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Abstract

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in 

patients with cancer. Chimaeric antigen receptors (CARs) are a class of synthetic receptors that 

reprogram lymphocyte specificity and function. CARs targeting CD19 have demonstrated 

remarkable potency in B cell malignancies. Engineered T cells are applicable in principle to many 

cancers, pending further progress to identify suitable target antigens, overcome 

immunosuppressive tumour microenvironments, reduce toxicities, and prevent antigen escape. 

Advances in the selection of optimal T cells, genetic engineering, and cell manufacturing are 

poised to broaden T-cell-based therapies and foster new applications in infectious diseases and 

autoimmunity.

Tlymphocytes develop in the thymus1, where they acquire their antigen receptor, known as 

the T cell receptor (TCR)2. T cells are an essential component of adaptive immunity, 

contributing to tumour rejection and pathogen clearance. The adoptive transfer of T cells 

was a pivotal experimental technique used more than half a century ago to establish that 

cellular components of the immune system could reject tumours3,4. Over time, adoptive 

transfer experiments in mice have contributed to the identification of tumour antigens and to 

elucidating the obstacles to establishing effective tumour immunity5–7. This laboratory 

procedure inspired clinical applications of adoptive cell transfer, including the use of 

autologous lymphokine-activated killer cells8 and tumour-infiltrating lymphocytes (TIL)9 to 

treat human solid tumours. Independently, borne out of the field of bone marrow 

transplantation, allogeneic donor T cells were shown to sometimes eradicate haematological 

malignancies via the graft-versus-leukaemia (GVL) effect10. Allogeneic T cells can also 

induce a devastating pathology known as graft-versus-host disease (GVHD). The dual-edged 

role played by T lymphocytes spurred a search to identify and separate beneficial and 

deleterious T cells11,12, which spawned allogeneic therapies such as donor leukocyte 

infusion13 and virus-specific T cell therapy14–16. Altogether, these early clinical 

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to M.S. (m-sadelain@ski.mskcc.org). 

The authors declare competing financial interests: details are available in the online version of the paper.

Readers are welcome to comment on the online version of the paper.

Reviewer Information Nature thanks C. Melief, N. Restifo and the other anonymous reviewer(s) for their contribution to the peer 
review of this work.

Author Contributions M.S., I.R. and S.R. co-authored the review.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2017 November 24.

Published in final edited form as:
Nature. 2017 May 24; 545(7655): 423–431. doi:10.1038/nature22395.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigations eventually pointed to the need to better control the composition of therapeutic 

T cell products by increasing their content of tumour-specific T cells and removing T cells 

with harmful potential17.

A shared feature of late 20th century approaches is the focus on selecting and expanding 

naturally occurring T cells found in the patient or a healthy donor. The prospect of T cell 

engineering would singularly alter these original concepts. The emergence of replication-

defective viral vectors18 provided new possibilities for cell therapies, such as the potential to 

genetically modify T lymphocytes19. In this perspective, it would no longer have to be a cell 

harvested from the patient or a donor that would be adoptively transferred, but a cell product 

designed and repurposed through ex vivo genetic modification20,21. Starting from easily 

accessible cells collected from a patient’s blood, genetic engineering provided a means to 

rapidly generate anti-tumour T cells for any cancer patient by introducing tumour-targeting 

receptors and other attributes intended to improve therapeutic efficacy and safety. Advancing 

therapeutic T cell engineering required progress on multiple fronts including target 

identification, antigen receptor isolation or design, T cell differentiation, genetic 

engineering, cell manufacturing sciences, and regulatory compliance. This 

immunotherapeutic modality thus draws not only on principles of immunology but genetics, 

synthetic biology, stem cell biology and a range of manufacturing technologies. The poster 

child for this new paradigm is CD19 CAR therapy.

