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Abstract

Functional magnetic resonance imaging (fMRI) measures changes in blood-oxygenation-level-

dependent (BOLD) signals to detect brain activities. It has been recently reported that the spatial 

correlation patterns of resting-state BOLD signals in the white matter (WM) also give WM 

information often measured by diffusion tensor imaging (DTI). These correlation patterns can be 

captured using functional correlation tensor (FCT), which is analogous to the diffusion tensor 

(DT) obtained from DTI. In this paper, we propose a noise-robust FCT method aiming at further 

improving its quality, and making it eligible for further neuroscience study. The novel FCT 

estimation method consists of three major steps: First, we estimate the initial FCT using a patch-

based approach for BOLD signal correlation to improve the noise robustness. Second, by utilizing 

the relationship between functional and diffusion data, we employ a regression forest model to 

learn the mapping between the initial FCTs and the corresponding DTs using the training data. 

The learned forest can then be applied to predict the DTI-like tensors given the initial FCTs from 

the testing fMRI data. Third, we re-estimate the enhanced FCT by utilizing the DTI-like tensors as 

a feedback guidance to further improve FCT computation. We have demonstrated the utility of our 

enhanced FCTs in Alzheimer’s disease (AD) diagnosis by identifying mild cognitive impairment 

(MCI) patients from normal subjects.

1 Introduction

Functional magnetic resonance imaging (fMRI) has emerged as the primary non-invasive 

technique for measuring neural activity in the brain. Since the introduction of fMRI in the 

early 1990s, it has been widely used for its sensitivity to developmental, aging and 

pathological processes of various organs [1]. fMRI is designed to detect hemodynamic 

changes in the gray matter (GM) regions, which are known to be associated with the neural 
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activity [2]. An increase of the neural activation usually causes increased local cerebral 

blood flow to supply the metabolic demands [3]. The measurement of such variation is 

called blood-oxygenation-level-dependent (BOLD) time series.

Extensions of fMRI have been proposed for the needs in different clinical and research 

fields. For example, task-based fMRI [4] was developed to localize functionally specialized 

brain regions under specific task stimulus. On the other hand, the resting-state fMRI (rs-

fMRI) [5] is collected in a task-free state and has usually been applied to discover correlated 

activity patterns or functional connectivity (FC) among different brain regions, in an either 
local or distant manner. However, in contrast to the GM regions, it is much harder to detect 

the BOLD signals in the brain white matter (WM), as WM is irrigated by much less dense 

vasculature [6] and the blood flow in WM is approximately one-fourth of that in GM [7].

Diffusion tensor imaging (DTI), or more generally, the diffusion-weighted magnetic 

resonance imaging (DWI), has been recognized as an effective tool in the study of the WM 

[8]. DTI quantifies the diffusion patterns of water molecules using a diffusion tensor (DT) 

represented by a 3×3 symmetric matrix. The movement of water molecules is less 

constrained in the axonal direction than the perpendicular directions. Thus, using a diffusion 

tensor model, the distribution of movement of water molecules can be simply represented by 

an ellipsoid, with the axonal direction given by the major axis. Various diffusion parameters, 

such as fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial 

diffusivity (RD), can be calculated based on the DTs. These parameters have been used 

extensively for WM abnormality detection for various neurological and psychiatric diseases 

[9]. Furthermore, the directions of the DTs can be further employed using diffusion 

tractography to map WM fiber pathways [10], complementary to the GM connectivity 

information given by FC networks [11].

fMRI has also been used to investigate connectivity in WM. For instance, it was found in 

[12] that fMRI activation can also be observed in the genu of the corpus callosum. This 

finding was confirmed by D’Arcy et al. [13] using a Sperry task. Activation in the splenium 

of the corpus callosum was also observed, providing the first fMRI evidence of posterior 

callosal activation associated with an interhemispheric transfer task. The work in Mazerolle 

et al. [14] expanded and refined the approach taken by D’Arcy et al. [13]. Outside of the 

corpus callosum, BOLD fMRI activation has also been reported, such as in the internal 

capsule. For example, Mosier and colleagues reported activation associated with swallowing 

in the internal capsule, as well as the corpus callosum [15]. Also, Gawryluk et al. [16] found 

that activation can be detected in the internal capsule during a motor task (i.e., finger 

tapping), which was later confirmed by Mazerolle et al. in [17]. These findings indicate that 

the BOLD fMRI signals potentially exist in the WM regions due to the existence and 

detectability of the vasculature, cerebral blood flow (CBF), and cerebral blood volume 

(CBV) in the WM [18]. Marussich et al. [19] also investigated spatiotemporal correlation of 

