
Research Article
Head and Neck Cancer Tumor Segmentation Using Support
Vector Machine in Dynamic Contrast-Enhanced MRI

Wei Deng,1,2 Liangping Luo,3 Xiaoyi Lin,4 Tianqi Fang,4 Dexiang Liu,1,2

Guo Dan,4,5 and Hanwei Chen1,2

1Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
2Medical Imaging Institute of Panyu, Guangzhou, China
3Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
4National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for
Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University,
Shenzhen, China
5Center for Neurorehabilitation, Shenzhen Institute of Neuroscience, Shenzhen 518057, China

Correspondence should be addressed to Guo Dan; danguo@szu.edu.cn and Hanwei Chen; docterwei@sina.com

Received 7 April 2017; Revised 18 July 2017; Accepted 6 August 2017; Published 7 September 2017

Academic Editor: Ziyue Xu

Copyright © 2017 Wei Deng et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. We aimed to propose an automatic method based on Support Vector Machine (SVM) and Dynamic Contrast-Enhanced
Magnetic Resonance Imaging (DCE-MRI) to segment the tumor lesions of head and neck cancer (HNC).Materials and Methods.
120 DCE-MRI samples were collected. Five curve features and two principal components of the normalized time-intensity curve
(TIC) in 80 samples were calculated as the dataset in training three SVM classifiers. The other 40 samples were used as the testing
dataset. The area overlap measure (AOM) and the corresponding ratio (CR) and percent match (PM) were calculated to evaluate
the segmentation performance. The training and testing procedure was repeated for 10 times, and the average performance was
calculated and compared with similar studies. Results. Our method has achieved higher accuracy compared to the previous results
in literature in HNC segmentation. The average AOM with the testing dataset was 0.76 ± 0.08, and the mean CR and PM were 79
± 9% and 86 ± 8%, respectively. Conclusion. With improved segmentation performance, our proposed method is of potential in
clinical practice for HNC.

1. Introduction

Head and neck cancer (HNC) is an aggressive cancer at
the head and neck region with high incidence in southern
China especially in Hong Kong and Guangdong [1]. Medical
imaging has been very important in the diagnosis and
treatment of HNC. Dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI) is an imaging method in
which T1-weightedMRI scans are acquired dynamically after
injection ofMRI contrast agent, providing information about
the characteristics of the physiological procedure. DCE-MRI
tracks the diffusion of the contrast agent (a paramagnetic
substance, normally Gadolinium-based) over time into the
tissue by repeated imaging to reflect hemodynamic informa-
tion such as the formation and permeability of microvascular

in living tumor [2]. The DCE-MRI image stores the time-
intensity curve (TIC), which is different among tissues, like
cancer, normal soft tissue, bone, and so on. Compared with
the traditional MRI images and CT images, the differences
in DCE-MRI images among tissues are more characteristic
[3].

The diagnosis and treatment of HNC require accurate
tumor lesion segmentation. Regarded as the ground truth,
artificial segmentation operated by experienced radiologists
is nonetheless time-consuming, and the accuracy is limited
by the experience of radiologists. In recent years, auto-
matic segmentation has attracted much attention. Machine
learning algorithms have been applied in the segmentation
of HNC, such as supervised learning, unsupervised learn-
ing, semisupervised learning, and enhanced learning. These
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automatic segmentationmethodsmay reduce the subjectivity
and improve the quality in the segmentation tasks.

Among these methods, Support Vector Machine (SVM),
a supervised learning algorithm, has showed great superiority
with small sample size of data [4]. In this study we aimed to
develop an automatic segmentation method for HNC based
on DCE-MRI by using SVM.

2. Materials and Methods

2.1. DCE-MRI Data. In our study, all subjects were recruited
from The First Affiliated Hospital, Sun Yat-sen University.
DCE-MRI was performed on a 3.0-T system (Magnetom
Trio, Siemens) with field of view (FOV) of 22 × 22 ×
6 cm (AP × RL × FH), a flip angle of 15∘, and scanning
time of 6 minute 47 seconds with 65 dynamic scans, 5.9
seconds per scan. The contrast agent gadodiamide Gd-
DTPA (Omniscan; Nycomed, Oslo, Norway) was injected
intravenously as a bolus into the blood at around the 8th
dynamic acquisition using a power injector system (Spectris;
Medrad, Indianola, Pennsylvania), immediately followed by
a 25-mL saline flush at a rate of 3.5mL per second. The dose
of Gd-DTPAwas 0.1mmol/(kg body weight) for each patient.
The reconstructed DCE-MRI images were a 4D matrix (144
× 144 × 20 × 65) with 20 slices.

One hundred and twenty samples of DCE-MRI images
containing theHNC tumor lesions were used as our database.
Each sample was the DCE-MRI time series of a slice and thus
was a 144 × 144 × 65 matrix. Eighty samples were selected
randomly as the training dataset while the remaining 40
samples were the testing dataset to verify the accuracy of
segmentation.

