cardiomyocytes cross-sectional 
area analysis, and picrosirius red to eval-
uate collagen deposition. These two pro-
cedures were performed as previously 
described (21–24).

Immunohistochemistry Analysis
Standard immunohistochemistry pro-

tocol with minor changes was used for 
MLL3-specific staining. The human heart 
sections were deparaffinized with xy-
lene, then hydrated in ethanol gradient and 

eventually rinsed in deionized water. 
Antigen was unmasked by 10 mM  
sodium citrate unmasking solution at 
sub-boiling temperature for 10 min. The 
slides were blocked with 5% normal 
goat serum (ThermoFisher Scientific) 
in tris-buffered saline and Tween 20 
for 1 h at room temperature after being 
treated with 3% hydrogen peroxide 
for 10 min. Slides were incubated with 
MLL3 primary antibody (1:25 dilution; 
Abgent) overnight at 4°C. The next day, 
the primary antibody was removed, then 
incubated with peroxidase-conjugated 
secondary antibody (1:2500 dilution; 
Jackson ImmunoResearch Laboratories) 
for 1 h at room temperature. The DAB 
kit was used to develop color, and finally 
sections were dehydrated and mounted. 
The images were acquired by using an 
Olympus BX53 light microscope.

Western Blot
Western blot was performed as pre-

viously described (20). In brief, total 
protein was extracted from human left 
ventricles by using radioimmunopre-
cipitation assay lysis buffer, and protein 
concentration was quantified by using 
Pierce™ BCA Protein Assay Kit (Ther-
moFisher Scientific). After being dena-
tured, 20 μg protein was separated by 
sodium dodecyl sulfate polyacrylamide 
gel electrophoresis, and then transferred 
to a polyvinylidene fluoride membrane 
(Millipore). After being blocked by  
5% skim milk solution, the membrane 
was incubated with primary antibody 
overnight at 4°C, including H3K4me2 
(1:1000 dilution; Cell Signaling Technol-
ogies), H3K4me3 (1:1000 dilution; Cell 
Signaling Technologies), GATA4 (1:1000 
dilution; Abcam), EGR1 (1:1000 dilution; 
Cell Signaling Technologies), Smad3 
(1:1000 dilution; Cell Signaling Technol-
ogies) or GAPDH (1:1000 dilution; Cell 
Signaling Technologies). The protein was 
detected by using a ChemiDocTM XRS+ 
system (Bio-Rad) after being incubated 
with peroxidase-conjugated secondary 
antibody (1:25000 dilution; Jackson Im-
munoResearch Laboratories) for 1 h at 
room temperature.
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Higher MLL3 Expression Was Detected 
in Human DCM Hearts

Human DCM hearts displayed 
some similar pathology changes with 
TAC-induced cardiac remodeling, such 
as cardiomyocyte hypertrophy and 
cardiac fibrosis (Figures 2A and B), 
despite having many different patho-
logic processes. Therefore, we further 
studied whether MLLs had similar 
changes in the hearts of DCM patients 
as in TAC-induced mouse hearts. 
Compared with normal hearts, DCM 
hearts had larger LVEDD but lower 
LVEF (Table 1). Furthermore, the heart 
failure biomarkers brain natriuretic 
peptide, atrial natriuretic peptide and 
β-myosin heavy chain were signifi-
cantly increased in the left ventricles 
of DCM hearts, while α-myosin heavy 

stimulation (Figure 1F). On the con-
trary, the mRNA expression level of 
MLL3 remarkably increased after TAC 
treatment for 4 and 8 wks (Figure 1F). 
These results might indicate that MLL3 
participates in TAC-induced cardiac 
remodeling.

Except for MLL-MLL5, MLL family 
members also included SETD1A and 
SETD1B (10). To investigate whether 
SETD1A and SETD1B are related to car-
diac remodeling, we detected the mRNA 
levels of these two genes in the left 
ventricles of mouse hearts. Our results 
demonstrate that after 4 and 8 wks of 
TAC treatment, there was no significant 
difference in SETD1B between groups, 
while SETD1A transcription level in mice 
was decreased after TAC treatment for 8 
wks (Figure 1G).

Real-time Polymerase Chain Reaction
TRI Reagent® Solution (ThermoFisher 

Scientific) was used to extract total 
mRNA from human and mouse left 
ventricles. The selected gene mRNA 
levels were detected by CFX Connect™ 
Real-Time PCR Detection System (Bio-
Rad) using iQ™SYBR® Green Supermix 
(Bio-Rad) after reverse transcription of 
mRNA into cDNA. GAPDH gene expres-
sion was used as internal reference. The 
primers used in the present study are 
listed in Table 2.

