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Abstract

The Neutral Theory of Molecular Evolution is considered the most powerful theory to understand the evolutionary behavior of proteins.

One of the main predictions of this theory is that essential proteins should evolve slower than dispensable ones owing to increased

selective constraints. Comparison of genomes of different species, however, has revealed only small differences between the rates of

evolution of essential and nonessential proteins. In some analyses, these differences vanish once confounding factors are controlled for,

whereas in other cases essentiality seems to have an independent, albeit small, effect. It has been argued that comparing relatively

distant genomes may entail a number of limitations. For instance, many of the genes that are dispensable in controlled lab conditions

may be essential in some of the conditions faced in nature. Moreover, essentiality can change during evolution, and rates of protein

evolution are simultaneously shaped by a variety of factors, whose individual effects are difficult to isolate. Here, we conducted two

parallel mutation accumulation experiments in Escherichia coli, during 5,500–5,750 generations, and compared the genomes at

differentpointsof theexperiments.Ourapproach(ashort-termexperiment,underhighlycontrolledconditions)enabledus toovercome

many of the limitations of previous studies. We observed that essential proteins evolved substantially slower than nonessential ones

during our experiments. Strikingly, rates of protein evolution were only moderately affected by expression level and protein length.
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Introduction

Rates of protein evolution exhibit a bewildering diversity, span-

ning approximately three orders of magnitude. Whereas the

sequence of certain proteins remains basically unaltered over

large evolutionary periods, others can quickly accumulate an

important number of amino acid replacements (Zuckerkandl

and Pauling 1965; Dickerson 1971; Li et al. 1985). Protein

rates of evolution depend mostly on the selective constraints

(purifying selection) to which they are subjected, with differ-

ent proteins evolving under very different constraints, and

hence presenting different rates of evolution. What factors

determine the strength of the selective constraints acting on

protein evolution, and their relative importance, remains a

fundamental question in Evolutionary Biology, and has been

the arena of heated debates among those adducing an adap-

tive value to observable changes in proteins and those
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invoking the Neutral Theory to explain the observed variations

in the rates of evolution among proteins.

Initial attempts to explain the variability of protein rates of

evolution focused on the different importance and functional

density of proteins. Kimura and Ohta (1974) deduced from

the Neutral Theory of Molecular Evolution (Kimura 1968,

1983) that proteins or protein domains that are functionally

less important ought to evolve faster than those that are func-

tionally more important, as a lower fraction of mutations are

expected to be neutral in important proteins. Zuckerkandl

(1976) postulated that the strength of purifying selection

acting on a protein depends on the proportion of amino

acids involved in the protein’s function (i.e., its “functional

density”). Wilson et al. (1977) proposed that the rate of evo-

lution of a protein should be influenced by the effect of a

substitution on the function of the protein and the probability

that an organism can survive and reproduce without that pro-

tein (dispensability). Limited by the amount of data available at

that time, however, these hypotheses could only be supported

by anecdotal examples.

In the last years, the development of diverse high-

throughput techniques has allowed scientists to investigate

the effects of multiple factors on the rates of protein evolu-

tion (for review, see Herbeck and Wall 2005; Koonin 2005;

Koonin and Wolf 2006; Pál et al. 2006; Rocha 2006; Choi

and Hannenhalli 2013; Alvarez-Ponce 2014; Zhang and

Yang 2015). Surprisingly, rates of protein evolution seem

to be mostly determined by levels and patterns of gene ex-

pression (Pál et al. 2001; Rocha and Danchin 2004;

Drummond et al. 2005, 2006; Wilke and Drummond

2006; Drummond and Wilke 2008). Unexpectedly, the

rates of evolution of essential genes (those whose knock-

out results in lethality or sterility) are only slightly lower

than those of nonessential genes, particularly once covaria-

tion of both rates of evolution and essentiality with expres-

sion levels is corrected for. In fact, early analyses in rodents

found no significant differences between the rates of evolu-

tion of essential and nonessential genes once genes involved

in the immune system, which are known to often evolve

under positive selection, were removed from the analysis

(Hurst and Smith 1999). Similarly, in yeasts no differences

were observed between essential and nonessential genes,

and only a weak positive correlation was detected between

rates of protein evolution and dispensability (Hirsh and Fraser

2001), which vanished once expression levels were corrected

for (Pál et al. 2003). Several subsequent analyses in bacteria

(Jordan et al. 2002; Dötsch et al. 2010; Wei et al. 2013; Ish-

Am et al. 2015; Luo et al. 2015), yeasts (Hirsh and Fraser

2003; Yang et al. 2003; Chen and Xu 2005; Wall et al. 2005;

Zhang and He 2005; Kim and Yi 2007; Plotkin and Fraser

2007; Wang and Zhang 2009; Xia et al. 2009; Theis et al.

2011; Vishnoi et al. 2011; Waterhouse et al. 2011),

Caenorhabditis (Castillo-Davis and Hartl 2003; Cutter et al.

2003; Luz and Vingron 2006), Drosophila (Larracuente

et al. 2008; Waterhouse et al. 2011), and mammals

(Liao et al. 2006; Waterhouse et al. 2011; Luisi et al. 2015)

have shown that essential and lowly dispensable genes do

evolve slower than nonessential and highly dispensable

genes. However, the differences are usually very small, and

sometimes negligible once covariation with expression levels

is corrected for (Rocha and Danchin 2004; Drummond et al.

2006). Nonetheless, some authors have advised caution re-

garding this claim, as a stronger effect of essentiality can be

observed when using certain statistical techniques (Wall et al.

2005; Plotkin and Fraser 2007; Wei et al. 2013). In

Escherichia coli, all analyses in which the confounding

effect of expression level has been controlled for have

shown that essentiality has a very small effect (Rocha and

Danchin 2004; Drummond et al. 2006), or an effect that is

weak compared with that of expression level and its surro-

gates (Wei et al. 2013).