BOLD fMRI signals in WM, comparing between eye-closed resting state and visual-

perception tasks. They showed WM functional connectivity in the resting-state session, as 

well as significant correlations between optical radiations and multiple cortical visual 

networks.
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Recently, Ding et al. [20] found the weak but putative local temporal correlation of BOLD 

signals that persists over a long distance along the same WM neuronal fiber tracts using rs-

fMRI. This study found functional anisotropy of local FCs between a central WM voxel and 

its neighboring voxels. They captured this anisotropy using a local spatiotemporal 

correlation tensor and demonstrated that the realistic fiber bundle can be obtained by tracing 

the directions of FCs. They subsequently introduced “functional correlation tensor (FCT)” in 

[21] and demonstrated the ability of FCT in revealing several major WM fiber bundles, 

indicating that FCT is coherent with DTI. However, our experiments indicate that FCTs are 

sensitive to noise. Since there is only 1–3% signal variability associated with the BOLD 

signal in GM [22], while it is much less in WM [23], computing FC in WM is challenging.

To address the aforementioned issues, here we propose a novel framework for further 

improving FCT estimation with the guidance of DT information. The aim is to reduce the 

influence of noise in WM to the FCT estimation, which is referred from the finding of the 

consistency between the WM fiber direction and the spatiotemporal correlation pattern of 

the WM BOLD signals [20, 21]. The main contribution in this paper is four-fold: First, we 

develop a novel strategy, aiming at increasing the noise robustness of FCT using a patch-

based approach. Second, to cater to the possibility that only rs-fMRI but not DTI data are 

available, we intend to predict DTI-like tensors from the computed FCTs. Specifically, we 

incorporate the regression forest method to train the learning-based model, which has been 

successfully applied in many medical image analysis domains, such as image segmentation 

[24–26] and reconstruction [27]. We further adopt the cascaded learning strategy using the 

auto-context model introduced in [28] to boost the performance. Third, we further refine the 

estimation of FCTs by weighting the dominant directions on the basis of DTI-like tensors. 

Finally, we have demonstrated the utility of the enhanced FCT in early-stage mild cognitive 

impairment (eMCI) diagnosis.

2 Materials and Methods

In this section, we first illustrate the details of two datasets employed in our works, which 

are the development and the validation datasets. The development dataset is the Human 

Connectome Project (HCP)1 [29], which contains high-resolution brain images in both 

modalities of fMRI and DTI, which suits our needs in training the regressor. We also 

consider the validation dataset as the ADNI2 [30] dataset, in which we apply the estimated 

enhanced FCTs to demonstrate the quality. Details of the two datasets along with their pre-

processing steps are presented in Section 2.1.

We also present the methodology of our works in this section. The overall pipeline is 

illustrated in Figure 1, which has the following three major steps:

1. We employ a patch-based strategy to estimate the initial FCT, for the aim of 

noise robustness.

1https://ida.loni.usc.edu
2http://adni.loni.ucla.edu
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2. We then incorporate the random forest technique for predicting DTI-like tensors 

from FCTs.

3. We compute the orientation distribution functions (ODFs) from the learned DTI-

like tensors and use its directional information to compute the enhanced FCTs.

In the following, we first illustrate three major steps in Section 2.2, Section 2.3 and Section 

2.4, respectively. Then, in Section 2.5 we show the process of utilizing the obtained FCTs in 

the early diagnosis of MCI.

2.1 Materials

HCP dataset—The HCP dataset was initialized by the Washington University-University 

of Minnesota Human Connectome Project Consortium. The aim is to construct cohesive 

framework by collecting massive images with the major MRI neuroimaging modalities to 

enable cross-subject comparisons and multi-model analysis of brain architecture, 

connectivity, and function. The volunteer subjects were drawn from a population of 1200 

healthy adults in the age range of 22–35 years.

To reduce the computation cost, we randomly select images of rs-fMRI and DWI from 95 

subjects of the HCP dataset. All HCP subjects were scanned on a customized Siemens Skyra 

3T scanner with the same imaging parameters [31]: For fMRI, TR=720 ms, TE=33 ms, 

multiband factor=8, image matrix=104×90, 72 slices, 1200 volumes, and isotropic slice 

size=2×2×2 mm3; For DTI, TR=5500 ms, TE=89 ms, multiband factor=3, image 

matrix=145×174, 145 slices, slice thickness=1.25×1.25×1.25 mm3, and multiple b 

values=1000, 2000, 3000 s/mm2, with 3-shell HARDI (High Angular Resolution Diffusion 

Imaging) and 270 non-colinear directions.

The first 30 frames in the rs-fMRI images were removed for magnetization equilibrium. We 

then used the first 600 frames (7 min 12 s data) of the remaining data to calculate FCTs to 

improve the computing speed while keeping adequate temporal samples to get robust FC for 

extracting FCTs. Experiments show that the FCT output using 600 frames is quite similar 

with that using the entire 1200 frames. The pre-processing protocol to the rs-fMRI data 

follows the HCP Pipeline1, as detailed in [31], but are optimized based on our specific 

requirements:

• The DTs were computed using the dtifit tool in FSL [32]. We also computed the 

average b0 image for inter-modality registration between DTI and rs-fMRI.

