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Abstract

Geometric features of the aorta are linked to patient risk of rupture in the clinical decision to 

electively repair an ascending aortic aneurysm (AsAA). Previous approaches have focused on 

relationship between intuitive geometric features (e.g. diameter and curvature) and wall stress. 

This work investigates the feasibility of a machine learning approach to establish the linkages 

between shape features and FEA predicted AsAA rupture risk, and it may serve as a faster 

surrogate for FEA associated with long simulation time and numerical convergence issues.

This method consists of four main steps: (1) constructing a statistical shape model (SSM) from 

clinical 3D CT images of AsAA patients; (2) generating a dataset of representative aneurysm 

shapes and obtaining FEA predicted risk scores defined as systolic pressure divided by rupture 

pressure (rupture is determined by a threshold criterion); (3) establishing relationship between 

shape features and risk by using classifiers and regressors; and (4) evaluating such relationship in 

cross validation. The results show that SSM parameters can be used as strong shape features to 

make predictions of risk scores consistent with FEA, which lead to an average risk classification 

accuracy of 95.58% by using support vector machine and an average regression error of 0.0332 by 

using support vector regression, while intuitive geometric features have relatively weak 

performance. Compared to FEA, this machine learning approach is magnitudes faster. In our 

future studies, material properties and inhomogeneous thickness will be incorporated into the 

models and learning algorithms, which may lead to a practical system for clinical applications.
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1. INTRODUCTION

Thoracic aortic aneurysm (TAA), which may lead to aortic rupture or dissection, is a lethal 

disease: the five-year survival in patients left untreated is 54%, and ascending aortic 

aneurysm (AsAA) is substantially more common compared to other types of TAA (Davies et 

al. 2002). Symptoms are rare with this disease: for about 95% of patients, the first symptom 

is often death (Elefteriades 2008). Rupture and dissection can be avoided through elective 

surgical repair; however, identifying individuals at risk is challenging. Currently, the clinical 

decision whether to electively repair an AsAA (Coady et al. 1997) is mainly based on the 

aortic size, where intervention is typically recommended if the maximum diameter of the 

ascending aorta exceeds 5.5 cm. This is supported by the positive correlation between the 

size and rupture or dissection (Coady et al. 1997). A relative aortic size index (ASI) 

normalized by the patient body surface area has also been used for clinical assessment of 

risk (Davies et al. 2006).

However, the maximum aortic diameter may not accurately reflect an AsAA patient’s risk 

(Elefteriades and Farkas 2010; Fillinger et al. 2004; Nishimura et al. 2014): aneurysms at 

small diameter (e.g., 3.5 cm) have been known to rupture (Elefteriades and Farkas 2010). 

The impact of AsAA geometric features, other than diameter, on patient risk has been 

investigated in several studies. Celi and Berti (2014) performed finite element analysis of 

TAA, and showed that some morphological parameters (e.g., maximum diameter ratio, 

lesion extension ratio and eccentricity ratio) could significantly affect the wall stress, but did 

not provide any predictive model for risk assessment. There are many studies (Choke et al. 

2005; Doyle et al. 2009; Georgakarakos et al. 2010; Raut et al. 2013; Rodríguez et al. 2008; 

Ryu et al. 2011) in which geometric features were used for risk analysis of abdominal aortic 

aneurysms (AAA). However, these studies only considered intuitive geometric parameters 

(Shum et al. 2011), such as asymmetry, aspect ratio, curvature, torsion and tortuosity, which 

may not fully describe the variations of AAA geometries.

To more rigorously describe the AsAA geometries, statistical shape modeling may be a 

better approach. Usually based on principal component analysis (PCA), a statistical shape 

model (SSM) represents the shape probability distribution by a mean shape and modes of 

shape variations where a shape is simply a vector composed of spatial point coordinates. 

SSMs have been extensively used in computer vision and biomedical image analysis 

applications for object detection, shape reconstruction, and motion tracking (Cootes et al. 

1995; Heimann and Meinzer 2009; Staib and Duncan 1996) where SSMs were used to 

model subtle variations in shape compared to the population mean. There are also a few 

applications of using SSM to study organ functional status. For instance, Wu et al. (2012) 

built a SSM of the human right ventricle for classification of hypertension.

Finite element (FE) analyses have been utilized for studying aortic aneurysm biomechanics 

and rupture risk (Celi and Berti 2014; Doyle et al. 2009; Erhart et al. 2015; Fillinger et al. 