Thus far, analyses of the effect of essentiality and dispens-

ability on rates of protein evolution have relied on rates of

evolution estimated by comparison of different, often phylo-

genetically distant, species. It has been argued, that this ap-

proach may have entailed a number of limitations. First, most

analyses have relied on estimates of essentiality and dispens-

ability obtained under the favorable conditions of the lab,

which may not resemble the conditions under which the com-

pared species diverged (Brookfield 1992; Hurst and Smith

1999; Pál et al. 2006; Wolf 2006). Thus, many of the genes

that are not essential in the lab may be essential under some

of the conditions faced in nature (but see Wang and Zhang

2009). Second, essentiality itself is an evolving feature, and

hence genes that are essential in one species may be dispens-

able in closely related species (Gerdes et al. 2003; Roemer

et al. 2003). Therefore, estimates of essentiality in one species

are only approximate estimates of essentiality over the diver-

gence period studied. Indeed, Zhang and He (2005) found

that the differences between essential and nonessential

genes in yeast increased significantly when rates of protein

evolution were estimated from closely related species. Third,

during the divergence of essential genes, many mutations are

filtered by natural selection, particularly deleterious or slightly

deleterious mutations (Kimura et al. 1963; Kimura 1968;

Lanfear et al. 2014). When comparing different species, only

fixed mutations are accounted for, whereas many are lost

neutrally or by purifying selection depending on the effective

population size, providing a poor picture of the tolerance of

the organism to mutations in its genes. Fourth, high rates of

protein evolution can be the result of both positive selection or

relaxed purifying selection, and the former can only be de-

tected under certain conditions (Anisimova et al. 2001). Fifth,

the combined and correlated effect of many factors on protein

evolution (i.e., expression levels, protein lengths, network po-

sition, etc.) makes it difficult to isolate the individual effect of

essentiality (Koonin and Wolf 2006; Larracuente et al. 2008;

Alvarez-Ponce 2014). This limitation, although alleviated by
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the use of multivariate analyses, remains unresolved, as no

single approach seems to be able to completely disentangle

the factors influencing the rates of protein evolution

(Drummond et al. 2006; Wolf et al. 2006; Ingvarsson 2007;

Kim and Yi 2007; Plotkin and Fraser 2007; Alvarez-Ponce

2014). Finally, deleterious mutations may have been restored

by compensatory mutations, within the same gene or in in-

teracting genes, diluting the effects of mutations on essential

proteins (Codoñer and Fares 2008; Lovell and Robertson

2010). It is likely that, combined, these limitations may have

led to an underestimation of the effect of essentiality on pro-

tein rates of evolution.

Are organisms less tolerant of amino acid replacements in

essential proteins than in nonessential proteins? Here, we ad-

dress this question by studying evolution on a much shorter

evolutionary time-scale, and under controlled conditions that

resemble those in which essentiality was previously deter-

mined. For that purpose, we performed two parallel evolution

experiments using E. coli under controlled conditions, main-

taining a very small effective population size (close to 1), over a

period comprising 5,500–5,750 generations of evolution. This

is expected to alleviate, to a great extent, many of the prob-

lems described earlier (see the “Discussion” section). Contrary

to what has been previously observed, we found that essen-

tiality is a very strong determinant of protein rates of evolu-

tion: nonessential proteins evolved 27–65% faster than

essential ones. Remarkably, gene expression and protein

length had only a moderate impact, if any, on protein rates

of evolution in our experiments.

Results

Accumulation of Mutations in Two Parallel Experimental
Evolution Lines of E. coli

Our evolution experiment started with a colony of the strain of

E. coli K12 MG1655 lacking the repair gene mutS (�mutS

strain). Using this strain enabled a faster rate of evolution

(~1,000 times faster than a standard E. coli K12 MG1655

strain; Bjedov et al. 2007; Turrientes et al. 2013), which en-

abled our lines to accumulate a large number of mutations in

a relatively short time. From a colony of this strain, two line-

ages were created (lines A and B). Each line was systematically

passaged on rich Luria–Bertani (LB) medium, by re-streaking a

single colony every ~24 h on a fresh Petri dish. A total of 260

passages were conducted for line A, and 250 for line B (equiv-

alent to ~5,720 and ~5,500 E. coli generations, respectively).

A “living” record of the evolution experiment was built for

each of these evolution lines by preparing a glycerol stock that

included samples of the evolving populations isolated every

~10 passages (i.e., every 220 generations). A total of seven

colonies were sequenced, including line A after 100, 200,

250, and 260 passages, and line B after 150, 200, and 250

passages (fig. 1).

When comparing each genome to the ancestral �mutS

genome (Sabater-Muñoz et al. 2015), a total of 291 substitu-

tions were identified in genome A100 (line A after 100 pas-

sages), 552 in genome A200, 695 in A250, and 733 in A260.

With very few exceptions, substitutions at any time point in-

cluded those for the previous points, consistent with the clonal

propagation scheme used: A200 is a descendant of A100,

A250 is a descendant of A200, and A260 is a descendant

of A250. Likewise, a total of 724 substitutions were identified

in genome B150, 1,041 in B200 and 1,281 in B250. The mu-

tation spectra at the end of the experiments are summarized

on supplementary table S1, Supplementary Material online. A

total of 126 genes were lost in line A (47 due to large dele-

tions, 16 by nonsense mutations, and 63 by frameshift muta-

tions), and 90 were lost in line B (8 due to large deletions, 20

due to nonsense mutations, and 62 due to frameshift muta-

tions). Seven of the genes lost in line A and five of the genes

lost in line B were deemed essential by Gerdes et al. 2003.

FIG. 1.—Mutation accumulation experiment scheme. In each pas-

sage, part of one colony was picked and used to found the new genera-

tion. Genomes for line A were sequenced after 100, 200, 250, and 260

passages. For line B, genomes were sequenced after 150, 200 and 250

passages.
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Genes lost in line B include mutT, ogt and gph, responsible for

DNA repair, which may explain why line B evolved much faster

than line A. This makes the results for line B particularly rele-

vant for our purposes. A Gene Ontology enrichment analysis

of lost genes reveals that they are enriched in unclassified

proteins (in terms of biological process, molecular function

and cellular component). In addition, lost genes in line A are

33.7-fold enriched in genes involved in histidine biosynthesis.

Consistent with previous observations in an E. coli strain

deficient for the DNA repair machinery (Lee et al. 2012),

98% of point mutations accumulated in line A were transi-

tions. However, in line B this fraction was only 45%, due

mostly to a very high incidence of A!C and T!G mutations

(supplementary table S2, Supplementary Material online). At

the end of the experiments, the genome of line A had accu-

mulated a total of 174 synonymous and 304 nonsynonymous

substitutions, and that of line B had accumulated 215 synon-

ymous and 705 nonsynonymous substitutions. Both synony-

mous and nonsynonymous substitutions accumulated in a

molecular clock fashion during the experiments, with no

signs of saturation of either synonymous or nonsynonymous

genome sites (fig. 2). In the remainder of this article, we focus

on the mutational landscapes at the end of the experiment

(i.e., genomes A260 and B250), as they contain the highest

number of mutations and are therefore the most informative

to study protein rates of evolution; nevertheless, the tables

include the results for all intermediate genomes.