Statistical Analysis
Data are shown as mean ± standard 

error of the mean. Differences between 
two groups were assessed by two-tailed 
Student t test. Pearson correlation coeffi-
cients were used to evaluate the consis-
tency of MLL3 expression level, LVEDD 
and LVEF. All statistical analyses were 
performed with SPSS software, version 
13.0. P < 0.05 was considered statistically 
significant.

RESULTS

Expression Level of MLL3, but Not 
Other MLL Family Members, Was 
Remarkably Increased in the Hearts 
of Mice Subjected to TAC Surgery

To investigate the relationship be-
tween MLLs and cardiac remodeling, we 
first established the cardiac remodeling 
mouse model via TAC surgery, as pre-
viously reported (20). After treatment 
with TAC for 4 or 8 wks, the hearts un-
derwent left ventricular dilatation and 
impaired cardiac function, as evidenced 
by increased LVEDD and left ventricular 
end systolic diameter (Figures 1A and B)  
and reduced fractional shortening 
(Figure 1C). In addition, enlarged car-
diomyocyte size and obvious collagen 
deposition indicate cardiac remodeling 
(Figures 1D and E). Subsequently, we 
detected the mRNA levels of MLL to 
MLL5 by real-time polymerase chain 
reaction. The results show that com-
pared with the sham group, the mRNA 
levels of MLL, MLL2, MLL4 and MLL5 
did not change significantly after TAC 

Figure 1. The expression levels of MLL family members in mouse hearts. (A–C) Parameters 
of echocardiographic results for mice: (A) left ventricular end diastolic dimension; (B) 
left ventricular end systolic dimension; (C) fractional shortening (n = 8 per experimen-
tal group). (D) H&E staining of left ventricle of sham-treated mouse hearts and hearts 
treated with transverse aortic constriction for 4 or 8 wks (n = 4 mice per experimental 
group, scale bar 50 μm). (E) Picrosirius red staining of left ventricles of mouse hearts, red 
staining indicating collagen deposition (n = 4 mice per experimental group, scale bar 
100 μm). (F,G) Real-time PCR detected mRNA levels of MLL families in mouse hearts (n = 4 
mice per experimental group).
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chain expression level was decreased 
(Figure 2C). More importantly, we 
detected mRNA levels of MLL fam-
ily members in the left ventricles of 
human hearts. Our results show that 
MLL, MLL2, MLL4, MLL5, SETD1A 
and SETD1B had comparable expres-
sion levels in donor and DCM left ven-
tricles (Figures 3A and B), while MLL3 
was strikingly elevated in the left  
ventricles of DCM hearts (Figure 3A). 
Further immunohistochemistry stain-
ing also demonstrates that DCM hearts 
had higher MLL3 expression level in 
cardiomyocytes (Figure 3C). Notably, 
the MLL3 expression level was posi-
tively correlated with LVEDD, but  
negatively correlated with LVEF  
(Figures 4A and B).

Increased MLL3 Expression Was 
Accompanied by Elevated H3K4me2, 
Smad3, GATA4 and EGR1 Protein 
Levels in Human DCM Hearts

To detect the potential downstream 
regulated by MLL3, we first evalu-
ated the methylation of H3K4, which 
is the canonical substrate. The results 
demonstrate that H3K4me2 level was 
significantly increased in the DCM hearts 
compared with normal hearts, while 
comparable H3K4me3 levels were de-
tected in these two groups Figures 5A 

and B. As we know, H3K4 methylation 
indicates gene activation (5). Next, we 
were curious about what genes were ac-
tivated by MLL3 and H3K4 methylation. 
We first searched the ENCODE database 
(www.encodeproject.org/) using the key 
words “H3K4me1 heart” or “H3K4me2 
heart” or “H3K4me3 heart” or “MLL3 
heart” to find the ChIP-sequence data. 
The results demonstrate that there 
are multiple H3K4me1 and H3K4me3 
binding sites in the genomes of cardiac 
remodeling regulators Smad3, GATA4 

Figure 2. Pathologic and molecular prop-
erties of human DCM hearts. (A) H&E 
staining of left ventricles of donor hearts 
(n = 12) and DCM hearts (n = 15) (scale 
bar 50 μm). (B) Picrosirius red staining of 
left ventricles of human hearts (n = 12–15, 
scale bar 100 μm). (C) Real-time PCR 
detected the mRNA levels of heart failure 
biomarkers brain natriuretic peptide, atrial 
natriuretic peptide, β-myosin heavy chain 
and α-myosin heavy chain in human 
hearts (n = 4 per experimental group).