Redirecting the specificity of T cells

The most natural approach to target a T cell to a chosen antigen is to express therein 

rearranged TCR α and β chains of defined antigen specificity, conforming to the 

physiological TCR–CD3 complex (Fig. 1a). This procedure was used in transgenic mice to 

demonstrate that the TCR was sufficient to direct antigen-specific T cell differentiation22 

and later applied to human T cell clones to redirect their cytotoxicity23. The transfer of TCR 

genes aims to phenocopy naturally occurring T cells, thereby supplying tumour- or virus-

specific T cells to individuals whose endogenous immune response is insufficient to combat 

the disease. Current efforts to implement this approach focus on isolating TCRs with optimal 

specificity and affinity24, and devising molecular strategies that eliminate potential TCR 

cross-reactivities25,26 and minimize αβ chain mispairing27–29. TCR gene transfer however 

remains constrained by TCR competition for rate-limiting amounts of the signalling 

molecules of the CD3 complex30 (Fig. 1a), and by human leukocyte antigen (HLA) 

restriction, which imposes that multiple TCRs be identified for any given antigen to ensure 

that patients with different HLA haplotypes be eligible for therapy. These biological 

limitations notwithstanding, TCR gene transfer is a compelling therapeutic concept that 

utilizes physiological antigen recognition and T cell activation to generate antigen-specific T 

cells. Indeed, TCR-engineered T cells have been shown to have significant anti-tumour 

activity in patients with melanoma and sarcoma in small clinical trials31,32.

An alternative approach to retarget T cells rests on the design of artificial receptors for 

antigen33. In order to support a productive T cell response, receptors for antigen must 

encompass CD3 components that are sufficient to initiate T cell activation, such as the CD3 

ζ chain34–36. Fusion molecules that linked the ζ chain to an extracellular ligand binding 

Sadelain et al. Page 2

Nature. Author manuscript; available in PMC 2017 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



domain, initially termed T bodies37 or chimaeric TCRs38, and later first-generation CARs33, 

are in essence a simplified TCR–CD3 complex serving as a TCR surrogate. However, 

experimentation in primary T cells and in transgenic mice revealed that signalling through 

such receptors was insufficient to direct productive immune responses39–41, indicating that a 

better adapted and less natural design was needed to engineer sustainable T cell responses. 

Based on the incorporation of co-stimulatory components into antigen-specific receptors42, 

the design of receptors that simultaneously provided both activation and co-stimulatory 

signals opened a path for the generation of antigen-specific T cells capable of interleukin-2 

secretion43 and, most importantly, expansion upon repeated exposure to antigen44. This 

receptor design, dubbed second-generation CAR33 (Fig. 1b), is the backbone of current 

CAR therapies.

Building up the potency of engineered T cells

The second-generation CAR design is amenable to a vast number of variations that include 

differences in antigen specificity, co-stimulatory signalling domain(s) and T-cell-activating 

components. The structural features afforded by the hinge and transmembrane regions (Fig. 

1b) also affect antigen binding and signalling45. The term CAR intends to encompass this 

modular potential33, and over 100 different CAR specificities, predominantly using antibody 

single chain variable fragments (scFv) to impart antigen recognition, with at least eight co-

stimulatory components, have already been reported46–48.

The best studied second-generation CARs are those using CD28 or 4-1BB co-stimulatory 

domains48. Both these designs have been tested in clinical trials for relapsed B cell 

malignancies where they have induced major clinical responses (see below). These two 

variant CAR designs impart different functional and metabolic profiles upon the engineered 

T cell. CD28-based CARs promote brisk T cell proliferation, glucose metabolism, and self-

limited T cell persistence, while 4-1BB-based CARs induce a less potent effector T cell but 

stimulate lipid oxidation and support greater T cell persistence48–50. These differences 

illustrate the potential to differentially reprogram T cells using second-generation CARs.