The evolution of both lines exhibited significant parallel-

isms. A total of 10 genes were lost in parallel in both lines.

In order to evaluate the statistical significance of this overlap,

we performed a permutation test. In each permutation, two

lists of E. coli genes (one of size 126 and another of size 90)

were obtained randomly, and the number of genes present in

both lists was recorded. This process was repeated 10,000

times. The average number of overlapping genes was only

2.54, and only one of the permutations exhibited an overlap

higher than or equal to 10 genes (P = 0.0001), indicating that

the observed degree of overlap is significantly higher than

would be expected if genes were lost at random. Similar re-

sults were obtained when the analysis was restricted to nones-

sential genes (number of genes lost in both lines: 8, average

number of overlapping genes in the simulations: 2.62,

P = 0.0041).

A total of 40 substitutions (17 synonymous and 23 non-

synonymous) occurred convergently at the same positions in

both mutation accumulation lines. To assess the statistical sig-

nificance of this number, we compiled a list of all mutations

affecting coding regions in line B (e.g., mutation 1 implied

substitution of codon “AAT” by codon “AAG” at position

428 of gene aaeB), and we randomized the position of

these mutations a total of 2,500 times. In each randomization,

each mutation was randomly reassigned to any position of the

genome with the same initial codon (e.g., in randomization 1,

mutation 1 was randomly reassigned to codon 97 of gene

pgpC, which before the mutation was an “AAT” codon),

and it was counted the number of mutations that were

shared between the randomized genome and line A. On av-

erage, both sets of mutations exhibited an overlap of only

0.333 mutations (ranging from 0 to 4), indicating that the

observed degree of convergence is much higher than would

be expected if mutations had accumulated randomly.

Essential Proteins Evolved Substantially Slower than
Nonessential Proteins during Our Short-Term Evolution
Experiments

The genome of our ancestral line (the �mutS colony that we

used as parental genome) contains a total of 4,237 putatively

functional protein-coding genes. Out of these, 611 (14.4%)

were determined to be essential (i.e., deletion of these genes

results in lethality or inability of cells to divide), and 2,981 were

deemed nonessential by Gerdes et al. (2003). The rest could not
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FIG. 2.—Accumulation of synonymous (white) and nonsynonymous (black) mutations in two parallel mutation accumulation lines.
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be classified for different reasons (Gerdes et al. 2003).

The coding regions of essential and nonessential genes in our

ancestral line exhibit virtually identical nucleotide compositions

(supplementary table S3, Supplementary Material online).

We inferred the strength of purifying selection acting on

protein-coding genes from the nonsynonymous to synony-

mous divergence ratio (o= dN/dS, where dN is the number of

substitutions per nonsynonymous position, and dS is the

number of substitutions per synonymous site). Assuming

that synonymous mutations are neutral, values of o<1,

o= 1, or o>1 are indicative of purifying selection filtering

out nonsynonymous substitutions, genes evolving neutrally,

or positive selection, respectively. The small number of sub-

stitutions observed in our relatively short evolution experi-

ments does not allow calculating dN/dS values for individual

genes, as many genes have accumulated no substitutions,

and no gene has accumulated enough substitutions to infer

dN/dS accurately. Therefore, we decided to group genes in

two categories, essential and nonessential, and to calculate

the overall dN/dS within each group. For that purpose, two

concatenomes were generated: one for essential and an-

other for nonessential genes. Genes that had been lost at

the end of our experiments (126 in line A and 90 in line B)

were not included in our analyses.

Comparison of the parental genome and the evolved ge-

nomes revealed higher dN/dS values for nonessential genes

than for essential genes in both evolving lines, A and B. For

genome A260, dN/dS was 0.451 for essential genes and 0.572

(i.e., 27% higher) for nonessential genes. For genome B250,

dN/dS was 0.651 for essential genes and 1.071 (i.e., 65%

higher) for nonessential genes (table 1 and fig. 3). A Fisher’s

exact test showed that o= 1.071 is not significantly >1

(P = 0.443) for B250 nonessential genes, indicating that posi-

tive selection cannot be invoked. Therefore, our results indi-

cate that essential genes evolved under stronger purifying

selection than nonessential genes.

At the end of the evolution of line B (genome B250), es-

sential genes had accumulated a total of 35 synonymous and

71 nonsynonymous substitutions, and nonessential genes

had accumulated a total of 171 synonymous and 574 non-

synonymous substitutions (table 1). The ratio of nonsynon-

ymous to synonymous substitutions is significantly higher for

nonessential genes (574/171 = 3.34) than for essential genes

(71/35 = 2.03; Fisher’s exact test, P = 0.029), consistent with

our interpretation that the latter evolve under stronger se-

lective constraints. A similar, but less acute, trend is observed

for genome A260 (essential genes accumulated 27

synonymous and 38 nonsynonymous substitutions, whereas

nonessential genes accumulated 137 synonymous and 244

nonsynonymous substitutions), although the difference in o
between essential and nonessential genes was not signifi-

cant (38/27 = 1.407; 244/137 = 1.781; Fisher’s exact test:

P = 0.406). This might be due, at least in part, to the fact

that line A has accumulated fewer mutations than line B,

which may be limiting the power of the test. When we

repeated our analyses using the model M0 (implemented

in the codeml program, PAML package; Yang 2007), we

observed that the dN/dS ratios of nonessential genes were

significantly higher than those of essential genes in all ge-

nomes except genome A200 (genome A260: P<10� 156;

genome B250: P = 2.1�10� 8; table 1 and fig. 3). In order to

discard the possibility that our results might have been

biased by the patterns of evolution of long proteins (which

contribute disproportionally to our concatenated align-

ments), we repeated our analyses after removing the longest

proteins (the top 33.33%). Similar results were obtained,

with the likelihood ratio test revealing slower rates of

evolution for essential proteins in all genomes except A260

(supplementary table S4, Supplementary Material online).