2002; Gasser 2016; Georgakarakos et al. 2010; Maier et al. 2010; Martin et al. 2015; 

Rodríguez et al. 2008; Venkatasubramaniam et al. 2004; Vorp et al. 1998). The main 

limitations in these studies are the use of simplified and isotropic tissue properties (Celi and 

Berti 2014; Doyle et al. 2009; Fillinger et al. 2002; Georgakarakos et al. 2010; Maier et al. 
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2010; Vorp et al. 1998), idealized geometries (Celi and Berti 2014; Rodríguez et al. 2008; 

Vorp et al. 1998), neglect of pre-stress (Celi and Berti 2014; Doyle et al. 2009; 

Georgakarakos et al. 2010) and lack of tissue failure criteria (Celi and Berti 2014; Doyle et 

al. 2009; Georgakarakos et al. 2010; Rodríguez et al. 2008). To obtain more accurate FE 

modeling of AsAA rupture, our group (Martin et al. 2015) utilized anisotropic hyperelastic 

material models and conducted biaxial tissue testing to obtain material parameters as 

reported in (Martin et al. 2013; Pham et al. 2013b). The results showed good agreement 

between FE simulations and clinical findings (Martin et al. 2015). However, our previous 

study showed the mixed effect of shape and material property, thus, it is not clear how shape 

variation alone can affect AsAA rupture risk.

Although FE analyses have great potential for clinical applications, it may take hours to set 

up and run a FE simulation of AsAA rupture, not to mention possible numerical 

convergence issues, preventing fast feedback to clinicians. Since machine learning 

techniques have been highly successful in many applications of computer aided diagnosis 

(Doi 2008; Ginneken et al. 2011; Suzuki 2012), there may be a solution to this problem by 

using algorithms to learn the nonlinear relationship between the input (i.e. an AsAA shape) 

and the output (i.e. a risk metric) predicted by analyzing FE results. After the learning 

process, the risk score of an AsAA shape can then be given directly from the machine 

learning algorithms without any FE analysis.

In this study, we present a machine learning approach to establish the relationship between 

shape features and AsAA risk predicted by FE analysis, while keeping the other variables 

fixed by the following common simplifications on FE: one set of constitutive parameters, 

constant wall thickness, and the same material strength. A SSM was built from a set of aorta 

shapes reconstructed from 3D CT images of 25 AsAA patients, for which the shapes were 

remeshed to build mesh correspondence. A total of 729 representative shapes were sampled 

from the shape distribution described by the SSM. The risk score of each shape was 

determined though FE analysis using our established approach (Martin et al. 2015), which 

was further enhanced with an improved backward displacement method for obtaining the 

unpressurized geometries. Support vector machine (SVM) and support vector regression 

(SVR) (Chang and Lin 2011; Cortes and Vapnik 1995) were used to determine the 

relationship between the risk and shape features, and cross validation was performed to 

evaluate such relationship.

2. METHODS

The overall study design is illustrated in Figure 1. Briefly, given a set of aorta shapes 

reconstructed from 3D CT images, a SSM was built through a pipeline of remeshing, 

alignment, and PCA, which is described in section 2.1. A set of 729 shapes were sampled 

from the shape distribution. Pressure rupture risk is used as the risk metric, and the risk of 

each shape was obtained from FE analysis by estimating the unpressurized geometry and 

inflating each model to rupture, which is described in section 2.2. Given the 729 sampled 

shapes with known rupture risk, classifiers and regressors based on different types of shape 

features were developed in order to predict a patient’s rupture risk given the AsAA shape. 
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The classifiers and regressors were trained and tested through ten-fold cross validation, 

which is described in section 2.3.

2.1 Statistical shape modeling of the aorta

2.1.1 Image data—De-identified clinical cardiac CT scans and resected AsAA tissues 

were obtained for a total of 25 patients who underwent elective AsAA repair at Yale-New 

Haven Hospital between the years of 2008 and 2010 (Martin et al. 2015). Institutional 

Review Board approval to review de-identified images was obtained for this study. All 

patients underwent cardiac CT scans because of suspected AsAA prior to elective repair. 

The resolution of the images is 0.7×0.7×2.5 mm, and the field of view covers the thoracic 

and abdominal aorta. The AsAA tissue elastic and failure properties for the same patients 

were characterized from surgically resected tissues in a previous study (Martin et al. 2013).

As shown in Figure 2, for each patient, the 3D surface of the aorta was semi-automatically 

reconstructed from the clinical CT image data using Avizo software (Burlington, MA). The 

surfaces were then trimmed at the ascending aorta just distal to the sinotubular junction on 

the proximal end and at the descending aorta on the distal end. The branch vessels at the 

arch were removed. The resulting surfaces were meshed to obtain a total of 25 aorta shapes 

in the form of triangle meshes with an arbitrary number of nodes and elements.

2.1.2 Aorta surface remeshing—To establish mesh correspondence between different 

patients and facilitate SSM and FE analyses, a remeshing method was developed in order to 

convert the triangle meshes to quad meshes with the same number of nodes and the same 

nodal connectivity among the elements for all patients. Briefly, as shown in Figure 3, given a 

3D triangle surface mesh as the input (Fig. 3a), a minimum-stretch based mesh 

parameterization was performed, resulting in a 2D triangle mesh in a rectangular shape of a 

predefined size (Fig. 3b). The 2D region was then discretized as a 2D quad mesh with 5100 

nodes and 4950 elements (Fig. 3c). By using barycentric interpolation (Botsch et al. 2010) 

determined by the 3D surface mesh and the 2D triangle mesh, the 2D quad mesh was 

transformed into the 3D space and the nodes on the top and bottom of the rectangular mesh 

were merged together to yield a 3D tubular surface mesh with 5000 nodes and 4950 

elements (Fig. 3d). Further details on the remeshing algorithms are provided in the 

Appendix.