Table 1. Clinical information of donors with normal hearts and 
patients with dilated cardiomyopathy (DCM).

Characteristics Normal DCM

No. 12 15
Age, y 28.58 ± 1.60 47.5 ± 2.54
Sex, male (%) 9 (75%) 10 (66.67%)
BMI (kg/m2) 24.05 ± 0.51 22.78 ± 1.06
Medical history
Hypertension 0 (0%) 3 (20%)
Diabetes mellitus 0 (0%) 0 (0%)
Drinking history 1 (8.3%) 1 (6.67%)
Cigarette smoker 2 (16.67%) 2 (13.33%)
LVEDD (mm) 42.17 ± 0.45 69.67 ± 3.53
LVEF (%) 61.67 ± 0.42 22.8 ± 1.41
Blood pressure, mmHg
Systolic N/A 105.8 ± 4.4
Diastolic N/A 69.9 ± 2.3
Blood glucose, mmol/l N/A 6.05 ± 0.46

BMI: body mass index; LVEDD: left ventricular end diastolic dimension; 
LVEF: left ventricular ejection fraction

Table 2. The primers used in the present study.

Genes Mouse primers Human primers

MLL forward AGTGTGTCCGCTGCAAGAG TGCCAGTAGTGGGCATGTAG
reverse CTGCATCATCTTGCTCTCGT CCTTCCACAAACGTGACAGA

MLL2 forward CAATTGTGCCATTTGGTCAG TTGTCCTTGGGACTCGAATCA
reverse TGCTGAGACATGAGGACAGG CCTGTCCAGATCCAACTCTTCT

MLL3 forward TCGGGAGAAGATAGCAAGATG TGTTGTCTCAGGGAGCACAG
reverse AACAGTTGTGGTGCCACTGA TCAGGAGCTTGGTCAATGTG

MLL4 forward TTGGCCTGTTCACAGTGTTC GCAGAACTGAATCCCAACTCG
reverse GGGGATCCAGGCAGTATGTA GGAGCGGATAGTCTGACCTC

MLL5 forward GACTTGCCTCCTGATGCACT GCAAGGACTTTTGGGAATGA
reverse TCCTCGCATCAACACACATT CCATAGTCAAAATCAAAGGCAAT

SETD1A forward CGTATCCATGAGTGGGGTCT CTGACGAGATGGTCATCGAA
reverse AATGATGGTGTCGTGATCCA TGCAGCAGTGGTTGATGAAT

SETD1B forward CCACCACCAGGCTACATACC AGGGGCATCATAAACTGTACCG
reverse CTTCTTGTCCCACCATTCGT GGGGATCTTCGACAATTTCCAC

GAPDH forward ACTCCACTCACGGCAAATTC GAGTCAACGGATTTGGTCGT
reverse TCTCCATGGTGGTGAAGACA TTGATTTTGGAGGGATCTCG
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remains largely unknown. In the pres-
ent study, we identified that MLL3, a 
H3K4-specific HMT, was upregulated 
in human DCM hearts and remodeled 
mouse hearts, suggesting that MLL3 has 
a potential role in the pathological pro-
cesses of DCM and heart failure. Intrigu-
ingly, Smad3, GATA4 and EGR1, which 
are regulated by MLL3, were elevated in 
the human DCM hearts. Therefore, our 
study suggests, for the first time, that in-
hibition of MLL3 might be a novel rem-
edy for the treatment of human DCM.

There is accumulating evidence 
demonstrating that histone methylation 
and HMTs contribute to heart develop-
ment and to congenital and adult heart 
diseases (26,27). Lysine methyltrans-
ferase G9a and G9a-like protein play 
a critical role in the normal morpho-
genesis of atrioventricular septum via 
H3-K9 dimethylation, which controls 
expression levels in multiple genes re-
lated to heart development (28). Except 
for this, G9a has a cardioprotective 
effect of ischemic preconditioning by 
regulating Mtor-dependent cardiac 
autophagy (29), while H3K4- and 
K36-specific methyltransferase Smyd2 
act as endogenous cardioprotective 
proteins by suppressing p53-dependent 
cardiomyocyte apoptosis (30). In ad-
dition to HMTs, histone demethylase 
JMJD2A, upregulated in human hy-
pertrophic cardiomyopathy, promotes 
pressure overload–induced cardiac 
hypertrophy (31). Unsurprisingly, 
MLL, a kind of H3K4 HMT, also has an 
important role in heart development 
and disease. MLL4 (also known as 
KMT2D) affects heart development by 
regulating genes related to ion trans-
port, hypoxia-reoxygenation and cell 
cycle regulation (15). Cardiac lineage 
differentiation of mouse embryonic 
stem cells is controlled by MLL2 via 
promoting H3K4me3 deposition at 
cardiac-specific genes (32). In addition, 
UTX, a component of the COMPASS 
complex, demethylates H3K27 residue 
in cardiac genes to affect cardiac de-
velopment (33). However, its role in 
human DCM is largely unexplored.

patients. As expected, the protein levels 
of Smad3, GATA4 and EGR1 were sig-
nificantly elevated in the left ventricles of 
DCM hearts (Figures 5C–F).