In order to discard the possibility that the faster rates of

evolution of nonessential proteins may be due to confound-

ing factors such as these proteins having a different amino

acid composition, or their encoding genes having a different

codon composition, we compiled a list of all mutations af-

fecting coding regions in line B (as above), and we performed

the following randomization a total of 2,500 times. First,

each mutation was randomly reassigned to any position of

the genome with the same initial codon (as above). Second,

we obtained a concatenome for essential genes, and an-

other for nonessential genes, as described earlier. Third,

the dN/dS of essential and nonessential genes were com-

pared. The median of the ratio ononessential/oessential was

1.017 (i.e., in the randomized alignments nonessential pro-

teins evolved only 1.7% faster than essential ones), and only

in 34 of the 2,500 randomizations the ratio was higher than

or equal to the ratio observed in our evolution experiment

(ononessential/oessential = 1.65; table 1), indicating that the ratio

observed in our experiment is not expected under a random

distribution of mutations among essential and nonessential

genes (P = 34/2,500 = 0.014). When we used the mutations

accumulated in line A in our analyses, the median

ononessential/oessential ratio was 0.999 (i.e., in the randomized

alignments essential proteins evolved 0.1% faster than non-

essential ones), and the ratio was higher than the observed in

our experiment (1.27; table 1) in 455 of the simulations

(P = 455/2,500 = 0.182). The lack of significance in the per-

mutation test in the case of line A may be due to reduced

statistical power resulting from the smaller number of mu-

tations accumulated in this line. These observations indicate

that the faster rates of evolution of nonessential proteins

observed in our experiments is not due to a different

amino acid or codon composition.

Little Evidence for an Effect of Levels of Gene Expression
and Protein Abundance on the Rates of Protein Evolution

For each E. coli gene, we obtained its mRNA abundance from

Covert et al. (2004) and the abundance of the encoded

Alvarez-Ponce et al. GBE

2918 Genome Biol. Evol. 8(9):2914–2927. doi:10.1093/gbe/evw205 Advance Access publication August 25, 2016

Deleted Text: -
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw205/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw205/-/DC1
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ;
Deleted Text: higher than 
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: ;
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw205/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw205/-/DC1
Deleted Text: -
Deleted Text: -
Deleted Text: above
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: e
Deleted Text: e
Deleted Text: l
Deleted Text: g
Deleted Text: e
Deleted Text: p
Deleted Text: a
Deleted Text: r
Deleted Text: p
Deleted Text: e


protein from the PaxDB database (Wang et al. 2015).

Consistent with previous reports (Cutter et al. 2003; Pál

et al. 2003; Zhang and He 2005), we observed that essential

E. coli genes are significantly more highly expressed than

nonessential genes (median mRNA abundance: 338.20 for

essential genes, 132.23 for nonessential genes; Mann–

Whitney’s U test, P = 1.30� 10� 33). We also observed that

essential genes tend to encode proteins that are more highly

abundant than those encoded by nonessential genes (median

protein abundance: 30.80 for essential genes, 4.88 for non-

essential genes; P = 4.05�10� 22). This, combined with the

fact that, in all organisms studied so far including E. coli,

mRNA and protein abundances negatively correlate with

rates of protein evolution (Pál et al. 2001; Rocha and

Danchin 2004; Drummond et al. 2005, 2006), raises the pos-

sibility that our observation that essential proteins evolve

slower than nonessential proteins is a byproduct resulting

from the higher expression level of essential genes. That is,

it is possible that essential proteins evolve slower due to their

high levels of expression rather than to their essentiality per se.

However, two pieces of evidence demonstrate that this is not

the case.

First, in our evolution experiment there was only little

evidence for slower rates of evolution in highly expressed

genes than in lowly expressed genes. We classified all E. coli

genes into three categories with the same number of genes

(n = 1,327 each) according to their expression levels (mRNA

abundances: 0–78.43 for lowly expressed genes; 78.47–

290.77 for intermediately expressed genes; 290.87–

4,902.43 for highly expressed genes). Respectively, highly,

intermediately and lowly expressed genes exhibit aggregated

dN/dS values of 0.499, 0.567, and 0.610 in genome A260, and

1.024, 1.051, and 1.093 in genome B250 (supplementary

table S5, Supplementary Material online and fig. 4). TheT
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FIG. 3.—Evolutionary rates of essential and nonessential proteins at

the end of the evolution experiments. Statistical support was determined

using the Fisher’s exact test. *P< 0.05. n.s., nonsignificant.
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nonsynonymous/synonymous substitutions ratios for highly

and lowly expressed genes are not significantly different

(Fisher’s exact test; P = 0.416 for A260; P = 0.770 for B250).

Classification of genes according to their protein abundances

yielded similar results (supplementary table S6, Supplementary

Material online). Similar results were obtained when we com-

pared the top 10% highly expressed genes with the bottom

10% expressed genes, and when we compared the top 20%

highly expressed genes with the bottom 20% expressed

genes (supplementary table S7, Supplementary Material

online). However, when we compared the top 50% highly

expressed genes with the bottom 50% expressed genes, lowly

expressed genes were found to evolve significantly slower in

genome A260 (according to both the Fisher’s exact test and

the likelihood ratio test) and in genome B250 (according to

the likelihood ratio test, but not according to the Fisher’s exact

test; supplementary table S7, Supplementary Material online).

Second, the rates of evolution were higher for a group of

nonessential genes with virtually the same distribution of

mRNA abundances as the 595 essential genes with available

expression data. We ranked all genes according to their

expression level. For each essential gene in the list, we ran-

domly selected the nonessential gene that was immediately

above, or that immediately below in the ranking. In the

genome A260, essential and nonessential genes exhibit a

dN/dS of 0.439 and 0.495, respectively (i.e., nonessential

genes evolved 12.6% faster). In the genome B250, essential

and nonessential genes display a dN/dS of 0.651 and 1.055,

respectively (i.e., nonessential genes evolved 62.1% faster)

(supplementary table S8, Supplementary Material online).

Similar results were obtained when protein abundance was

used as controlling variable (nonessential genes evolved

18.6% and 95.3% faster in genomes A260 and B250, re-

spectively; supplementary table S9, Supplementary Material

online). For genome B250, the nonsynonymous/synonymous

substitutions ratio is significantly higher for nonessential

genes (Fisher’s exact test; P = 0.034). Therefore, the observed

differences in the evolutionary rates of essential and nones-

sential proteins are independent from their differences in

expression levels and protein abundances.

Little Evidence for an Effect of Protein Length on Rates of
Protein Evolution during Our Mutation Accumulation
Experiments

It has been previously suggested that protein length is an im-

portant determinant of rates of protein evolution. However,

both the strength and the sign of the correlation varies from

one analysis to another (Marais and Duret 2001; Lipman et al.