2.1.3 Shape alignment—After remeshing, each shape was aligned to a common 

coordinate system by Generalized Procrustes Analysis (GPA) (Goodall 1991). Here, a shape 

X(k), indexed by k, is a quad surface mesh which can be represented by a vector 

 assembled from the coordinates of each point  of the mesh 

with a total number of N points (i.e. nodes). The alignment process runs in an iterative 

manner: 1) transform each shape X(k) to the mean shape  by the similarity transform, 

where initially one of the training shapes is randomly chosen as the mean shape; 2) compute 

the mean shape from all the transformed shapes. The parameters of the similarity transform 

were determined by minimizing the objective function:
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(1)

where the mean shape is defined as , and  is a 

point on the mean shape. K is the number of shapes. s is the scaling factor, R is the 3D-

rotation matrix, and t is 3D-translation vector. The unknown parameters {s, R, t} of the 

similarity transform can be estimated by using a least-squares optimization method 

(Umeyama 1991). In this study, s was fixed as 1, and therefore, the scale information was 

retained.

2.1.4 Statistical shape model construction based on principal component 
analysis—Given the aligned shapes {X(1), …, X(k), …, X(K)} (K = 25), a SSM was built 

by PCA (Cootes et al. 1995; Heimann and Meinzer 2009). PCA can decompose the shapes 

into a mean shape and a set of linearly uncorrelated shape variations which are the principal 

components, also called the modes of shape variations. Standard PCA starts from 

assembling the covariance matrix C, given by

(2)

Then, the eigenvalues and eigenvectors of the covariance matrix can be calculated. For this 

application, the number of points on each shape, N=5000, is much larger than K and the 

rank of the matrix C is K. Singular value decomposition was applied to obtain a subset of the 

eigenvalues and eigenvectors, and the other eigenvalues are all zeros. The SSM was 

constructed with the mean shape  and the modes of shape variation {V(1), …, V(K)} and 

the corresponding eigenvalues {λ(1), …, λ(K)} which were sorted from largest to smallest.

2.1.5 Shape decomposition and shape sampling—By using the SSM, a shape Y can 

be decomposed into (i.e., approximated by) the mean shape plus a linear combination of the 

modes (i.e., shape variation), given by

(3)

Here, the shape Y has been aligned to the mean shape , and M is the number of selected 

modes.

A shape Y can be sampled from the shape distribution, Eq.(3), using a set of SSM 

parameters {c1, …, cm, …, cM}. A large number of sampled shapes can represent the shape 

distribution and are more versatile than the original 25 shapes used in the SSM construction. 

In order to obtain a set of representative shapes, the selected modes must be able to explain a 

large percentage of the total shape variation, defined by
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(4)

In this study, the first three modes were selected (M=3) which explains 80.1% of the total 

shape variation. A total number of 729 shapes were obtained automatically by uniformly 

sampling the parameters {c1, c2, c3} in the range of −2 to 2, i.e., within 2 standard deviations 

of the mean shape.

2.2 Finite element modeling of AsAA

Finite Element (FE) analyses were performed on the 729 AsAA shapes which were 

prescribed AsAA tissue properties determined previously (Martin et al. 2013) using Abaqus/

Standard 6.14 (Simulia, RI). FE analyses consisted of two steps: 1) backward displacement 

method to estimate the unpressurized AsAA geometry, and 2) inflation of the unpressurized 

geometry to rupture. S4R shell elements were used during step 1, and to improve 

convergence S4 shell elements were used during step 2. The AsAA wall was prescribed a 

uniform thickness of 2mm (Martin et al. 2015) at the unpressurized state, which is the mean 

thickness based on our experimental data (Pham et al. 2013a). While assumed thickness is a 

limitation, it is currently not possible to measure wall thickness from CT images due to the 

partial volume effect (Barrett and Keat 2004). In all simulations, pressures were applied 

uniformly to the inner surface of the aorta models, and the boundary nodes of the aorta 

models, i.e. the proximal and distal ends of the model, were only allowed to move in the 

radial direction based on the local coordinate system. The FE simulations of all the shapes 

were run automatically via a custom Matlab (Mathworks, MA) program.

2.2.1. Constitutive modeling of AsAA tissue—A fiber reinforced hyperelastic 

material model based on the work of Gasser et al. (2006) was used to characterize the 

mechanical response of AsAA tissue. The tissues were hereby assumed to be composed of a 

matrix material with two families of embedded fibers, each with a preferred direction. The 

strain energy function can be expressed as

(5)

where C10 and C01 are material constants to describe the matrix material, k1 and k2 are 

material constants used to describe the fiber material,  is the first strain invariant, and 

is equal to the square of the stretch in the fiber direction, i. The fiber orientation was defined 

by  with  and , where the mean 

fiber orientation in the local coordinate system is described by θ, and κ is a dispersion 

parameter describing the distribution of the fiber orientation.