• The DT images along with the b0 images were down-sampled to 2 mm isotropic 

resolution for consistency with the rs-fMRI data. Note that each subject’s DTI 

data was also registered to their own “anterior commissure to posterior 

commissure (AC-PC)” aligned T1-weighted high-resolution structural MRI data. 

Our algorithm does not rely on MNI space registration.

1https://github.com/Washington-University/Pipelines
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• Different from the conventional fMRI studies, there is no registration process for 

the rs-fMRI data. The FCT computation is performed in the subject native space, 

to avoid the possible registration error that disturbs the quality of FCT.

• Band-pass filtering (0.01 ≤ f ≤ 0.08Hz) was applied to the rs-fMRI data. No 

spatial smoothing was applied.

ADNI Dataset—The ADNI dataset was launched in 2003 aiming at measuring the 

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). We 

use this dataset to demonstrate the quality of enhanced FCTs and their ability in 

differentiating eMCI and normal control (NC). We used the data of 39 eMCI subjects and 42 

NCs, which were age- and gender-matched. All rs-fMRI images were obtained using 3T 

Philips Achieva scanner at different centers. The first 3 volumes of each subject were first 

discarded for magnetization equilibrium. Pre-processing was performed using SPM81, 

REST2, and DPARSFA3 to reduce the effects of nuisance signals. The rigid-body 

transformation was used for head motion correction, and images with head motion larger 

than 2mm or 2 degrees were discarded. Band-pass filtering (0.01 ≤ f ≤ 0.08 Hz) was applied 

to avoid physiological noise and measurement errors. Head motion parameters (Friston24) 

were regressed out from the rs-fMRI data.

2.2 Initial FCT Estimation

According to Ding et al. in [21], the FCT Ti for the voxel Vi in the input rs-fMRI can be 

represented using a 3×3 symmetric matrix. The elements in Ti are written as follows:

(1)

In [21], Ti is obtained using the following steps:

1. The voxel Vi computes its Pearson’s linear correlation coefficient Cij with its 

surrounding 26 voxels Vj by comparing their time courses. The equation is given 

as Cij = fcorr(Vi, Vj), where fcorr is a function to compute the Pearson’s 

correlation coefficient of the time courses of Vi and Vj.

2. The unit vector nij = {nij,1, nij,2, nij,3} is obtained, representing the direction 

from Vi to Vj. The dyadic tensor Dij is therefore written as:

(2)

1https://www.fil.ion.ucl.ac.uk/spm/soft-ware/spm8/
2http://www.restfmri.net/forum/REST_V1.8
3http://rfmri.org/DPARSF
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3. The correlation tensor Ti is obtained by summing up all the dyadic tensors Dij 

with their corresponding Cij as the weight coefficients, which is given as:

(3)

One of the limitations of [21] is that correlation is computed only voxel-wise. Due to the 

limited signal-to-noise ratio (SNR) of the WM BOLD signals, FCT estimation can be 

adversely affected by noise. For greater robustness to noise, we introduce a patch-based 

method for correlation computation. In this strategy, the time series of not only one voxel, 

but also those from the neighboring voxels, are used to improve robustness to noise. 

Specifically, the patch-based strategy is presented as follows:

1. The number of surrounding voxels for Vi for FCT computation is no longer 

limited to 26. For a m × m ×m neighborhood window with Vi as its center voxel, 

the correlation coefficients are computed by traversing all voxels within the 

window. Note that the number of the surrounding voxels involved becomes m3 

− 1 instead.

2. A novel patch-based strategy is used for correlation computation. Denote Q(x, y, 

z) to be the voxel at location (x, y, z) of the k × k × k patch Q. Inspired by 

Heinrich et al. [33], we first compute the voxel-wise correlation of the two 

patches, and then combine the correlations. For two patches Qi and Qj, the 

correlation coefficient C′ij for the patch-based strategy is obtained by

(4)

where b(x, y, z) is the Gaussian kernel given as 

, μ = (k + 1)/2, and ρ is a scaling 

coefficient. Our experiments show that ρ2 = 1.25 gives the optimal results.

Note that in the experiments we apply the same settings for both the HCP and the ADNI 

datasets: the patch size for the correlation measurement is 3×3×3 in voxel, and the 

neighborhood window size is 5×5×5 in voxel. The first step of the proposed framework can 

be summarized in Figure 2. Since FCT is represented by a symmetric matrix, it can be 

denoted here as a vector with 6 elements {Txx, Txy, Txz, Tyy, Tyz, Tzz}.