2002; Drummond et al. 2006; Liao et al. 2006; Ingvarsson

2007; Alvarez-Ponce 2012; Shin and Choi 2015), hinting at

a complex, and perhaps multifactorial, relationship between

evolutionary rate and protein length (reviewed in Alvarez-

Ponce 2014).

Essential proteins are significantly shorter than nonessential

proteins in E. coli (median length: 219 and 305 amino acids;

Mann–Whitney’s U test, P = 1.62�10� 24), thus raising the

possibility that our observation that essential proteins evolve

slower could be due to their particular length. However, we

found that protein length had little effect, if any, on proteins’

rates of evolution during our evolution experiment. We di-

vided proteins into three categories according to their

length (short: <199 amino acids, n = 1,414; intermediate:

200–350 amino acids, n = 1,414; long: >351 amino acids,

n = 1,409). Respectively, short, intermediate, and long

proteins had a dN/dS of 0.809, 0.402, and 0.609 in genome

A260; and 0.994�, 0.985, and 1.099 in genome B250

(supplementary table S10, Supplementary Material online).

The nonsynonymous/synonymous substitutions ratios are

not significantly different for any of the possible comparisons

(short vs. intermediate, intermediate vs. long, or short vs. long)

(Fisher’s exact test; P� 0.051 for genome A260; P� 0.597 for

genome B250). Similar results were obtained when we com-

pared the top 10% longest proteins with the top 10% short-

est proteins, and when we compared the top 20% longest

proteins with the top 20% shortest ones (supplementary table

S11, Supplementary Material online). When we compared the

top 50% longest proteins with the top 50% shortest ones,

the Fisher’s exact test revealed no significant differences, and

the likelihood ratio test was significant only for genome A260.

In this genome, long proteins evolved 10% faster than short

ones (supplementary table S11, Supplementary Material

online). It should be noted, however, that in some compari-

sons long genes evolved faster than short ones, whereas in

0.
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FIG. 4.—Evolutionary rates of highly, intermediately and lowly ex-

pressed genes. Statistical support was determined using the Fisher’s

exact test. N.s., nonsignificant.
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other comparisons short genes evolved faster (depending on

the line and threshold used; supplementary table S11,

Supplementary Material online), and therefore the link be-

tween protein length and rates of evolution remains unclear.

In addition, we obtained a list of nonessential genes with a

length distribution nearly identical to that for essential genes

(using a procedure identical to that described earlier for

mRNA and protein abundances). For genome A260, dN/dS

is slightly smaller for nonessential genes (0.440) than for es-

sential ones (0.451). However, for genome B250, nonessen-

tial genes evolved 77.5% faster (supplementary table S12,

Supplementary Material online). This indicates that the faster

rate of evolution observed in nonessential genes is indepen-

dent of protein length, at least in the evolution of line B.

Our Observations Are Not Confounded by Gene
Functions

Genes involved in “informational” processes (replication, tran-

scription and translation) tend to evolve slower than those

involved in “operational” ones (metabolism, cellular processes

and signaling) (Alvarez-Ponce and McInerney 2011). In addi-

tion, “informational” genes tend to be essential (Alvarez-

Ponce and McInerney 2011). Given the potential that this

could have biased our analyses, we classified all E. coli genes

into two categories, informational or operational, and ana-

lyzed the differences between essential and nonessential

genes within each category. In both A260 and B250 ge-

nomes, essential informational genes (n = 158) exhibit a sub-

stantially lower dN/dS ratio than nonessential informational

(n = 421) ones, and essential operational genes (n = 333) ex-

hibit substantially lower dN/dS ratios than nonessential

operational ones (n = 1,791; supplementary table S13,

Supplementary Material online). However, the differences

are only statistically significant for operational genes (i.e.,

the case in which more genes were available for analysis;

likelihood ratio test, genome A260: 2�‘= 298.51,

P = 7.0� 10� 67; genome B250: 2�‘= 33.25, P = 8.1�

10� 9). Differences are not statistically significant for the

other 3 comparisons, probably due to reduced statistical

power (supplementary table S13, Supplementary Material

online).

We next classified E. coli genes into different COG func-

tional categories (Galperin et al. 2015) and compared the rates

of evolution of essential and nonessential proteins within each

category (supplementary table S13, Supplementary Material

online). For genome B250, dN/dS could be calculated sepa-

rately for essential and nonessential genes for a total of 13

functional categories, and essential genes evolved slower in 11

of these categories, which represents a significant departure

from the 6.5 categories expected by chance (Binomial test,

P = 0.022). A similar analysis of the A260 genome reveals no

statistically significant differences (P> 0.999), which is consis-

tent with the smaller number of mutations accumulated in line

A, for which we may have reduced statistical power. Taken

together, these results suggest that our observation that es-

sential proteins evolved slower than nonessential ones is not

due to covariation of functional category with both essentiality

and rates of evolution.

Our Observations Are Not Confounded by the
Concatenome Approach Used

As mentioned earlier, the small number of mutations accu-

mulated in each gene during our evolution experiments pre-

vented us from calculating a separate dN/dS ratio for each

gene; instead, we decided to generate two concatenomes

(one for essential, and another for nonessential genes). We

considered the possibility that this approach might be biasing

our results, somehow amplifying the differences between es-

sential and nonessential genes. To discard this possibility, we

identified the most likely ortholog of each E. coli gene in the

closely related bacterium Salmonella enterica, and we ob-

tained a CDS alignment for each pair of orthologs (see the

“Material and Methods” section). We (1) calculated the dN/dS

ratio for each alignment individually, and (2) obtained two

concatenomes (one for essential and another for nonessential

genes) and we calculated the dN/dS ratio for each

concatenome.

When rates of evolution were estimated separately for

each gene, the median dN/dS ratio of nonessential genes

was 12% higher than the median dN/dS ratio for essential

genes (median for essential genes: 0.041, median for nones-

sential genes: 0.045). A Mann–Whitney U test revealed sig-

nificant differences (P = 0.008). When rates of evolution were

estimated on the concatenomes, the dN/dS ratio of essential

genes was 17% higher for nonessential genes than for essen-

tial ones (ratio for essential genes: 0.063, ratio for nonessential

genes: 0.074). Regardless of the approach used, the percent

increase was substantially lower than the 27%–65% increase

observed in our evolution experiments (table 1 and fig. 3).

Taken together, these observations indicate that our results

are not biased by the concatenome approach used.