The genetic optimization of T cells is not limited to the expression of a CAR or TCR to 

redirect specificity. The ease with which genes can be introduced into T cells enables the 

expression of multiple gene products to further shape the targeting and functional attributes 

of engineered T cells. The molecules used in conjunction with CARs for the purpose of 

increasing T cell potency or safety include a range of synthetic receptors, including 

chimaeric co-stimulatory receptors42,51,52, Notch-based receptors53, antigen-specific 

inhibitory receptors54 and others (Fig. 1c), and additional gene products designed to act in 

the tumour microenvironment55 or augment T cell safety56,57 (see below). Thus, while 

second-generation CARs have already demonstrated and validated the enormous potential of 

synthetic T cell engineering, one may anticipate a number of further advances in T cell 

therapy based on multiplexed enhancements.
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Clinical proof-of-concept: the CD19 paradigm

To successfully translate CAR therapy in the clinic, one not only needs a powerful CAR but 

also a suitable target, which ideally is expressed on the surface of all tumour cells and absent 

from all normal cells, or at least any vital cells. We identified CD19 as a promising target58 

based on its cell-surface expression in most leukaemia and lymphomas and its function59,60. 

The targeting of CD19 was expected to induce a B cell aplasia, as eventually documented in 

several mouse models57,61–63, but deemed to be tolerable and clinically manageable if it 

were limited in time. We also reasoned that B cell elimination might prevent the emergence 

of anti-CAR antibodies, which were eventually observed in CAR T cell trials using other 

CARs encompassing murine components64,65. Our studies on CD19 CARs were the first to 

demonstrate complete eradication of established, systemic lymphoma following a single 

infusion of human CAR T cells in mice58, thus providing the foundation and rationale for 

clinical studies. Three groups reported intriguing early results in three different B cell 

malignancies, diffuse large B cell lymphoma66, chronic lymphocytic leukaemia (CLL)67 and 

acute lymphoblastic leukaemia (ALL)68. These studies focused on relapsed, chemotherapy 

refractory patients, and made use of either CD28 or 4-1BB-based CARs69. Notably, despite 

differences in disease histology, scFv, vector utilization and manufacturing process69, all 

groups reported remarkably high rates of complete response, especially in ALL71–75 (Table 

1).

CD19 CAR T cells must be administered following a cytotoxic conditioning regimen that 

depletes endogenous lymphocytes, without which no significant benefit is obtained70,76. If 

conditioning is too intensive, however, toxicities such as cytokine release syndrome and 

neurotoxicity can be exacerbated71. Whereas cytokine release is an expected outcome of T 

cell activation, the mechanism of neurotoxicity remains elusive. Toxicities from CAR T cells 

can usually be managed successfully by administering antibodies that block the interleukin-6 

receptor and corticosteroids72,77, and partly mitigated by adjusting conditioning intensity 

and T cell dosing. Further research is needed to improve treatment and prevention strategies 

for such toxicities.

It is noteworthy that complete response rates have been superior in ALL compared to CLL 

and lymphomas, using the same CARs (Table 1). Clinical observations point to the 

importance of disease location, with bone marrow disease in ALL and CLL being easier to 

eradicate than extra-medullary sites. Clinical data on T cell biodistribution are scarce, but 

suggest that CAR T cell efficacy is more likely to be limited by inhibitory molecules in the 

tumour microenvironment than by inadequate T cell trafficking, although it remains possible 

that accessibility to some tumour sites limits efficacy.

Where to apply CAR therapy

The success of engineered T cells expressing CD19 CARs is a milestone in cell therapeutics, 

and is one of two approaches currently revolutionizing the field of cancer immunotherapy78. 

The other approach uses antibodies that target immune checkpoint molecules such as 

CTLA-4 or PD1 to enhance priming or activity of endogenous T cell responses to tumour 

antigens. The efficacy of immune checkpoint blockade is often incomplete but is highest in 
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patients with tumours that carry a high burden of somatic mutations79,80. While patients 

with tumours with low mutation burden are typically less responsive to checkpoint blockade, 

it is noteworthy that it is in one such disease, ALL, that CAR therapy has proven its efficacy 

(Fig. 2). CAR therapy may thus be especially valuable in low mutation cancers and in those 

that fail checkpoint blockade therapy (Fig. 2).