2.2. Feature Extraction. Before extracting the features from
the TIC in the DCE-MRI images, we performed the normal-
ization as [8]

𝑖real (𝑡) =
𝑖𝑛 (𝑡) − 𝑖 (pre)
𝑖 (pre)

, (1)

where 𝑖real(𝑡) denotes the final normalized TIC, 𝑖𝑛(𝑡) denotes
the original TIC, and 𝑖(pre) denotes the average intensity in
the first eight scans (before the injection of contrast agent) of
𝑖𝑛(𝑡).

In several studies some features had already been
extracted from DCE-MRI images and successfully applied
to classify the tumors from the surrounding tissue [8, 9]. In
our study, with the normalized TIC (𝑖real(𝑡)), the same TIC
features were calculated. The maximum intensity was cal-
culated as

𝑖max = max (𝑖real (𝑡)) . (2)

The time of reaching the maximum intensity, namely, time to
peak, was calculated as

𝑖real (𝑡peak) = max (𝑖real (𝑡)) . (3)

The onset time was defined as the time to reach 10% of the
maximum signal intensity after the 8th time point:

𝑡onset = 𝑡10% − 𝑡8,

𝑖 (𝑡10%) = 𝑖max ∗ 10%.
(4)

The wash-in rate was defined as the mean gradient between
the two time points of 𝑡onset and the maximum intensity:

Δwashin =
(𝑖real (𝑡peak) − 𝑖real (𝑡onset))

(𝑡peak − 𝑡onset)
. (5)

The wash-out rate was defined as the mean gradient between
𝑡peak and the 65th time point:

Δwashout =
(𝑖real (𝑡peak) − 𝑖real (𝑡65))

(𝑡65 − 𝑡peak)
. (6)

Besides, we also used Principal Component Analysis
(PCA) [10] in this study to extract the principal components
of the TIC. We chose the first two components (the eigen-
vector with the two highest eigenvalues) from PCA results
and then multiplied them by the original data to produce
two features. These two new features were used in the seg-
mentation tasks.

2.3. SVM Training and Testing

2.3.1. SVM Training. For the training dataset of 80 samples,
we firstly carefully drew some rectangular regions of interest
(ROIs) for 4 regions, namely, the tumor lesions, the vessels,
the normal tissue, and the cavity. This was done by an
experienced radiologist (Dr. Wei Deng, 12 years’ experience
in Radiology) in ImageJ (National Institutes of Health,
Bethesda, MD) and double-checked by another experienced
radiologist with 14 years’ experience who were blind to our
study. We then calculated the mean TIC curve for the four
regions, respectively, in the 80 samples as

𝑖aver (𝑡, 𝑗) =
∑𝑘𝑗=1 𝑖 (𝑡, 𝑗)
𝑘
, 𝑡 = 1, . . . , 65, (7)

where 𝑖aver(𝑡, 𝑗) denotes the mean TIC in this ROI, 𝑖(𝑡, 𝑗)
denotes the TIC of a voxel, and 𝑘 denotes the total number
of voxels. Thus, with 80 samples, we obtained 80 × 4 average
TICs.We then calculated the 7 features (5 TIC characteristics,
and 2 by PCA) for all the 320 TICs. We labeled these features
with their corresponding type (tumor, vessel, normal tissue,
and cavity). These features and labels formed our training
dataset.

For SVM training, we used the MATLAB toolbox lib-
svm 3.17 (http://www.csie.ntu.edu.tw/∼cjlin/libsvm/). After
normalized across different samples, the training dataset was
used to train three SVM classifiers. We tried and compared
between the five curve features and the two PCA features and
selected the PCA features in training the SVM classifier for
classifying between cavity and the other three tissues, the 5
TIC features in classifying the normal tissue and blood vessels

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 1: The time-intensity curve (TIC) of four regions before and after normalization.

from the other tissues.The radial basis function (RBF) kernel
was used in libsvm. The parameters of 𝐶 and 𝑔 in libsvm
3.17 were selected by cross-validation and the grid-search
technique.

2.3.2. SVM Testing. Before segmentation, a rectangular ROI
was roughly drawn in each of the 40 testing samples. We
then applied the three trained classifiers to these ROIs for
voxel-by-voxel classification. First, the voxels of vessels were
classified by the first classifier. Then the voxels in cavity were
also classified by the second classifier. Finally, the voxels in
normal tissues were also classified. We removed all the voxels
classified above, and thus the tumor lesions were ultimately
segmented.

To evaluate the segmentation performance of our
method, we compared the automated segmentation results
with the ground truth and calculated the area overlap mea-
sure (AOM) as

AOM = 𝐴𝑅 ∩ 𝐴𝐺
𝐴𝑅 ∪ 𝐴𝐺

, (8)

where 𝐴𝑅 is the segmentation results and 𝐴𝐺 is the ground
truth. Again, the ground truth for the tumor lesions in these
40 testing samples was manually drawn by an experienced
radiologist (Dr. Wei Deng) and double-checked by another
experienced radiologist with 14 years’ experience who was
blind to our study.