Discussion

Essential genes maintained substantially lower dN/dS ratios

than nonessential genes during our evolution experiments

(table 1 and fig. 3). This effect was replicated in two mutation

accumulation lines that evolved independently, and was

clearly independent of gene expression levels, protein abun-

dances, protein lengths and gene functions (supplementary

tables S8, S9, S12, and S13, Supplementary Material online).

This demonstrates that organisms tolerate less amino acid

changing mutations in essential proteins than in nonessential

ones. Our observation contrasts with previous results based on

comparison of highly divergent genomes, which suggest that

in the long term essential proteins evolve only slightly slower

than nonessential ones. Therefore, if essential proteins do not
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evolve substantially slower than nonessential proteins across

long evolutionary distances, this might be due to the simulta-

neous action of a number of confounding factors (expression

levels, population dynamics, positive selection, compensatory

mutations, changes in genes’ essentiality, etc.) that obscure

the effects of essentiality.

The approach adopted in our experiments—relatively

short-term experiments, under highly controlled lab condi-

tions, in which we maintained a very small effective popula-

tion size—probably allowed us to overcome many of the

limitations of previous studies based on highly divergent ge-

nomes, thus providing a better picture of the effect of essen-

tiality on protein sequence evolution. First, gene essentiality is

an evolving parameter (Gerdes et al. 2003; Roemer et al.

2003), and it has been argued that this may have hindered

the detection of a relationship between essentiality and pro-

tein rates of evolution (Zhang and He 2005). However, the

number of generations intervening in our experiment

(~5,500–5,750) was much smaller than the number of gen-

erations usually intervening when comparing the genomes of

two species. Therefore, most likely, the set of essential genes

was virtually the same at the beginning and the end of the

experiment.

Second, available essentiality data sets have been obtained

under lab conditions that may not resemble the conditions

under which species’ divergence took place (Hurst and

Smith 1999; Pál et al. 2006; Wolf 2006). Our experiment,

however, was conducted in the lab, under conditions that

are very similar to those in which essentiality was determined

by Gerdes et al. (2003).

Third, evolutionary dynamics is largely affected by effective

population size (Ne) (Kimura et al. 1963; Kimura 1968; Lynch

and Conery 2003; Lynch 2007; Lanfear et al. 2014), but in

nature this parameter changes over time and is difficult to

measure (for review, see Charlesworth 2009). We have main-

tained a controlled, small Ne during our experiments. In each

passage, a small number of cells from the same colony were

used to found the following generation. Therefore, our E. coli

populations were subject to periodic population bottlenecks,

which are known to reduce effective population size (Wright

1931; Charlesworth 2009). This is expected to result in a

Muller’s ratchet dynamics, a phenomenon that refers to the

irreversible accumulation of deleterious mutations in small

populations (Muller 1964). In populations with large Ne, nat-

ural selection acts efficiently, removing deleterious mutations

and driving beneficial mutations to fixation. Conversely, in

small populations, genetic drift out-powers natural selection,

thus making the fate of most nonlethal mutations (including

beneficial, neutral and deleterious mutations) largely deter-

mined by drift (Kimura et al. 1963; Kimura 1968; Lanfear

et al. 2014) and reducing the gap between the mutation

rate and the fixation rate. Remarkably, the low Ne maintained

during our experiments, together with the short time

spanned, makes positive selection and compensatory

mutations (which are often fixed by positive selection; Hartl

and Taubes 1996; Charlesworth and Eyre-Walker 2007)—two

of the confounding factors known to affect analyses based on

comparison of highly divergent genomes—highly unlikely.

Finally, a number of genomic factors, and particularly gene

expression level, protein abundance, and perhaps protein

length, are known to have a strong impact on rates of protein

evolution (Marais and Duret 2001; Pál et al. 2001; Lipman

et al. 2002; Rocha and Danchin 2004; Drummond et al.

2006; Liao et al. 2006; Ingvarsson 2007; Alvarez-Ponce

2012). Therefore, establishing any other factor as a true de-

terminant of protein rates of evolution requires demonstrating

that its effect on sequence evolution is independent of (i.e.,

not due to covariation with) these factors. Previous efforts

have mostly relied on multivariate analysis techniques, but

all available techniques rely on a number of assumptions

(e.g., depending on the technique, linear or at least mono-

tonic relationships among the analyzed variables, indepen-

dence between certain variables, and equal measurement

error for the different variables), some of which may not

always be met. It is therefore highly debated what techniques

should be used to isolate the independent effects of individual

variables on rates of protein evolution (Drummond et al. 2006;

Wolf et al. 2006; Ingvarsson 2007; Kim and Yi 2007; Plotkin

and Fraser 2007; Alvarez-Ponce 2014). Strikingly, we observed

that genes with different (low, intermediate and high) mRNA

abundances, protein abundances, and protein lengths evolved

at similar rates (supplementary tables S5–S7, S10 and S11,

Supplementary Material online and fig. 4), indicating that

these factors had only a moderate effect on protein evolution

during our experiments. In addition, our observation that non-

essential proteins evolved faster than essential ones remained

unaltered when controlling for expression levels and protein

length (supplementary tables S8, S9 and S12, Supplementary

Material online). Therefore, our observation that essential

genes evolved slower than nonessential genes during our ex-

periment cannot be due to covariation of both essentiality and

protein rates of evolution with these factors.

The very small Ne maintained during our mutation accumu-

lation experiments is very different from the one typically ob-

served in natural populations, thus raising the possibility that

our observations do not reflect those observed in nature. It

should be noted, however, that many natural populations

evolve under small population sizes. For instance, microbial

infection or colonization of new niches often start with a

very small number of individuals (sometimes single individuals;

Rubin 1987; Mueller et al. 2005; Ruiz-González et al. 2011),

and endosymbiotic bacteria exist in very small populations

(Moran and Baumann 1994; Woolfit and Bromham 2003).

It is unclear how the low Ne maintained in our experiments

may have affected the difference between the evolutionary

rates of essential and nonessential proteins. On the one hand,

a low Ne may increase the rates of evolution of both essential

and nonessential genes, thus reducing the differences
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between essential and nonessential genes. If this was the case,

our observations that essential and nonessential proteins

evolve at substantially different rates would be even more

striking. On the other hand, in small populations, only lethal

and highly deleterious mutations will be removed by purifying

selection—the fate of most other mutations will be deter-

mined by drift. Only in essential genes, a fraction of nonsynon-

ymous mutations are expected to be lethal. Should this be the

case, the small Ne maintained in our experiments may be am-

plifying the differences between essential and nonessential

genes. However, this latter possibility is not supported by

the fact that, in endosymbiotic bacteria—which are thought

to have small Ne—proteins of all categories, including those

participating in basic cellular processes, accumulate a high

number of radical nonsynonymous mutations (Wernegreen

2011). Another notable difference between our experiment

and evolution occurring in nature is the rich nutritional condi-

tions under which our experiments took place. This may ex-

plain the relatively high number of genes lost during our

experiment: In such rich conditions, many genes may

become nonessential.