The clinical benefits induced by, not a drug or an antibody, but an engineered cell, have 

generated enthusiasm amongst scientists, patients and industry81. Engineered T cells are a 

versatile platform that can be, in principle, applied to all cancers and be used in combination 

with other modalities. However, extending CAR therapy to more tumours requires advances 

in several realms, including the identification of suitable CAR targets and the generation of 

T cells equipped to overcome hostile tumour microenvironments.

Identification of new targets for engineered T cells

Given the success of CD19 CARs, one may anticipate similar outcomes with other 

leukaemia targets and haematological malignancies. Two other targets have been recently 

evaluated, CD22 in ALL and BCMA in myeloma. CD22 is a B cell inhibitory receptor 

expressed in B cell malignancies, including pre-B ALL82. Encouraging results have been 

obtained with CD22 CAR T cells in chemotherapy refractory paediatric patients who 

relapsed after CD19 CAR therapy or blinatumomab, although with a higher rate of relapse 

than after CD19 CAR therapy83. BCMA is a TNF superfamily receptor member expressed 

in myeloma cells, normal plasma cells and a subset of B cells84. A first trial of BCMA CAR-

T cells in 12 subjects with chemotherapy refractory myeloma resulted in two significant 

responses85.

T cells are also able to eliminate solid tumours, as exemplified in TIL therapy for melanoma, 

cholangiocarcinoma and colorectal cancer31,32,86. TCR-engineered T cells are likewise able 

to mediate tumour destruction, but the identification of suitable antigens requires further 

research to prevent or minimize off-tumour activity25,26, and enhance efficacy. Ideal tumour 

antigens to target would be mutated or uniquely expressed molecules that are present in all 

tumour cells. Viral antigens, cancer/testis antigens and neoantigens have the advantage of 

being tumour-restricted, and TCRs can be identified for a number of them. However, TCR-

directed therapies remain burdened by HLA-restriction and the low frequency of shared 

cancer neoantigens. This approach therefore requires amassing a vast collection of validated 

TCRs, or high-throughput efforts to rapidly derive TCRs for personalized therapy87. 

Notably, CARs specific for HLA–peptide complexes offer an alternative, antibody-based 

approach to target neoantigens88–92.

Classic CAR targets are HLA-independent and more frequently shared in their expression on 

solid tumours of a particular histology, but they pose a different challenge in that they are 

more likely to be found in normal tissues. In contrast to CD19, CD22 or BCMA, which are 

expressed in normal but non-vital or temporarily dispensable tissues, other commonly cited 

targets such as ROR1, mesothelin or prostate-specific membrane antigen (PSMA), are 

detected in a subset of normal tissues47,93,94. The low expression of these antigens in normal 

tissues may avert significant toxicity, but the toxicities encountered in clinical trials targeting 
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carbonic anhydrase IX or carcinoembryonic antigen with T cells suggest caution for clinical 

efforts targeting such molecules95,96. EGFRvIII, a differentially spliced EGFR variant found 

in glioblastoma, offers stricter tumour specificity, but its heterogeneous expression limits its 

potential as a target for complete tumour eradication97. IL13Rα-2 has been successfully 

targeted in a single case of glioblastoma, in which local CAR T cell therapy induced a 

complete response lasting several months98.

Alternative targeting concepts provide potential routes to bypass these limitations, based on 

the therapeutic window and combinatorial antigen recognition. The therapeutic window 

exploits differences in antigen expression such that malignant cells that express high antigen 

levels are eliminated while normal cells with low levels are spared. This may be 

implemented by tuning receptor expression or affinity to discriminate between the high and 

low antigen expression profiles99–101. Combinatorial antigen recognition strategies offer yet 

another alternative. Some are designed to avoid antigen escape102–105 and others to reduce 

off-target effects by restricting T cell activity to tumour cells that co-express the targeted 

antigens51. Combinatorial targeting makes use of TCRs, CARs, split-signalling 

receptors49,51,106,107, sequentially acting receptors53 and inhibitory receptors54 (Fig. 1c). 

The discovery of suitable CAR target antigens will require deeper analysis of antigen 

expression in both tumours and all normal tissues, and testing in relevant model systems to 

determine whether therapeutic efficacy and tumour selectivity are achieved.