As the interest of this study lies in the geometrical effect on AsAA rupture risk, the material 

property of the AsAA tissue was fixed for all the simulations. The material model was fitted 
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to the seven protocol biaxial testing data of an AsAA tissue sample from a patient, 

representing the approximate mean AsAA tissue response (Figure 4) among the tested 

samples from the patients (Martin et al. 2015).

The equivalent strain from the tissue damage theory (Simo 1987) was used to define the 

failure properties of the AsAA tissue, by the expression

(6)

Where W is the strain energy calculated by using Eq.(5). Tissue failure was considered to 

occur when Ξs ≥ Ξf, where Ξf is the failure equivalent strain. The mean Ξf of 18.34(kPa)1/2 

determined through experimental tests on AsAA tissue from a previous study (Martin et al. 

2015) was used as the failure criterion. Equations 5 and 6 were implemented in Abaqus via a 

user-material subroutine. In this study, we use the failure equivalent strain as the rupture 

criterion, and the dynamic process of tissue rupture is not modeled.

2.2.2 Improved backward displacement method for unpressurized geometry 
estimation—As the AsAA shapes were obtained at in vivo configuration from CT scans 

under systolic pressure (120mmHg), directly applying the physiological loading pressure to 

these shapes would result in inaccurate calculations of the stress and strain fields in FE 

analysis. Thus, the unpressurized geometry of each shape was recaptured and used for FE 

analysis. Here, the backward displacement method (Bols et al. 2013) was utilized and further 

improved upon to restore the unpressurized geometry.

The improved backward displacement method is illustrated in Figure 5. In iteration i, the 

unpressurized geometry estimation Y0(i − 1) from the previous iteration is updated by 

adding a scaled difference between the pressurized geometry YsysFE(i − 1) and the in vivo 

geometry Yimg at the systole phase. The method can be expressed as

(7)

Here, Y0(i), Yimg and YsysFE(i) are vectors assembled from all the nodal coordinates. The 

scaling factor α is in the range of 0 to 1. The initial unpressurized geometry Y0(1) was set to 

the in vivo configuration geometry Yimg.

In the backward displacement method proposed by Bols et al. (2013), there is no scaling 

factor, i.e., α is always 1, and the in vivo pressure load is used throughout the iterations. This 

method resulted in FE convergence issues for our application: FE simulations break down 

due to the large changes in model shape from one iteration to the next. We found that a small 

α may prevent this problem; however, as α gets smaller, more iterations are needed to 

achieve a converged solution for Eq. 7. In this study, α was set to 0.5 which is approximately 

equal to the ratio between the size of an unpressurized geometry and the size of the 

corresponding in vivo geometry, and the maximum number of iterations was set to 10. In 

addition to ensure FE convergence, only half of the systolic pressure (60mmHg) was applied 
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at the first iteration, and from the second iteration, full pressure (120mmHg) was applied. 

With these improvements, all of the FE simulations converged, and all of the unpressurized 

geometries were obtained.

2.2.3 Inflation of AsAA until reaching the rupture criterion—Once an 

unpressurized geometry was obtained by using the improved backward displacement 

method, incremental pressure was applied to the unpressurized geometry until the rupture 

criterion is reached in section 2.2.1. Once the criterion is reached, an AsAA is considered as 

ruptured. Equivalent strain values at 4 layers of elements adjacent to the mesh boundaries 

were excluded in the analysis in order to avoid boundary effects. The failure pressure Pf, was 

extracted from the FE analyses at the time increment immediately preceding tissue failure 

(i.e. when Ξs = Ξf). The pressure risk ratio (PRR), Psys/Pf, as defined previously (Martin et 

al. 2013) was used as a measure of rupture risk. Pf varies with different shapes, and Psys is 

the constant systolic pressure (120mmHg). PRR ranges from 0 to 1 where a higher value 

indicates a higher risk of rupture. Patients with Pf lower than, or equal to, 160mmHg, 

representing the hypertension stage 2 pressure level, were considered to be at high rupture 

risk, which translates to a PRR higher than, or equal to, 0.75. Patients with Pf higher than 

160mmHg were assumed to have low rupture risk, corresponding to a PRR below 0.75.

2.3 Machine learning based rupture risk analysis using FE simulation results

2.3.1 Shape Features—For each shape at the systolic phase, four types of shape features 

were obtained: 1) maximum diameter, 2) the average curvature of the centerline, 3) the 

average curvature of the surface, and 4) the SSM parameters [c1, c2, c3]. Since a quad 

surface mesh is topologically equivalent to a rectangular grid, the surface consists of closed 

circumferential curves, i.e., a set of rings along the centerline. For each curve, the average 

position of the points on the curve is calculated, and the mean distance between the average 

position and each point on the curve is also calculated as the radius of the curve. The 

centerline is assembled from those average positions, and its average curvature is calculated. 

The maximum diameter is just the maximum value of the diameters of the curves. The 

surface curvature at each node is quantified as the mean-curvature (Botsch et al. 2010), and 

then the average curvature is calculated. The SSM parameters can be obtained from the 

statistical shape model by Eq.(3).