2.3 Regression Forest for Mapping Process

In this section, we describe how the DTI-like tensors can be estimated from rs-fMRI using 

the HCP dataset. The main idea is to learn using regression forest to map between a 3D 

cubic patch of FCTs and the corresponding target DT at its center voxel. It is worth noting 

that, before the process of patch extraction, certain registration works are required for the 

obtained initial FCTs to ensure the validity of the extracted spatial position features, which 
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will be illustrated later in this section. For the HCP dataset, the initial FCTs are warped to 

the DTI space using deformation field estimated by registering the single-band reference 

image of the rs-fMRI data to the DTI b0 image using flirt in FSL. For the ADNI2 dataset, 

the initial FCTs are aligned to the MNI-152 space with a spatial resolution of 2×2×2mm3 

using flirt in FSL.

We divide the HCP subjects into training and testing sets. In the training stage, we learn the 

regression forest model that maps between the 3D cubic patches of initial FCTs to the 

corresponding target DTs at the center voxels. The forest model is learned using only the 

training data. 30000 FCT patches are randomly extracted from the whole brain. In the 

testing stage, the trained forest is applied patch-wise to estimate the DTI-like tensors.

Feature Extraction—When the patches are extracted from the initial FCTs, the 

corresponding feature information is then computed, which can be utilized by the forest 

model to map with the target DT information. Two types of the features are extracted from 

the patches: spatial position features and appearance features. The spatial position features 
record the 3D coordinate location of the patch’s center voxel. This introduces the spatial 

prior information to the patch-based learning method, especially in the testing stage where 

the center locations of the input patches can also determine the results. The appearance 
features describe the intensity patterns using the 3D Haar-like operators [25, 26, 34, 35] for 

the effectiveness. Given the input patch PV from the training initial FCTs with its center 

voxel V, we determine two cubic regions R1 and R2 within the patch region RV. Note that 

the sizes of R1 and R2 are also randomly chosen from an arbitrary range, which is {1,3,5} in 

voxel in our work. The equation of the Haar-like operator is given as follows [26]:

(5)

where fHaar(V, PV) is the extracted Haar-like feature, and δ is set to choose one or two cubic 

regions for the computation. Since there are six elements in the vector of the FCT, in the 

experiments of HCP dataset, we extract 1000 Haar-like features from each element, 

separately, which are then concatenated with the spatial position information as a single 

feature vector. In summary, there are totally 6003 features, consisting of 6000 (6×1000) 

Haar-like features and 3 spatial position features representing the x, y and z coordinates of 

the center voxel of the patch. Also note that the parameter values for obtaining the Haar-like 

features are stored in the training stages, so that the input patches in the testing stage follow 

the same settings when applying the forest model.

Training Stage—We denote the regression forest as F, which is an ensemble of d decision 

trees {K1, K2, …, Kd}. Each tree is trained by using all the training patches, but different 

subsets of extracted features that are randomly decided according to the uniform bagging 

strategy [36]. Starting from the root node, the decision trees are constructed by recursively 

splitting their patch samples into the left and the right children nodes. The splitting function 

at each node is based on one feature selected by exhaustive search within the feature subset, 

which can maximize the information gain of the splitted groups of training patches based on 
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their corresponding target values. Note that in the experiments we set the tree number as 20, 

and the minimum sample number for the leaf node is 8.

Note that, in the conventional regression forest, each input patch can only have one 

corresponding target value. Since six elements in the target tensor vector are explicitly 

interdependent with each other, the conventional regression forest cannot be directly applied. 

In this paper, we refer to the structured regression forest technique in [37] to overcome this 

limitation. Here, the splitting function produces six estimates of the information gain 

corresponding to the six elements of the target DT vector, which are then averaged to obtain 

the overall estimation. In this way, the forest method can gauge all the information in the 

target vector for training the regressor. The decision trees stop growing when training 

samples in the leaf node are insufficient or reaching a pre-set maximal depth. The regressor 

predictor for the tree Ki is denoted as g(f(P, S), Ki), where f(P, S) is the feature vector, P is 

the input patch, and S is the input initial FCT.

Testing Stage—Denote the testing FCT as S′, the corresponding patch set by traversing 

the whole brain region is P′. We commence by extracting the spatial position features and 

appearance features from the testing patches by following the same settings as those in the 

training stage. Every patch  in P′ is then pushed into the root node of the trained tree Ki to 

measure the predictor result as . The overall estimates for the trained forest 

F is obtained by

(6)

Cascaded Learning—Recently, Tu and Bai [28] introduced an auto-context model, 

consisting of cascades of regressors. This is implemented in our context as follows. In the 

training stage, we construct the regressor in the first stage using the spatial position features 
and appearance features as described above. The trained regressor is then applied to the 

initial FCTs for predicting DTI-like tensors. In the second stage, the regressor is constructed 

by also considering the context features, which are extracted from the output of the first 

stage using Haar-like operators. The parameters for computing the context features are 

identical to those for appearance features. Therefore, the number of features for training the 

second-stage regressor becomes 12003. Due to different feature numbers in the two stages, 

the maximum tree depths of the regressors should also be different, i.e., 26 and 29 for the 

first and second stages, respectively. In the testing stage, the trained regressors are applied to 

the initial FCTs for obtaining the DTI-like tensors.