Adapting CARs to overcome tumour microenvironments

The solid-tumour microenvironment is immunosuppressive and an obstacle for all 

immunotherapies108. It is comprised of multiple cell types including T cells (effector, 

regulatory and γδ), B cells, myeloid cells (macrophages, dendritic cells, granulocytes, 

monocytes), stromal cells and endothelial cells. The extracellular milieu is suboptimal for T 

cell function, owing to hypoxia, necrosis, acidification, nutrient shortage (glucose, 

glutamine, L-arginine) and an array of immunosuppressive molecules (PD-L1, IL-10, TGFβ, 

indolamine-2-3-dioxygenase).

The conditioning regimen usually administered before T cell infusion abates some of this 

resistance109, but it is not sufficient to remove or disrupt all inhibitory compartments in most 

instances. Additional steps need to be taken to reinforce engineered T cells to overcome 

micro-environmental obstacles (Fig. 3). These may consist of therapeutic combinations or 

the design of more efficacious T cells armed to impart resistance to inhibition.

Small molecules that interfere with immunosuppressive cells and pathways, such as IDO 

inhibitors110, lenalidomide111 and adenosine antagonists112, are likely to act synergistically 

with engineered T cells. The Btk inhibitor ibrutinib, which is active against CLL, has also 

been found to improve CAR T cell function in preclinical models113. Checkpoint blockade 

may sustain function and persistence of engineered T cells in some instances114–116, albeit 

not universally117. Multiple approaches have been used to interfere with immune 

checkpoints, including the use of blocking antibodies114,116, dominant-negative receptors114 

and targeted gene disruption118.
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Significantly, the latter two approaches rely on T cell engineering, thus averting the need for 

combining agents and the risk of cumulative toxicities. Several other approaches to adapt 

engineered T cells to overcome the tumour microenvironment have been recently reported 

(Fig. 3) and some will enter the clinic in the next year. One approach is to co-express the 

CAR with a cytokine, such as IL-12 or a γc cytokine62,119–121. The toxicities encountered in 

a first trial using IL-12 caution against excessive cytokine secretion. Other approaches make 

use of secreted molecules to block inhibitory ligands55 or constitutive expression of co-

stimulatory ligands to enhance T cell function through auto- and trans-co-stimulation122. In 

the latter case, the display of a ligand such as 4-1BBL serves the dual purpose of increasing 

intrinsic T cell persistence as well as providing targeted co-stimulation to neighbouring 

tumour-infiltrating T cells49.

What T cells to engineer

The anti-tumour effects of engineered T cells are predicated on their ability to migrate to 

tumour sites, proliferate, and mediate effector functions that destroy numerically larger 

tumour burdens. In addition to T cell genetic modifications that confer specificity to tumour 

antigens and enhance safety and efficacy, the phenotype of T cells that are engineered can 

affect potency123. It is now evident that the quality, efficacy, longevity and location of T cell 

immunity results from the diversification of naive T cells (TN) into various phenotypically 

distinct subsets with specific roles in protective immunity. These include memory stem 

(TSCM), central memory (TCM), effector memory (TEM), tissue resident memory (TRM), and 

highly differentiated effector (TE) T cells124. Fate mapping supports a model of progressive 

differentiation in which antigen-specific TN give rise to long-lived TSCM and TCM that self-

renew and provide proliferating populations of shorter-lived TEM and TE cells125–127 (Fig. 

4a). This conceptual framework suggests that selecting less differentiated TN, TSCM or TCM 

subsets for genetic modification might provide cells with greater therapeutic efficacy128.

The early clinical successes of genetically engineered T cells were accomplished by 

obtaining T cells from patients without regard to the phenotypic and functional 

heterogeneity in individual patients. Preclinical models have however shown that 

engineering T cells selected from TN and TCM subsets (or intermediates), or expanding TN 

in vitro in the presence of small molecules or cytokines that inhibit T cell differentiation, 

provide cell products with superior engraftment, proliferation and anti-tumour effects after 

adoptive transfer123,129–131. These observations suggest that the potency of engineered T 

cells may be improved if therapeutic products were prepared from purified subsets with 

superior activity in preclinical models and formulated uniformly for infusion to the patient.