2.3.2 Classification—Based on the FE simulation results, the 729 sampled shapes were 

divided into low and high risk groups as described in section 2.2.3. Given this dataset 

consisting of the two groups, classifiers were built to take the feature of a shape as the input 

and predict the group index of the shape, i.e. low risk or high risk. For this study, support 

vector machine (SVM) classifiers (Chang and Lin 2011; Cortes and Vapnik 1995) were used 

with radial basis kernel. To evaluate the performance of a classifier, ten-fold cross validation 

was applied: all the data were randomly partitioned into ten subsets, then one subset was 

used as the testing set to evaluate the performance of the classifier, and the others were used 

as the training set to find the optimal parameters of the classifier. This process was repeated 

100 times to obtain mean and standard deviation of the performance scores (accuracy, 

sensitivity and specificity) on the testing sets. Accuracy was defined as (TP+TN)/(TP+TN

+FP+FN), sensitivity was defined as TP/(TP+FN), and specificity was defined as TN/(TN
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+FP), where true positive (TP) is the number of high risk shapes correctly identified as high 

risk; false negative (FN) is the number of high risk shapes incorrectly identified as low risk; 

true negative (TN) is the number of low risk shapes correctly identified as low risk; and false 

positive (FP) is the number of low risk shapes incorrectly identified as high risk.

2.3.3 Regression—The classifiers can only make a binary decision about the rupture risk 

of a shape. It would be more valuable if the PRR value could be directly inferred from each 

shape. Thus, regression methods were used to map shape features directly to PRR. Three 

types of regression methods were tested, linear regression, logistic regression and support 

vector regression (SVR). SVR (Chang and Lin 2011; Vapnik 1998) is a variant of SVM and 

can describe the non-linear relationships between shape features and PRR. The root mean 

square error (RMSE) was used to measure regression accuracy. To evaluate the performance 

of each regressor, ten-fold cross validation was applied, similar to the performance 

evaluation procedure for classification. The mean and standard deviation of the RMSE 

values on the testing sets were calculated from cross validation.

3. RESULTS

3.1 Statistical shape modeling

As shown in Figure 6, the first mode of shape variation mainly describes the overall changes 

in size. The second and the third modes mainly describe the diameter variations along the 

centerline, and the variations in centerline curvature and surface curvature.

3.2 Finite Element Simulation of AsAA Inflation

Using the improved backward displacement method, the unpressurized geometries of all the 

sampled shapes (729 shapes) were obtained with an accuracy of approximately 1% within 

10 iterations. It took about 30 minutes on average to estimate an unpressurized geometry on 

a PC with a 3.6GHz quad core CPU and 32GB RAM. The node-to-node mean distance error 

was calculated for each pair of pressurized geometry, YsysFE(i), and systolic geometry, Yimg, 

at each iteration i, and normalized by the maximum radius of Yimg. The mean and standard 

deviation of the normalized distance errors calculated at each iteration across all the shapes 

are shown in Figure 7.

AsAA inflation was simulated from the unpressurized geometries, and the PRR was 

obtained for all the shapes. The results are visualized in Figure 8, where a subset of the 

shapes are color-coded with their pressure risk ratios and arranged in the SSM parameter 

space. Note that several large shapes had low PRR, while several small shapes had high 

PRR.

3.4 Classification based rupture risk analysis

SVM classifiers were built and tested for different shape features to identify shapes with low 

or high rupture risks. The performance of the classifiers on the testing sets from ten-fold 

cross validation is reported in Table-1. The classification performance of the individual 

intuitive shape features, i.e. diameter, curvature, were fairly low. When each of these features 

Liang et al. Page 9

Biomech Model Mechanobiol. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were combined, the classification performance was improved, however, it was still inferior 

to that of the SSM parameters.

For the purpose of visualization of the results in Table-1, we applied two of the classifiers to 

the whole dataset, and drew the decision boundaries (line or surface), which are shown in 

Figure 9. It can be clearly seen that the surface generated by SVM using the SSM 

parameters can delineate the low and high risk shapes more accurately.

Rule-based classification of rupture risk—To mimic the diameter-based clinical 

decision rule on electively repair (Coady et al. 1997; Davies et al. 2002), a rule-based 

classifier was tested, where a shape is deemed high risk if the maximum diameter is larger 

than 5.5cm. This classifier had an accuracy of 53.1%, a sensitivity of 7.8%, and a specificity 

of 100% on the whole dataset of the 729 sampled shapes.

3.5 Regression based rupture risk analysis

Linear regression, logistic regression and support vector regression were performed to find 

the relation between shape features and PRR. The performance of the regressors (RMSE 

values) on the testing sets from ten-fold cross validation is listed in Table-2. The RMSE was 

similar for all of the shape features using linear and logistic regression methods. The RMSE 

was lowered using SVR with a combination of the intuitive shape features, and was further 

reduced by approximately 50% using SVR with the SSM parameters.