2.4 FCT Enhancement

When the learned forest model is trained by the mapping process described in Section 2.3, it 

is then applied to the initial FCT from the testing subjects to obtain the corresponding DTI-

like tensors. In this section, we show how to use directional information from the learned 

DTI-like tensors to enhance FCTs. First, each DTI-like tensor is warped back to its subject’s 
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fMRI native space to help guide the FCT estimation. The orientation distribution function 

(ODF) associated with DTI-like tensors [38] β(u) for the unit vector u is defined as

(7)

where Z is a normalization constant used to ensure that ODF is properly normalized to the 

unit mass [39], and B is the obtained DTI-like tensor. Note that, as shown in Equation (3), 

the dyadic tensors D with their corresponding correlation coefficient C from different 

directions are combined together with the same weight. In order to enhance the FCT, here 

directions with higher β cofficient values will have higher weights than the others. In this 

way, here we re-estimate the enhanced FCT by following the initial FCT estimation process 

in Section 2.2, except extending the Equation (3) by adding the β coefficient, as below:

(8)

where the unit direction u computed from Vi to Vj will be used in Equation (7) to get βij.

2.5 eMCI-NC Classifications

We utilize the enhanced FCTs in WM for MCI diagnosis using the ADNI2 dataset. When 

the enhanced FCTs are obtained, they are non-rigidly registered to the MNI-152 space using 

SPM [40]. We then generate 359 fiber probability maps based on the method described in 

[41, 42] [43]. Each template is a probability WM mask indicating inter-subject consistent 

connections between any pair of Automated Anatomical labeling (AAL) brain regions, 

generated using the data of 500 subjects in HCP dataset. We also compute the FCT FA maps 

by using three eigenvalues obtained from the diagonalization of each FCT (see Section 3.1). 

Using a probability map and an FA image, the weighted average and weighted variance are 

computed and used as features for each ROI pair. Each subject is represented by two feature 

vectors (i.e., weighted mean and weighted variance), each of which has 359 elements.

Since the number of features is much larger than the number of subjects in the study, an 

LASSO-based feature selection algorithm [44] is applied to each feature vector to remove 

some redundant and irrelevant features. Then, two support vector machine (SVM) 

classification models [45] are constructed, respectively, based on the remaining weighted 

mean and weighted variance features. Finally, the prediction scores of two SVMs are 

integrated together through linear combination, which leads to the final classification result.

3 Results

In this section, we evaluate the effectiveness of the initial and enhanced FCTs. Our main 

goal in this section is three-fold: First, we validate the initial FCTs from the HCP dataset, 

which are compared with those using Ding et al. Second, we demonstrate that the initial 

FCTs can be used to predict the DTI-like tensors correctly using random forest. Third, we 
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show that the trained regression model using the HCP dataset can be applied to the ADNI 

dataset to demonstrate its generalization capability. The performance of the enhanced FCTs 

is then evaluated using the ADNI dataset. We also show how the enhanced FCTs can be 

applied to identifying mild cognitive impairment (MCI) patients from normal controls. The 

details of experiments for both initial FCTs and DTI-like tensors are presented in Section 

3.1, while as the enhanced FCTs are presented in Section 3.2.

3.1 Meaningful Initial FCT

For the mapping step, we perform 4-fold cross-validation to demonstrate the robustness of 

the proposed method. We divide the 95 subjects into four folds with 24, 24, 24 and 23 

subjects, respectively. We use one fold for testing and the rest for training. The same 

parameter settings were used as we iterated through the folds for training.

The extracted tensors along with the DTs from one exemplar subject are presented in Figure 

3, where each row shows the tensors from six elements {Txx, Txy, Txz, Tyy, Tyz, Tzz}, 

respectively. The images are masked to preserve only the WM regions. The mask is created 

by thresholding the DTI FA map. Compared with the output from Ding et al., the FCT using 

our framework greatly reduces noise artifacts. The estimated DTI-like tensors are also 

consistent with the actual DTI data.

To better evaluate the performance of the proposed framework, especially the process of 

FCT enhancement, we also compute the four parameter maps {IAD, IRD, IMD, IFA} from the 

extracted tensors, which are computed using the three eigenvalues {λ1, λ2, λ3} of the DT as 

follows:

(9)

Figure 4 presents the WM-masked parameter maps using FCTs from the method of Ding et 
al. and different stages in the proposed framework. The parameter maps from the DTI data 

are also presented here as a reference. Similar to Figure 3, the proposed framework 

outperforms Ding et al., especially for the FA map. It can also be observed, especially for the 

FA map, that the DTI-like tensor has helped to refine the details in the WM regions of the 

enhanced FCT. This indicates that the novel strategies in the proposed framework can help 

improve the quality of FCTs.