The concept of defining the subset formulation of engineered T cells is beginning to be 

explored in the clinic. The first clinical trials in which CD19 CAR T cells were engineered 

from selected T cell subsets and formulated in a uniform CD4/CD8 ratio demonstrated 

feasibility in greater than 90% of patients, including those with severe lymphopenia75,132. 

These studies also showed reproducible CAR T cell dose-related in vivo expansion, marked 

anti-tumour activity at lower cell doses, and a relationship between cell dose and toxicity 

that has not been clearly evident in earlier trials. Improvements in clinical cell selection 

methodology and use of culture conditions that retain less-differentiated phenotypes or 
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dictate production of specific effector cytokines are areas of investigation that are likely to 

be implemented in future clinical applications133–136.

Alternative (non-autologous) T cell sources

The successful TCR- and CAR-based therapies have to date made use of autologous T cells, 

which imposes individualized cell manufacturing and makes inter-patient variability 

unavoidable, even with selection of defined subsets. The overarching rationale for 

autologous approaches is to prevent a T cell attack of the recipient and rejection of the 

therapeutic T cells by the recipient. Immunosuppressive drugs may mitigate such 

complications, but are not an option because unimpeded anti-tumour function of the infused 

T cells is essential. The risk of exacerbating GVHD after introducing CARs in donor T cells 

is real, albeit variable137–140, depending in part on the CAR design140.

Three strategies have been proposed to prevent GVHD. One is to transplant engineered 

haematopoietic stem cells or T cell precursors instead of mature T cells, thus allowing for 

the establishment of host tolerance. This approach however requires thymic function for 

positive and negative selection and yields progressive T cell reconstitution141,142. Another 

approach is to identify allogeneic T cells with a defined TCR specificity lacking GVHD 

potential143,144. VSTs may demonstrate alloreactivity in vitro but have been administered to 

allogeneic recipients to treat viral infections without causing serious GVHD145. However, 

initial clinical investigations of CAR-modified VSTs revealed limited therapeutic 

efficacy146, which may owe in part to the deleterious consequences of having two 

functioning receptors in the same T cell140. A third approach to improve safety of allogeneic 

T cells is to remove the TCR, which may be achieved by disruption of the TCR α or β 
chain147–149. None of these approaches address the issue of rejection of allogeneic cells by 

the recipient’s immune system, and are therefore only being evaluated in heavily 

immunosuppressed recipients150, limiting their relevance. The latter strategies are 

constrained by their reliance on primary cells and the need for labour-intensive in vitro 
manipulations that may exhaust the replicative and engraftment potential of mature T 

cells123.

An alternative to manipulating mature T cells is to generate CAR T cells in vitro from 

pluripotent stem cells151–154 (Fig. 4b). Stem cell reprogramming offers potential access to 

an unlimited source of therapeutic T lymphocytes and provides an excellent platform for 

performing additional engineering intended to enhance the therapeutic potential of induced 

T cells155.

How to engineer and manufacture better T cells

The genetic engineering of primary T cells began with recombinant retroviral vectors19, 

which remain the most used vectors in clinical studies of TCR- or CAR-modified T 

cells71–75. Like retroviral vectors, transposons integrate semi-randomly and are thus also 

susceptible to variegated expression156. In hundreds of patients infused with TCR- or CAR-

modified T cells, no occurrence of an oncogenic transformation has yet been reported. 

Alternative approaches to express the CAR rely on messenger RNA transfection, resulting in 
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transient expression lasting only a few days157,158, and gene editing using targeted 

nucleases. Expressing CARs from the TCR locus affords added benefits in T cell 

functionality159 that warrants clinical evaluation. Targeted nucleases enabling gene ablation 

or addition in T cells are poised to advance therapeutic T cell engineering.