For the purpose of visualization of the results in Table-1, two of the regressors were applied 

to the whole dataset. The regression results (line or iso-surfaces) are plotted with the PRR 

data and prediction errors in Figure 10. The magnitude of prediction errors of the diameter-

based regressor were large, particularly for higher PRRs where the prediction errors became 

increasingly negative, indicating that the diameter regressor may underestimate high PRR. 

The prediction errors for the SSM parameter based regressor were much smaller and more 

uniformly distributed.

4. DISCUSSION

This study lies in the broad field of computer-aided diagnosis (Doi 2008; Ginneken et al. 

2011; Suzuki 2012) in which computer algorithms are developed to assist clinicians in 

decision making. We proposed a novel approach combining FE analysis and machine 

learning techniques including SSM, SVM and SVR, to study the relationship between shape 

features and a risk metric of AsAA. To our best knowledge, it is the first time that these 

machine learning techniques are used to establish the nonlinear relationship between shape 

features and aneurysm risk predicted by FE analysis. We also developed algorithms for 

quad-surface remeshing and improved the backward displacement algorithm for recovering 

unpressurized geometries.

Training data are essential for machine learning. In this study, only 25 sets of patient image 

data were used; however, by using the SSM to sample the shape distribution, 729 shapes 

were obtained for algorithm training and testing. Those shapes could be considered as 

belonging to 729 virtual patients. A nice property of the SSM developed in this study is that 
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it was constructed with quad elements by using the surface remeshing algorithms, which are 

preferred over triangular elements for FE analysis, and it is known that quad mesh 

generation is a challenging task (Alliez et al. 2007; Bommes et al. 2013; Botsch et al. 2010). 

The surface remeshing algorithms can be used for other FE applications. The risk of each 

shape was predicted by FE analysis, and the FE models incorporated average AsAA tissue 

thickness, mean elastic response and failure properties derived from experiments (Martin et 

al. 2015; Martin et al. 2013; Pham et al. 2013a), and accurately estimated unpressurized 

geometries by using the improved backward displacement method. The improved backward 

displacement approach can potentially be used for other applications, and is simple to 

implement compared to alternative methods (Gee et al. 2010; Lu et al. 2007; Raghavan et al. 

2006; Weisbecker et al. 2014).

The FEA results for 729 shapes coincide with the clinical findings that rupture risk is high 

when the aortic diameter is larger than 5.5cm, yet a small diameter does not necessarily 

mean low rupture risk. Therefore, the 5.5cm diameter rule for surgical intervention may not 

be sensitive enough to identify patients at high risk with small AsAA size. Machine learning 

algorithms were trained on the shape features and FEA results. The accuracy of the machine 

learning algorithms to predict AsAA rupture risk was dependent on the type of shape 

features. Using the SSM parameters as the shape features has led to a much higher accuracy 

for classification and regression than the intuitive geometric features, even when a 

combination of these features was used. These observations are in line with the results in 

(Hua and Mower 2001) which also showed that simple geometric characteristics cannot 

reliably predict AAA wall stresses. Interestingly, while using the SSM parameters, small 

AsAAs (low c1) associated with high risk were also identified (Fig. 8). The SVM 

classification and SVR regression accuracy obtained with the SSM parameters in this study, 

i.e. SVM classification accuracy of 95.58% and SVR regression error of 0.0332, 

demonstrate that the machine learning approach may replace FE analysis by learning the 

nonlinear relationship between the input and the output of FE analysis.

As more patient data are collected, more modes of shape variation can be included in the 

SSM to further improve the classification and regression accuracy. The benefit of this 

approach is that for an input AsAA shape, it only takes a few seconds for SVM or SVR to 

produce the output, which is magnitudes faster than FE simulation and eliminates numerical 

convergence issues associated with FEA. By using the image segmentation method (Liang et 

al. 2016) we recently developed, the time for geometry reconstruction will be reduced to a 

few minutes.

Limitation and Future work

Since the goal of this study was to evaluate shape features as risk predictors, we kept the 

other variables fixed while varying the shape, which is similar to related approaches in the 

literature (Celi and Berti 2014; Choke et al. 2005; Doyle et al. 2009; Fillinger et al. 2002; 

Georgakarakos et al. 2010; Raut et al. 2013) that mainly studied the effect of intuitive 

geometric features on the prediction of wall stress by keeping material parameters and wall 

thickness fixed. Therefore, this study has the following limitations: (1) one set of 

constitutive parameters which represents only the mean response, (2) the mean material 
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strength (i.e. failure threshold), (3) a mean thickness, (4) removal of branching vessels at the 

arch, and (5) neglect of residual stress. While (5) is very challenging to resolve, it is possible 

to incorporate the factors (1)–(4) into the machine learning approach in our future work.

It is straightforward to include the branching vessels in the mesh model by applying the 

remeshing algorithms to the surface of the branching vessels and stitching all the mesh 

segments together. It is also possible to obtain the heterogeneous thickness of the aortic wall 

in vivo by using advanced MR imaging (Dieleman et al. 2014). To use thickness information 

as a risk indictor, similar to the SSM model, a statistical thickness model (STM) can be built 

from training data, for which PCA can be used to describe the variations of thickness. Thus, 

STM parameters will be combined together with SSM parameters as risk indictors.