DISCUSSION
Several studies have demonstrated 

that some HMTs are profoundly in-
volved in the development of heart and 
cardiac remodeling (2,3,15). However, 
the role of HMTs on human DCM 

and EGR1 in human hearts (data not 
shown). In addition, both Valekunja et al. 
and Kim et al. demonstrated that MLL3 
knockout or haploinsufficiency could 
decrease Smad3, GATA4 and EGR1 ex-
pression (14,25). As we have verified that 
MLL3 expression level was upregulated 
in the DCM hearts compared with donor 
hearts, we hypothesized that the expres-
sion levels of Smad3, GATA4 and EGR1 
would increase in the hearts of DCM 

Figure 3. MLL3 expression level was increased in human DCM hearts. (A,B) The mRNA levels of 
MLLs were detected by real-time PCR (n = 8 per experimental group). (C) Specific immuno-
histochemistry staining of MLL3 and α-actinin in the left ventricles of human hearts. Black ar-
rows indicate MLL3-positive cardiomyocytes (n = 4 per experimental group, scale bar 50 μm).

Figure 4. MLL3 expression level closely correlates with severity of DCM. Correlation analysis 
of MLL3 expression level with (A) left ventricular end-diastolic dimension or (B) left ventric-
ular ejection fraction; r indicates correlation coefficient.
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melanoma and pancreatic cancer (37–40). 
However, no research has investigated 
the function of MLL3 on heart diseases 
currently. Therefore, the present study 
provides the first evidence that MLL3 is 
associated with human DCM.

Previous studies demonstrated that 
the expression levels of Smad3, GATA4 
and EGR1 were downregulated in the 
livers of MLL3-deficient mice, which 
was detected by RNA-seq and microar-
ray (14,25). Furthermore, we found that 
H3K4me1 and H3K4me3 had multiple 
binding sites at the genomes of these 
three genes via analysis of the ChIP- 
sequence data released in the ENCODE 
database. Importantly, we found that 
Smad3, GATA4 and EGR1 were  

is associated with genetic factors but not 
pressure overload. The MLL3 (KMT2C) 
protein consists of 4,911 amino acids 
and includes eight plant homeodomain, 
FY-rich N-terminal domain and a cata-
lytic domain (ie, SET domain) (34). It is 
capable of introducing mono-, di- and 
trimethylation to H3K4 (8). MLL3 defi-
ciency results in stunted growth, reduced 
cell proliferation and lower fertility of 
mice (35). MLL3 insufficiency is often 
identified in myeloid leukemia patients, 
and MLL3 inactivation in mice leads to 
urothelial tumors (11,36). In addition, re-
cent studies reported that reduced MLL3 
expression or its mutation was found in 
several kinds of cancers, including breast 
tumors, gastric cancer, glioblastoma, 

To investigate the contribution of 
MLL families to human DCM, we first 
detected their expression levels in nor-
mal donor hearts and DCM hearts. Our 
results show that all the MLL family 
members, except MLL3, have compa-
rable mRNA levels in donor and DCM 
hearts. Similarly, MLL3 mRNA level also 
increased in TAC-treated mouse hearts. 
However, SETD1A mRNA level was 
unexpectedly decreased in the mouse 
hearts treated with TAC for 8 wks. The 
disparity in SETD1A expression pattern 
between human and mouse may be 
primarily because TAC-induced cardiac 
remodeling in the mouse model cannot 
completely simulate the pathologic pro-
cesses of DCM. In addition, most DCM 

Figure 5. Protein levels of H3K4me2/3, Smad3, GATA4 and EGR1 in human hearts. (A) Di- and trimethylation of H3K4 was detected by 
Western blot (n = 4–9 per experimental group). (B) The quantitative results of panel A. (C) Protein levels of Smad3, GATA4 and EGR1 
were detected via Western blot (n = 4–10 per experimental group). (D–F) The quantitative results of panel C.
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