The surprisingly weak effect of levels of gene expression on

the rates of protein evolution (supplementary tables S5 and

S6, Supplementary Material online and fig. 4) may be ex-

plained by the extremely small Ne maintained during our ex-

periments. The translational robustness hypothesis proposes

that proteins are under selection to be able to fold properly

despite translation errors. This translational robustness is

encoded in protein sequences, and should be stronger for

highly expressed proteins—as misfolding will be more delete-

rious for highly expressed proteins—resulting in a negative

expression level-evolutionary rate correlation (Drummond

et al. 2005; Wilke and Drummond 2006; Drummond and

Wilke 2008). Nevertheless, translation errors are rare, affect-

ing only ~5 in 10,000 amino acids (Parker 1989), and thus

mutations reducing translational robustness are not expected

to be lethal. Nonlethal mutations can be fixed in small popu-

lations by genetic drift (Kimura et al. 1963; Kimura 1968). If,

as our observations suggest, Ne indeed affects the strength of

the correlation between protein rates of evolution and expres-

sion level and protein abundance, this may explain why this

correlation is stronger in microorganisms (which usually have

very high Ne) than in multicellular organisms (which have a

much smaller Ne; Lynch 2007; Charlesworth 2009), in which

expression breadth—the number of tissues in which a gene is

expressed—seems to be a better predictor of rates of protein

evolution than expression level (Duret and Mouchiroud 2000;

Wright et al. 2004; Zhang and Li 2004; Liao et al. 2006; Pál

et al. 2006; Ingvarsson 2007; Alvarez-Ponce 2012; Alvarez-

Ponce and Fares 2012). Likewise, this may explain why the

correlation is weaker in endosymbiotic bacteria than in their

free-living close relatives (Toft and Fares 2009). Another pos-

sibility is that a single amino acid replacement—very few

genes accumulated more than one nonsynonymous mutation

during our relatively short evolution experiments—is not

enough to significantly decrease the translational robustness

of a protein. Alternatives to the translational robustness hy-

pothesis include the misinteraction avoidance hypothesis (ac-

cording to which highly expressed proteins are subject to

stronger selective pressures to avoid unspecific interactions;

Levy et al. 2012; Yang et al. 2012) and the mRNA folding

requirement hypothesis (according to which highly abundant

mRNA require a stronger folding and are thus subject to stron-

ger selective pressures; Park et al. 2013). In any case, a single

mutation is unlikely to alter the relevant parameters (misinter-

action rate or mRNA folding energy) significantly.

Nonetheless, it is possible that, in a much longer evolution

experiment, a stronger relationship between dN/dS and ex-

pression levels might have been observed.

A number of comparative genomics analyses have revealed

a correlation between protein lengths and rates of evolution;

however, both the strength and the sign of this correlation

depend on the organism (Marais and Duret 2001; Lipman

et al. 2002; Lemos et al. 2005; Bloom et al. 2006; Liao et al.

2006; Ingvarsson 2007; Larracuente et al. 2008; Alvarez-

Ponce and Fares 2012; Chang and Liao 2013), and other anal-

yses have suggested little or no correlation (Drummond et al.

2006; Warringer and Blomberg 2006; Alvarez-Ponce 2012).

The correlation between protein lengths and rates of evolution

has been attributed to the Hill-Robertson effect (Hill and

Robertson 1966). In long sequences, multiple mutations can

interfere with the fixation (of beneficial mutations) or elimina-

tion (of deleterious mutations) of each other, resulting in a

reduced efficacy of natural selection (Ingvarsson 2007).

Nonetheless, during our experiments natural selection was

probably inefficient for all genes, regardless of their length,

due to small Ne. Furthermore, the simultaneous existence of

multiple segregating sites is highly unlikely, due to both small

Ne and the small number of intervening generations. Other

hypotheses that have attempted to explain the correlation

between protein lengths and rates of evolution due to Hill-

Robertson interference require the existence of introns

(Comeron and Kreitman 2000, 2002; Larracuente et al.

2008), and are thus not relevant to our experiment in E. coli.

The hypermutant lines that we used in our evolution ex-

periments exhibit mutation spectra that differ from those of

normal E. coli strains (supplementary table S2, Supplementary

Material online). This potential caveat, nonetheless, is allevi-

ated by the fact that our results are robust to using the

Goldman and Yang model (Goldman and Yang 1994) (imple-

mented in the model M0 of PAML; Yang 2007). One of the

parameters of this model is k, the transition/transversion ratio.

Furthermore, codon-based maximum likelihood models are

often robust to violation of model assumptions (Zhang et al.

2005; Kosiol et al. 2007; Jordan and Goldman 2012; Zhai

et al. 2012; Gharib and Robinson-Rechavi 2013). In addition,

hypermutability resulting from loss of certain components of

the DNA repair machinery is common (and sometimes
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adaptive) in natural populations of bacteria (for review, see

Jayaraman 2011). Such bacteria may have mutational biases

similar to those of our �mutS E. coli. Well-known systems

where DNA reparation genes have been lost include endosym-

biotic bacteria (Moran 1996).

In summary, our evolution experiments allowed us to over-

come many of the limitations of previous analyses that were

based on comparison of highly divergent genomes and have

made it possible to test one of the main predictions of the

Neutral Theory of Molecular Evolution that had remained hith-

erto under intense debate: essential genes do evolve slower

than nonessential genes (Kimura and Ohta 1974; Wilson et al.

1977). Our observations, thus, shed considerable light on a

controversy that has been open for decades.

Material and Methods

Experimental Evolution

Escherichia coli K12 substr. MG1655 �mutS was obtained

from I. Matic (INSERM U571, Paris, France) via the J.

Blazquez’s group at Centro Nacional de Biotecnologı́a (CSIC,

Madrid, Spain). Two parallel mutation accumulation lines

were created (A and B). Cells were grown aerobically on

solid rich LB media (1% bacto-tryptone, 1% NaCl, 0.5%

yeast extract; Pronadisa #1551; 1.5% bacto-agar European

grade; Pronadisa #1800) at 37 �C. Every ~24 h, a few cells

from the same colony were transferred to a fresh Petri dish.