It is worth noting that the average computation time using the method of Ding et al. is 

around 10 minutes using a standard PC (CPU 3.1GHz i5, memory 24 GB 1333MHz DDR3), 

while it takes much more time (45 minutes) to obtain the initial FCT using our framework. 

This is partly due to the greater computational cost associated with the patch-based FCT 

computation. FCT to DT mapping using regression forest method with the auto-context 

model also takes about 20 minutes. Speed can be improved via parallelization.
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To further quantify the similarity between predicted DTI-like tensors and the actual DTs by 

using Pearson’s correlation as the metric. The overall whole-brain correlation coefficient for 

the first and second stage mapping are 0.698±0.064 and 0.729±0.068, respectively. Using 

the two-tailed t-test, experiments show that there is a significant improvement between the 

two stages (p<0.05). The average correlation values for different ROIs based on the ICBM 

DTI-81 atlas are provided in Table 1. The p-values are computed using two-tailed t-tests 

between two stages. Significant improvement (p < 0.05) is marked with an asterisk. It can be 

observed that the correlation is improved in the second stage with the help of the auto-

context model.

Figure 5 presents the 3D ellipsoidal glyphs of the DTs, generated using “TVglyphview” of 

DTI-TK toolkit1, with the T1-weighted image as background. It can be observed that the 

glyphs show reasonable similarity especially in the WM.

Figure 6 shows the tractography results generated using the Diffusion toolkit and visualized 

using TrackVis [46]. Figure 7 and Figure 8 compare several WM fiber tracts in the left 

hemisphere of the brain [47]: arcuate fasciculus (AF), corpus callosum (CC), corticospinal 

tract (CST), inferior frontooccipital fasciculus (IFF) and inferior longitudinal fasciculus 

(ILF). The fiber tracts are visualized using the ParaView toolkit [48], with the brain’s inner 

surface presented as underlay. It can be observed that the majority of WM pathways are 

similar.

Furthermore, we found that the DTI-like tensors are also capable of capturing the individual 

variability of the brain structure from different subjects. Figure 9 presents the ILF tracts 

generated from DTI-like tensors of four subjects obtained using our framework. Since the 

subjects in HCP dataset were aligned to the MNI-152 space using only AC-PC registration 

[31], there are certain variations of brain structures from different subjects, especially for the 

ILF tracts. It can be still observed that the ILF tracts are well aligned to each subject’s WM 

structures, respectively.

3.2 Informative Enhanced FCT in MCI Classification

In this section, we utilize enhanced FCT for eMCI-NC identification by following the 

methodology introduced in Section 2.5. Note that we randomly choose the forest model 

trained in one fold of the cross-validation in Section 3.1 to estimate the DTI-like tensors. 

Experiments show that the forests of all four folds provide similar mapping capability. The 

estimated tensors along with the four parameter maps from the ADNI dataset can be referred 

from Figure 3 and Figure 4.

Leave-one-out (LOO) cross-validation was applied to verify the classification performance 

due to the limited sample size. For optimizing the parameters in LASSO and SVM, we used 

an inner LOO cross-validation on the training samples. Using FA for classification, the ACC 

and AUC using Ding et al.’s FCT computation method are 67.90% and 69.90%. Using the 

initial FCTs, the ACC and AUC are improved to 69.14% and 72.83%, which further become 

70.37% and 74.85% using the enhanced FCTs. The ROC curves shown in Figure 10 indicate 

1http://dti-tk.sourceforge.net/pmwiki/pmwiki.php
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that the proposed framework outperforms Ding et al.’s method, and both the strategies in the 

initial and enhanced FCT estimations help to improve the quality. Note that in our 

experiments the number of NC subjects is larger than that of the eMCI subjects. To better 

evaluate the classification performance for unbalanced data, we also use the balanced 

accuracy (BAC). The BAC values for FCT using Ding et al.’s method, the initial FCTs and 

the enhanced FCTs are 67.31%, 68.96% and 70.33%, respectively. This is consistent with 

the conclusions drawn using the ACC and AUC values. It is worth noting that the 

experiment conducted in this section only exploits features from the WM. In the future, GM 

features can also be included to improve the classification performance.

4 Discussion

4.1 Observations of fMRI in WM

There are many recent attempts in investigating WM neural activity using fMRI [19]. fMRI 

activations are found in corpus callosum [13], internal capsule [15, 16] and optic radiations 

[19]. Furthermore, Ding et al. [20, 21] showed that the spatiotemporal correlation patterns of 

BOLD signals in WM exhibit similar orientation information as DTI. Marussich et al. [19] 

reported the intrinsic hierarchical functional organization associated with WM pathways.