To incorporate information about material elastic property, the geometries at two cardiac 

phases can be used. Based on the study in (Wittek et al. 2016; Wittek et al. 2013), the 

parameters of a given constitutive model can be identified from the aorta shapes at two 

cardiac phases with known blood pressure level (e.g. systole and diastole), which implies 

material elastic property information is contained in the two geometries. Thus, we will build 

two SSM models corresponding to the two cardiac phases, representing the joint distribution 

of shape and material elastic property.

The threshold of tissue failure (i.e. material strength) can vary among different patients, and 

modeling of material strength is a very challenging task. We will try to use statistical 

methods (Pham et al. 2013a; Vande Geest et al. 2006) to build the probability distributions 

of material strength in age/gender/genetic groups, and these distribution models can be used 

to perform a sensitivity analysis, i.e., providing a mean and standard deviation of risk for 

each patient. In the machine learning approach, instead of just learning a scalar risk, the 

mean and standard deviation will both be learned, i.e., learning the statistical relationship 

instead of the deterministic one.

5. CONCLUSION

In this study, we proposed a machine learning approach to establish the relationship between 

shape features and AsAA risk predicted from FE analysis. CT image data for 25 AsAA 

patients were used for building a SSM of the AsAA to describe the distribution of shapes 

across the population, for which quad surface remeshing was preformed to maintain mesh 

correspondence between different shapes. A total of 729 shapes were sampled from the 

shape distribution, and utilized in FE analyses to determine the risk of each shape. SVM 

classifiers and SVR regressors using different shape features were trained with the FE 

analysis results to determine the relationship between shape features and the risk. Using the 

SSM parameters as the shape feature, SVM classification achieved an accuracy of 95.58%, 

and SVR regression achieved an error of 0.0332, which indicates that SVM and SVR 

coincide with FE analysis and SSM parameters are strong shape features. This approach 

may also serve as a faster surrogate for FEA. In future work, we will incorporate material 

properties and inhomogeneous thickness in the machine learning approach to build a 

practical system for noninvasive AsAA risk assessment.
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APPENDIX

The surface remeshing method has three steps:

Step-1: find the shortest path between a node on the on the left boundary and a node on the 

right boundary. Given a pair of nodes on the left and right boundaries, the geodesic path 

between them is recovered. The points on the geodesic path are on the 3D surface, but may 

not be the nodes of the mesh. Then a set of geodesic paths are obtained for every pair of 

boundary nodes, and the shortest path is selected as a cut-line. The surface mesh is cut open 

along the cut-line as shown in Figure 3(a), and it becomes topologically equivalent to a 

rectangle.

Step-2: compute mesh-parameterization of the 3D surface mesh. The 3D surface mesh, 

which is cut along the cut-line is mapped onto a 2D rectangular region, which is called 

mesh-parameterization. After the mapping, the 3D surface mesh is transformed to a 2D 

planar triangle mesh as shown in Figure 3(b).

Step-3: divide the 2D rectangular region into a 2D quad mesh and transform it to 3D. The 

2D rectangular region is discretized into a 2D mesh with rectangular elements (i.e. quad 

elements), as shown in Figure 3(c). Then the transform from the points of the 2D quad mesh 

to the 3D surface is determined by barycentric interpolation (Botsch et al. 2010) of the 2D 

triangle mesh. After transforming the 2D quad mesh to the 3D surface and sealing the 

transformed mesh along the cut-line, a 3D surface mesh with quad elements is obtained, as 

shown in Figure 3(d).

We utilized the exact geodesic path finding algorithm proposed by Surazhsky et al. 
(Surazhsky et al. 2005), for Step-1. Based on the work of Yoshizawa et al. (Yoshizawa et al. 

2004), we developed a stretch-minimizing based algorithm for Step-2, and it has two stages:

Stage-1 of Step-2: find an initialization mesh-parameterization based on barycentric 

mapping and mean value theorem (Botsch et al. 2010). Barycentric mapping is used to build 

a parametrization of the 3D triangle surface mesh, i.e., transforming the 3D surface mesh to 

a 2D planar triangle mesh. The boundary of the 2D planar mesh forms a rectangle. Each 

triangle Pi = (p1, p2, p3) of the 3D surface mesh is mapped to a triangle Qi = (q1, q2, q3) of 

the 2D planar mesh. Each node pi = [xi, yi, zi] of the 3D surface mesh is mapped to a node qi 

= [ui, vi] of the 2D planar mesh. Here [xi, yi, zi] denotes 3D coordinate, and [ui, vi] denotes 

2D coordinate. Based on barycentric mapping, the node coordinates of the 2D planar mesh 

are determined by

(1)
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where M is the number of interior nodes and N is the total number of nodes. By using the 

mean value theorem, each coefficient is determined by

(2)

where ai,j > 0 if pi and pj are connected by an edge, otherwise ai,i = − Σj≠i ai,j and ai,j = 0. θi,j 

and δi,j are angles between the edge from pi to pj and its two adjacent edges respectively. 