To evaluate the superiority of our proposed method to
other studies, the corresponding ratio (CR) and percent
match (PM) were also calculated as

CR = TP − 0.5 × FP
GT

× 100%,

PM = TP
GT
× 100%,

(9)

where true positive (TP) denotes the correctly identified
tumor region, false positive (FP) denotes the tumor lesion
that was incorrectly predicted as nontumor tissue, and the

ground truth (GT) denotes the correct tumor region drawn
by the radiologist.We repeated the above training and testing
for 10 times in order to calculate themean value of AOM, CR,
and PM.

3. Results

The unnormalized and normalized TICs of four different
regions of one sample were shown in Figure 1. As shown,
after normalization, the TICs of different regions were well
distinguished between each other. Figure 2(a) shows the
average original TICs of different regions in a typical training
sample, and Figure 2(b) shows the two components selected
by PCA.

HNC tumor segmentation by using the proposedmethod
was successfully performed on the 40 testing samples. The
mean AOM was 0.76 with standard deviation of 0.08. Fig-
ure 3 shows four typical cases of HNC lesion segmentation,
including the ground truth in Figure 3(a) and the automated
segmentation results in Figures 3(b)–3(e).

The comparison of segmentation performance between
our method and the similar studies is summarized in Table 1.
By our method, the mean CR was 79 ± 9%, and the mean
PM was 86 ± 8%, which were both higher than those in the
previous studies.

4. Discussion

In this study, a SVM-based method for tumor segmentation
in DCE-MRI images of HNC was proposed. Experimental
results indicated that this proposed method could effectively
segment HNC lesions with high accuracy. We achieved an
average AOM of 0.76 ± 0.08. Compared with the SVM-based
method proposed in the previous studies [7], the CR value of
79 ± 9% (72 ± 6%) and the PM value 86 ± 8% (79 ± 7%) in our
study were both higher. Compared with othermethods about
HNC tumor segmentation [5–7], our method also showed
higher CR and PM values.

There may be several reasons for better performance
of our method. Firstly, the normalized TICs makes the
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Figure 2: The average original time-intensity curves (TICs) of different subregions in a region of interest (ROI) and the two components
extracted by using Principal Component Analysis (PCA). (a)The average TICs of different regions. (b)The two components selected by PCA
of the normalized TIC.

(a) (b) (c) (d) (e)

Figure 3: Examples of tumor segmentation results from four patients versus the ground truth. Row-wise, from top to bottom, corresponding
to 4 typical samples with AOM of 0.89, 0.79, 0.67, and 0.71, respectively. (a) Ground truth of the tumor drawn by an experienced radiologist
(in red); (b) the blood vessels identified by the first classifier (in white); (c) the cavity identified by the second classifier (in white); (d) the
normal tissue identified by the third classifier (in white); (e) the tumor region (in white) segmented by removing the voxels identified in (b),
(c), and (d) from the region of interest (ROI).

data dimensionless and comparable. As shown in Figure 1,
before normalization, the TICs of different tissues especially
blood vessel and tumor region are similar, while, after
normalization, they arewell distinguished andmeanwhile the
differences of TIC are more obvious.

In addition, the extraction and selection of features are
essential in segmentation tasks. We chose the features by

using PCA and the features of TIC change for the three
classifiers. On the one hand, we found that the classification
performance of the PCA features in cavity was more obvious.
As shown in Figure 2, by PCA, although only two principal
components are shown, the differences in curve variation are
still obvious and the computational expense is reduced. On
the other hand, we believed that the combination of different
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Table 1: Comparisons of PM and CR between the segmentation performance obtained by the proposed SVMmethod and other methods in
literature.

Studies Algorithm CRa PMb

Huang et al. [5] HMRFc 0.72 0.85
Ritthipravat et al. [6] Probabilistic Function 0.52 0.85
Zhou et al. [7] SVMd 0.72 ± 0.06 0.79 ± 0.07
Our proposed method SVM 0.79 ± 0.09 0.86 ± 0.08
aCorresponding ratio. bPercent match. cHidden Markov random field. dSupport vector machine.

SVM classifiers with different features improves the accuracy
of segmentation. In our method with three SVM classifiers,
blood vessel, cavity, and normal tissue have been classified
independently and successively (as shown in Figure 3). As
a supervised learning algorithm, SVM has shown a strong
learning ability [4]; thus, with more training samples, the
classification performance can be better.

Our study has several limitations. In fact, there is a thin
layer of mucosa membrane around the HNC tumor. This
tissue might be an obstacle while designing the algorithm
based on TIC features, because the TIC is quite similar to the
HNC tumor. In the future, we intend to incorporate the high-
resolutionMRI images for better classification between these
two. Another way to improve our method may be the deep
learning-based approaches, with which we may obtain more
discriminative features and yield improved performance [11].

5. Conclusion

We successfully proposed an automatic segmentation
method based on SVM for HNC. The results of this study
showed that the segmentation performance was superior to
previous studies. Our method, if was further verified with
more data, is of potential in the clinical practice of HNC
patient management.
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