BOLD signals are related to vasculature, cerebral blood flow (CBF), and cerebral blood 

volume (CBV). Since micro blood vessels and capillary vessels are spatially distributed 

along the main directions of fiber bundles, the BOLD signals in WM should also have 

consistent spatial characteristics with DTI. This has in fact been demonstrated in Ding et 
al.’s work [20, 21].

4.2 DTI-Guided FCT Estimation

Following the rationale given in Section 4.1, we use the directional information given by 

DTs to improve FCT estimation. Considering the possibility that DTI data might not be 

available, we use our learning-based model for predicting DTI-like tensors.

Note that the proposed method is implemented by following an individual-subject level 

manner. Stated succinctly, the FCT of the input subject is obtained mostly from its 

corresponding rs-fMRI image information. We only utilize the group-level information when 

learning the forest model to predict DTI-like tensors. Still, our mapping strategy is 

developed to ensure the DTI-like tensors can capture the individual variability of the 

subjects’ brain structure, as shown in Figure 8. Furthermore, the enhanced FCTs after the 

guidance of DTI-like tensors can better present the local functional connectivity information 

in WM region.

4.3 Difference Between FCT and DT

It is worth noting that based on the current findings, the FCT and DT should be considered 

as two metrics with only partial similarities with each other. As they are originated from rs-

fMRI and DTI respectively, and the corresponding information they represent is also 

different (functional and diffusion). This can also be observed in Figure 3 and Figure 4, 

where the obtained FCT and DT are presented. Since there is no ground-truth FCT to 
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evaluate the current estimation, we also consider the eMCI-NC classification to compare the 

FCT estimated in different configurations in a quantitative evaluation manner. The 

classification results can prove that the novel strategies introduced in this paper are effective, 

and the enhanced FCTs clearly outperform the others.

4.4 Limitations and Potential Remedies

The performance of our method is limited by a number of factors.

First, the three-step framework involves aligning the initial FCT to the common space before 

mapping can be carried out. The predicted DTI-like tensors are warped back to the 

individual space for FCT enhancement. Potential registration errors may affect the accuracy 

of the estimated FCTs. A means to mitigate the effects of registration errors is by using a 

patch matching mechanism to correct for misalignment [33].

Second, FCTs are computed for the whole brain, including the GM that has much higher 

SNR in terms of BOLD signals than that WM. FCTs at the WM-GM boundary might be 

affected by the signal differences between the two tissue types. This problem can be 

ameliorated by using tissue segmentation information from anatomical T1 images so GM 

and WM can be analyzed separately.

Third, Ding et al. has presented in [20, 21] that some fiber streamlines (e.g. ILF, optic 

radiation and etc.) can be reconstructed from the estimated FCT. Besides, our enhanced 

FCTs have shown anistropy in WM regions that are more aligned to the predicted DTI-like 

tensors as observed in Figure 3 and Figure 4. However, unlike the DTs, it is still hard to 

implement fiber tracking to the whole WM regions of those obtained FCTs. We attribute this 

issue to the HCP data, which is multiband echo planar imaging (EPI) data with both higher 

spatial and temporal resolution, and thus sacrifices the SNR of BOLD signals. In future, we 

will test our method using more data sets with better SNR, with which we could anticipate a 

better FCT enhancement performance. Therefore, our ultimate goal, i.e., using FCT to 

conduct individualized fiber tracking, like DTI, can be achieved.

4.5 Future Works

For future clinical applications, the trained forest model can be applied to other datasets, 

including both healthy and patient cohorts (autism, Parkinson’s diseases, etc.). We will also 

test our method on task-based fMRI to investigate FCT in different states.

5 Conclusion

In this work, we have presented a novel learning-based framework that improves the quality 

of FCTs. We proposed a patch-based correlation measurement strategy to improve noise 

robustness in FCT computation. We also incorporated regression forest with the auto-context 

model to predict DTI-like tensors from FCTs. The FCTs are then enhanced using the 

information given by the predicted DTI-like tensors. Experimental results indicate that the 

quality of FCTs is improved. When used for AD diagnosis, the enhanced FCTs also 

improves the classification accuracy.
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Figure 1. 
The overall pipeline of the proposed FCT calculation framework.
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Figure 2. 
Initial FCT computation. For the voxel Vi in the brain region of the rs-fMRI data, the 

process first follows the patch-based correlation measurement strategy to compute the 

correlation coefficient C′ij, which compares the time courses of voxels in Qi centered at Vi 

with those in Qj centered at Vj. The dyadic tensor Dij is also prepared to present the 

directions from Vi to Vj. The FCT Ti is then obtained by computing the sum of all the 

dyadic tensor with its corresponding correlation coefficients.
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Figure 3. 
The WM-masked FCTs from one exemplar subject, computed using Ding et al.’s method 

and the proposed method, respectively. The actual DTs are shown for reference. Each row 

shows the six elements of the tensor {Txx, Txy, Txz, Tyy, Tyz, Tzz}.
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Figure 4. 
Four different WM-masked parameter maps (AD, RD, MD, FA) computed from the various 

tensor estimates from one exemplar subject using Ding et al.’s method and the proposed 

method. The DTs are shown for reference.
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Figure 5. 
Exampler 3D ellipsoidal glyphs based on the DTI-like tensors (first row) and the actual DTs 