After the coefficients {ai,j} are calculated, the node coordinates of the 2D planar mesh are 

obtained by solving Eq. (1).

Now, an inverse transform from a point on the 2D plane to the 3D surface can be obtained: 

let q be a point inside Qi, then its corresponding point p on the 3D surface is determined by 

an affine mapping, namely barycentric interpolation:

(3)

where < qa, qb, qc > is the area of the triangle defined the three points.

Stage-2 of Step-2: Refine the mesh-parameterization based on stretch minimization. After 

Stage-1, the 3D surface mesh is mapped onto a 2D parametric plane, resulting a 2D planar 

mesh composed of the same number of nodes and triangle elements. The goal of this 

refinement stage is to change the node coordinates of the 2D planar mesh such that mesh 

distortion is minimized. Mesh distortion is measured by the average stretch μ, given by

(4)

where A(Pi) denote the area of the triangle Pi;  is the local stretch associated with triangle 

Pi, and it is defined as

(5)

where Γ is max eigenvalue and Γ is the min eigenvalue of the deformation gradient tensor 

derived from the affine mapping (Eq.(3)). We utilize the algorithm proposed by Yoshizawa 

et al. (Yoshizawa et al. 2004) to find the optimal node coordinates such that the average 

stretch μ is minimized. This algorithm has two iteration steps:

1. Update the node coordinates of the 2D triangle mesh by minimize the local 

energy function

(6)
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In this step, the coefficients {ai,j} are fixed. The solution of this minimization 

problem is found by solving a set of linear equations.

2. Update each coefficient by using each local stretch

(7)

The initial values of the coefficients are obtained in Stage-1

After a few iterations, the average stretch μ will be reduced. Then the rectangle region is 

discretized to a 2D planar quad mesh as shown in Figure 3(c). Using the affine mapping (Eq.

(3)) each node of the 2D planar quad mesh is transformed to the 3D surface. As a result, the 

3D surface is now represented by a quad mesh as shown in Figure 3(d).
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Figure 1. 
Diagram of the modeling, simulation, and evaluation process.
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Figure 2. 
(a) The aorta segmented from a 3D CT image. (b) Trimmed aorta surface in gold color.
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Figure 3. 
Aorta surface quad-remeshing process. (a) Input 3D triangle mesh. (b) 2D triangle mesh, 

i.e., parametrization of (a). (c) 2D quad mesh. (d) Output 3D quad mesh.
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Figure 4. 
Seven protocol biaxial response and model fit in the (a) circumferential and (b) axial 

directions. (Table) Fitted model parameters. The goodness of fit is R2. T11 is in 

circumferential direction and T22 is in axial direction.
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Figure 5. 
Diagram of the improved backward displacement method and inflation to rupture
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Figure 6. 
Examples of the first three modes of shape variation. The mean shape is shown in Figure 5.
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Figure 7. 
Mean and standard deviation of the normalized distance errors at each iteration
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Figure 8. 
Shapes color-coded with pressure risk ratios and arranged in SSM parameter space
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Figure 9. 
(a) Classification result using max diameter as the shape feature. Blue dots indicate shapes 

in the low risk group. Red dots indicates shapes in the high risk group. Dark circles indicate 

misclassified shapes. The green line is the decision boundary (max diameter at 43.05mm). 

(b) Classification result using the SSM parameters as the shape feature. Blue and red dots 

indicate low and high risk shapes respectively. The green surface is the decision boundary.
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Figure 10. 
(a) Linear regression using max diameter as shape feature where the red line is the 

regression line, and (b) the associated prediction errors versus PRR. (c) Support vector 

regression using the SSM parameters as shape feature, where each color-coded surface 

corresponds to a predicted PRR, i.e., isosurface of PRR, and (d) the associated prediction 

errors versus PRR.
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Table-1

Classification Performance

Feature Accuracy (%) Sensitivity (%) Specificity (%)

Maximum Diameter 69.86 ± 5.28 68.69 ± 7.25 71.19 ± 7.97

Centerline Curvature 58.78 ± 5.32 69.40 ± 8.14 48.37 ± 7.29

Surface Curvature 69.71 ± 5.11 76.29 ± 6.55 63.23 ± 7.62

All Above Features 87.01 ±3.96 86.04 ± 5.22 87.96 ± 5.83

SSM Parameter [c1, c2, c3] 95.58 ±1.89 95.64 ± 3.27 95.55 ± 3.00
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Table-2

Regression Performance (RMSE)

Feature Support Vector Regression Logistic Regression Linear Regression

Maximum Diameter 0.1270 ± 0.0125 0.1245 ± 0.0095 0.1234 ± 0.0093

Centerline Curvature 0.1325 ± 0.0110 0.1303 ± 0.0087 0.1301 ± 0.0087

Surface Curvature 0.1196 ± 0.0105 0.1192 ± 0.0090 0.1181 ± 0.0092

All Above Features 0.0686 ± 0.0074 0.1164 ± 0.0089 0.1152 ± 0.0089

SSM Parameter [c1, c2, c3] 0.0332 ± 0.0035 0.1143 ± 0.0085 0.1120 ± 0.0088
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