The genetic engineering, selection, expansion and differentiation of T cells have to be 

integrated within manufacturing platforms that meet biological and regulatory requirements 

(Fig. 3). T cell manufacturing is a complex science that must coalesce biological optima 

with efficacy, safety, reproducibility, traceability as well as regulatory and economic 

imperatives. Clinical T cell production is regulated under current good manufacturing 

practices (cGMP) and requires facilities and manufacturing processes that meet FDA 

guidelines. Streamlining the process to augment performance while reducing scale and cost 

is contingent upon understanding how to optimally purify or induce T cells that bestow 

efficient tumour eradication with limited side effects. Seemingly small process changes can 

significantly alter the potency and safety profile of expanded T cell populations. The 

manufacture of optimal cellular components will not only increase safety, efficacy and 

reproducibility, but also decrease the effective T cell dose and hence the scale of 

production75,160. The high cost and limited number of GMP antibodies available to sort 

specific subsets of T cells will hopefully be assuaged by new technologies such as acoustic 

waves that allow the capture, separation and concentration of desirable T cell fractions, 

microfluidics and new phase-change hydrogel substrates161–164. These new platforms can 

potentially be combined with in vitro enrichment of desired T cell subsets using small 

molecules such as GSK-3β inhibitors or cytokines such as IL-7, IL-15 or IL-21123,165,166. 

These same principles apply to the induction of therapeutic T cells from induced pluripotent 

stem cells155. In order to mitigate costly cGMP operations and limit error-prone manual 

procedures, closed automated systems integrating cell-selection devices, microchips and 

bioreactors combined with biosensors for in situ monitoring, are being investigated167,168. 

New cell therapy platforms such as nanofluidic-based chip systems allowing individual cells 

to be isolated, cultured and assayed are becoming available for multiple applications 

including the characterization and manufacturing of T cell products. The rise of T cell 

therapies has incentivized the development of innovative manufacturing platforms and the 

establishment of standards driven by the formation of consortia such as CCRM (http://

ccrm.ca), NIIMBL (http://www.niimbl.us) and the involvement of industry167,168. These 

initiatives will in time benefit all cell-based medicines.

Engineered T cells to fight infection and autoimmunity

The breakthroughs of T cell engineering in oncology have been remarkable, but the potential 

of engineered T cells extends far beyond cancer. One area awaiting further investigation is 

that of severe infectious diseases. Although early applications targeting HIV were not 

successful169, the potential of T cells to combat intractable infections is intriguing. The other 

realm is that of autoimmunity and transplantation tolerance170. CAR T cells can eliminate 

auto-reactive B cells as demonstrated in a mouse model of pemphigus vulgaris171. 

Engineered T regulatory cells may also be harnessed to dampen immune responses172, 

which may be useful in the context of GVHD, autoimmunity173 or transplantation 
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tolerance174. This aspect of therapeutic T cell engineering is nascent and also poised for 

rapid development.

Perspectives

Twenty-five years of research on T cell engineering have culminated in the demonstration 

that genetically enhanced T cells can mediate profound responses in patients with refractory 

cancers. This progress was predicated on advances in cell engineering and manufacturing 

sciences that enabled successful clinical translation, the most striking example of which is 

CD19 CAR therapy. This new therapeutic modality is not yet fully mastered nor optimized. 

While high rates of complete response can be obtained in patients with B cell malignancies 

who do not have alternative treatment options, relapse may occur in up to half of patients, 

often owing to antigen loss variants. Despite progress in managing treatment-related 

toxicities, the mechanisms of severe cytokine release syndromes and neurotoxicities are 

poorly understood, precluding their effective prevention. There is therefore a need to further 

improve CAR therapies for B cell malignancies and other cancers.