Part of the colony was stored on 25% glycerol at�80 �C every

~10 passages. The evolution experiment is summarized in

figure 1.

Genome Sequencing and Identification of DNA
Substitutions

Whole genome sequencing of the ancestral strain, E. coli K12

substr. MG1655 �mutS, has been reported elsewhere

(Sabater-Muñoz et al. 2015) (BioSample SAMN03742160

from the BioProject PRJNA285176). The other seven genomes

were sequenced, assembled and annotated as follows.

Glycerol stocks from passages 100, 200, 250, and 260 (line

A) and passages 150, 200, and 250 (line B) were recovered in

10 ml liquid LB for 24 h at 37 �C, and cells pelleted by centri-

fugation at 12,000 rpm to perform genomic DNA extraction.

This extraction was performed using the QIAmp DNA mini kit

for the QiaCube automatic extractor [Qiagen, Venlo (Pays

Bas), Germany]. DNAseq libraries were constructed using

the TrueSeq DNA polymerase chain reaction-free HT sample

preparation kit (Illumina) and labeled with individual indices to

allow running them in a single lane. Quality and quantity of

libraries were assessed using the 2100 Bioanalyzer (Agilent).

Sequencing was carried out using the paired-end Illumina

HiSeq2000 platform using a 2� 100 cycles configuration.

DNA extraction, library construction and sequencing were car-

ried out by LifeSequencing SL (Valencia, Spain). We used the

breseq v 0.24rc4 pipeline (Deatherage and Barrick 2014) for

aligning the Illumina reads against our ancestral strain and to

identify SNPs and indels (using bowtie2; Langmead and

Salzberg 2012). The Individual runs of breseq with the seven

evolved lines were run with default parameters.

Protein Rates of Evolution

For each gene and evolved genome (A100, A200, A250,

A260, B150, B200, and B250), an alignment of the ancestral

(from the parental genome) and the evolved sequences was

generated. The small number of substitutions attained in our

evolution experiment (table 1) hinders the usual calculation of

an individual dN/dS value per gene, as many genes have accu-

mulated no substitutions, or not enough substitutions for

proper estimation of the strength of purifying selection.

Therefore, we based our dN/dS calculations on sets of genes

(e.g., essential genes, nonessential genes, lowly expressed

genes, intermediately expressed genes, and highly expressed

genes). For that purpose, alignments for each gene set were

concatenated. The 126 genes that were lost in genome A260

were eliminated from the alignments corresponding to line A,

and the 90 genes lost in genome B250 were eliminated from

the alignments corresponding to line B.

For each alignment, the number of synonymous substitu-

tions and positions and the number of nonsynonymous sub-

stitutions and positions were determined using the Nei–

Gojobori method (Nei and Gojobori 1986) as implemented

in DnaSP version 5.10 (Librado and Rozas 2009). The degree

of nonsynonymous divergence (dN) was computed by dividing

the number of nonsynonymous substitutions by the number

of nonsynonymous sites. Similarly, dS was computed by divid-

ing the number of synonymous substitutions by the number of

synonymous sites. The small number of mutations accumu-

lated during our evolution experiments made unnecessary the

application of a model of evolution. Unless stated otherwise,

dN/dS ratios reported throughout the article are based on es-

timates of the Nei–Gojobori method.

Additionally, analyses were also conducted using the

model M0 implemented in the codeml program of the

PAML package version 4.4d (Yang 2007). These supplemen-

tary results are provided in the relevant tables and in figure 3.

In order to avoid the problem of local optima, all computa-

tions were run multiple times, using different starting dN/dS

ratios (dN/dS = 0.05, 0.1, 0.5, 1, and 5). For each genome,

the dN/dS ratios of essential versus nonessential genes were

compared by the following: (1) estimating dN/dS and the

likelihood under model M0 for essential and nonessential

genes; (2) estimating the likelihood for nonessential genes

assuming a fixed dN/dS equal to the one estimated for essen-

tial genes; and (3) comparing the likelihood of both nested

models (with dN/dS to be estimated vs. a fixed dN/dS) using a

likelihood ratio test, assuming that twice the difference
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between the likelihoods of both models follows a �2 distri-

bution with one degree of freedom.

Interspecific Comparisons

For each E. coli gene, the most likely ortholog in S. enterica

enterica (serovar Typhimurium, strain LT2) was identified a

best reciprocal hit approach. Each E. coli protein sequence

was blasted against the proteome of S. enterica, and the

best hit was blasted against the proteome of E. coli. If the

best hit in the second BLAST search was the original E. coli

sequence, both genes were considered to be orthologs. This

method has been shown to exhibit very high accuracy (Wolf

and Koonin 2012). For each pair of orthologous genes, the

protein sequences were aligned using ProbCons 1.12 (Do

et al. 2005), and the resulting alignments were used to

guide the alignment of the CDSs using an in-house script.

For each individual CDS alignment, and for two concate-

nomes (one for essential and another for nonessential

genes), the Nei–Gojobori method, implemented in PAML

(Yang 2007), was used to estimate the dN/dS ratio.

Essentiality

Essentiality data were obtained from Gerdes et al. (2003).

They systematically induced gene inactivation using a transpo-

son, and they grew the mutants aerobically on an enriched LB

medium that was very similar to the one used in our

experiment.

Gene Expression and Protein Abundance Data

Levels of mRNA abundance were obtained from Covert et al.

(2004). Measurements correspond to wild-type E. coli cells

growing in aerobic conditions. For each gene, we averaged

the abundances across three biological replicates. Protein

abundance data was retrieved from the PaxDb database, ver-

sion 4 (Wang et al. 2015).

Gene Functional Categories

For each E. coli gene, the Cluster of Orthologous Genes

(COG) to which it belongs, and the functional category to

which this COG belongs, was derived from the COG data-

base (Galperin et al. 2015). Genes were then classified into

two classes: “informational” (categories “A,” “B,” “J,” “K,”

and “L”) and “operational” (categories “C,” “D,” “E,” “F,”

“G,” “H,” “I,” “M,” “N,” “O,” “P,” “Q,” “T,” “U,” “V,”

“W,” “Y,” and “Z”). Gene Ontology enrichment analyses

were performed using the Gene Ontology website

(www.geneontology.org; last accessed July 2016).

Supplementary Material

Supplementary tables S1–S13 are available at Genome Biology

and Evolution online (http://www.gbe.oxfordjournals.org/).
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