(second row).
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Figure 6. 
Exampler fiber tracking results based on the DTI-like tensors (left) and the actual DTs 

(right).
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Figure 7. 
Exampler fiber tracking results based on DTI-like tensors (left) and DTI (right) for AF 

(arcuate fasciculus), CC (corpus callosum) and CST (corticospinal tracts).
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Figure 8. 
Exampler fiber tracking results based on the predicted DTI-like tensors (left) and the actual 

DTs (right) for IFF (inferior frontooccipital fasciculus) and ILF (inferior longitudinal 

fasciculus).
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Figure 9. 
ILF (red) estimated from the predicted DTI-like tensors of four subjects.
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Figure 10. 
The ROC curve for the eMCI-NC classification using the initial and enhanced FCTs by the 

proposed framework, and the FCTs by Ding et al.’s method.
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Table 1

Pearson’s correlation values for different WM ROIs between the predicted DTI-like tensors in two stages and 

their actual DTs. Significant improvement (p<0.05) of the overall correlation coefficients for different ROIs 

between two stages is marked with asterisk.

No ROI First Stage Second Stage

1* Genu of corpus callosum 0.339±0.229 0.418±0.250

2* Body of corpus callosum 0.290±0.187 0.338±0.233

3* Splenium of corpus callosum 0.504±0.153 0.538±0.187

4* Fornix 0.360±0.259 0.479±0.301

5* R. cerebral peduncle 0.621±0.147 0.737±0.147

6* L. cerebral peduncle 0.613±0.157 0.744±0.142

7* R. ant. limb of int. capsule 0.650±0.159 0.758±0.157

8* L. ant. limb of int. capsule 0.607±0.182 0.712±0.177

9* R. post. limb of int. capsule 0.729±0.146 0.791±0.162

10* L. post. limb of int. capsule 0.741±0.105 0.804±0.117

11* R. retro. part of int. capsule 0.504±0.230 0.593±0.240

12* L. retro. part of int. capsule 0.463±0.194 0.535±0.227

13* R. ant. corona radiate 0.401±0.166 0.513±0.177

14* L. ant. corona radiate 0.382±0.160 0.473±0.190

15* R. sup. corona radiate 0.510±0.175 0.575±0.200

16* L. sup. corona radiate 0.496±0.157 0.576±0.171

17* R. post. corona radiate 0.210±0.211 0.318±0.240

18* L. post. corona radiate 0.252±0.197 0.324±0.220

19 R. post. thalamic radiation 0.316±0.193 0.363±0.215

20 L. post. thalamic radiation 0.282±0.221 0.330±0.233

21* R. sagittal stratum 0.218±0.181 0.283±0.229

22* L. sagittal stratum 0.297±0.174 0.367±0.189

23* R. external capsule 0.601±0.130 0.647±0.155

24* L. external capsule 0.558±0.137 0.608±0.171

25* R. cingulum (cigulate gyrus) 0.138±0.156 0.226±0.187

26* L. cingulum (cigulate gyrus) 0.161±0.171 0.264±0.222

27* R. cingulum (hippocampus) 0.304±0.235 0.485±0.239

28* L. cingulum (hippocampus) 0.346±0.239 0.502±0.217

29* R. fornix / stria terminalis 0.235±0.197 0.348±0.238

30* L. fornix / stria terminalis 0.181±0.171 0.306±0.220

31* R. sup. longitudinal fasciculus 0.323±0.222 0.413±0.238

32* L. sup. longitudinal fasciculus 0.305±0.201 0.408±0.218

33* R. sup. fronto-occipital fasciculus 0.266±0.312 0.406±0.282

34 L. sup. fronto-occipital fasciculus 0.274±0.346 0.346±0.388

35 R. inf. fronto-occipital fasciculus 0.532±0.257 0.589±0.274

36 L. inf. fronto-occipiral fasciculus 0.470±0.310 0.536±0.323

37 R. uncinate fasciculus 0.250±0.244 0.324±0.271
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No ROI First Stage Second Stage

38 L. uncinate fasciculus 0.198±0.254 0.258±0.288

Overall 0.393±0.199 0.480±0.219
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