A range of novel target antigens and CAR designs will soon be tested in haematological and 

solid cancers. The success of CD19 CAR therapy in some leukaemias and lymphomas is a 

good omen for tackling other haematological malignancies. There is, however, a need to 

identify suitable targets in solid tumours, whether neoantigens, cancer-testis antigens or non-

mutated tumour-associated antigens, define the optimal T cell types for adoptive transfer, 

and address the immunosuppressive tumour microenvironment. New devices and processes 

are needed to decrease the cost of cell manufacturing. Autologous T cells are the corner 

stone of present cell-based cancer immunotherapy, but allogeneic cell sources, possibly 

including stem cell-derived, ‘off-the shelf’ T cells, may play an important role in the future.

While the recent therapeutic breakthroughs have all come to fruition in the realm of 

oncology, one may anticipate that T cell therapies will garner momentum in other fields. The 

success of CD19 CAR therapy and the rising proficiency of therapeutic T cell engineering is 

empowering all cell therapies, from immunotherapies to regenerative medicines.
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Figure 1. Receptors for antigen
a, T cell receptor (TCR). Physiological antigen recognition is mediated by the TCR–CD3 

complex, which comprises six independent gene products: the TCR α and β chains, which 

together bind to HLA–peptide complexes, and the CD3γ, δ, ε and ζ chains, which initiate T 

cell activation. b, Chimaeric antigen receptor (CAR). A prototypic second-generation CAR 

comprises three canonical domains for binding to antigen (unrestricted by HLA), T cell 

activation (commonly via the CD3ζ cytoplasmic domain) and co-stimulation (via the CD28 

cytoplasmic domain in this example). The hinge and transmembrane domain also contribute 

to overall CAR function. c, Synthetic receptors in the extended CAR family: chimaeric co-

stimulatory receptors (CCRs) provide co-stimulation in response to antigen or alternate 

ligands; chimaeric cytokine receptors (CyCRs) bind to one cytokine but transduce the signal 

of another; antigen-specific inhibitory receptors (iCARs) inhibit T cell activation in response 

to an antigen; synthetic Notch (synNotch) receptors induce CAR expression after antigen 

recognition by a chimaeric Notch receptor. The scissors indicate a cleavage site that releases 

a transcription factor (TF).
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Figure 2. Where to apply CAR therapy
CARs are applicable in principle to any cancer for which suitable cell-surface target antigens 

are identified. CARs may be especially effective in cancers with low mutation burden that 

elude checkpoint blockade. Adapted from ref. 175 (Nature Publishing Group), previously 

adapted from ref. 176 (Nature Publishing Group).
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Figure 3. Therapeutic T cell design: goals and strategies
The major goals of T cell engineering address tumour targeting, T cell potency (intrinsic, 

that is, functionality and persistence; extrinsic: action on the tumour microenvironment), 

safety and cell manufacturing. Research strategies are exemplified for each one of these 

goals.
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Figure 4. Cell sources for T cell engineering
a, Post-thymic differentiation of memory and effector T cell subsets. T memory stem cells 

(TSCM) and central memory T cells (TCM) are derived following antigen activation of naive 

T cells (TN), and reside in low frequency in blood and higher frequency in lymphoid organs. 

TCM have been shown in clonogenic assays to be capable of both self-renewal and 

differentiation to more distal effector memory (TEM) and effector (TE) cells. TEM and TE are 

incapable of self-renewal, and TE, which can be present at high frequency at the peak of an 

immune response, are short-lived. A resident memory (TRM) subset resides in peripheral 

tissues but recirculates very poorly, if at all. Acquisition of effector functions increases as T 

cells progressively differentiate. The individual memory T cell subsets can be distinguished 

by the cell surface markers, which can be used for purification for genetic modification. b, 

Pluripotent stem-cell-derived T cells. Human T lymphocytes may be derived in culture from 

pluripotent stem cells. Several functionalities (cytotoxic, helper, regulatory) could be 

obtained in principle. αβ-like T cells normally proceed through a double-positive 

(CD4+CD8+) intermediate stage, which is not required for the genesis of γδ-like T cells. 

The stem cell platform is attractive for its ease of genetic engineering and function as a 

permanent T cell reservoir. T-iPS, T cell-derived induced pluripotent stem cell; eT-iPS, 

engineered T-iPS (here expressing a CAR).
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