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Abstract

Understanding the overall progression of neurodegenerative diseases is critical to the timing of 

therapeutic interventions and design of effective clinical trials. Disease progression can be 

assessed with longitudinal study designs in which outcomes are measured repeatedly over time 

and are assessed with respect to risk factors, either measured repeatedly or at baseline. 

Longitudinal data allows researchers to assess temporal disease aspects, but the analysis is 

complicated by complex correlation structures, irregularly spaced visits, missing data, and 

mixtures of time-varying and static covariate effects. We review modern statistical methods 

designed for these challenges. Among all methods, the mixed effect model most flexibly 

accommodates the challenges and is preferred by the FDA for observational and clinical studies. 

Examples from Huntington’s disease studies are used for clarification, but the methods apply to 

neurodegenerative diseases in general, particularly as the identification of prodromal forms of 

neurodegenerative disease through sensitive biomarkers is increasing.
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Introduction

Understanding the overall progression of neurodegenerative diseases is critical to the timing 

of therapeutic interventions and design of effective clinical trials. Disease progression can be 

assessed via longitudinal studies that measure outcomes repeatedly over time in relation to 

risk factors. In Huntington’s disease (HD), for example, longitudinal studies have assessed 
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the effect of medication use on performance of motor, cognitive, and neuropsychiatric 

function over time [1]. Longitudinal assessments of motor and cognitive impairments have 

also revealed insights into the natural progression of HD [2•, 3].

Longitudinal data allow researchers to assess multiple disease aspects: changes of 

outcome(s) over time in relation to associated risk factors, timing of disease onset, and 

individual and group patterns over time. Assessing longitudinal temporal changes is central 

to learning specific time patterns of clinical impairments that could be missed otherwise [4]. 

Moreover, compared to cross-sectional studies, longitudinal studies often have less 

variability and increased statistical power [5].

Analyzing longitudinal data is complicated, however, by practical and theoretical issues. 

These include data that are missing, correlated, and collected at irregularly spaced visits. 

Modern statistical methods handle these complications, but hindrances are knowing when to 

use these methods, verifying their assumptions, and interpreting their output correctly. 

Confusion on these points can lead to inappropriate and inaccurate analysis.

In this paper, we review statistical techniques for analyzing longitudinal data for 

neurodegenerative diseases. Among all methods discussed, the mixed effect regression 

model (“Mixed effects regression (MER)” Section) is most flexible and designed to handle 

multiples challenges of longitudinal data. As such, it is recommended by the FDA in 

analysis of observational studies and clinical trials. Throughout, methods are described using 

examples from HD, a progressive, primarily single-gene disorder with complete penetrance 

that can be genetically diagnosed years before clinical symptoms onset. Compared to 

Alzheimer’s and Parkinson’s diseases, HD is less complicated, in that the genetic cause of 

HD absolutely predicts whether or not the person will develop HD and the CAG repeat 

length is correlated with age at onset. While the examples are in the context of HD, methods 

presented are relevant to neurodegenerative diseases in general, particularly as the 

identification of prodromal forms of neurodegenerative disease through sensitive biomarkers 

is increasing.

To clarify key points throughout, we use fictional, simple examples described in the text 

below and refer to them as cases 1, 2, and 3. A comparison of all methods mentioned is in 

Table 1.

Study of Total Motor Scores. One way of assessing HD progression is through clinical evaluations using the Unified 
Huntington’s Disease Rating Scale (UHDRS [6]). The UHDRS includes components that rate motor, cognitive, 
functional, and behavioral performance. In all cases, our outcome of interest is the total motor score (TMS), a 
component of the UHDRS that assesses the subject’s overall motor performance from 0 (no impairment) to 124 (high 
impairment).

Case 1: Single site study of TMS values collected at two time points. Suppose study participants from a single site are 
divided into three disease categories: “low,” “medium,” and “high” corresponding to the likeliness of being diagnosed 
with HD based on motor signs in the next 5 years. Inclusion into a specific disease category is based on percentile cut-
offs of the calculated CAG-Age Product (CAP) formula [7]: age at baseline × (CAG repeats—33.66). In general, the 
upper end of the “low” disease category is the 25th–40th percentile, and the lower end of the “high” disease category is 
the 60th–75th percentile. Exact cutoffs are based on an algorithm [7] applied to study data. For each participant, we 
collect TMS values at the beginning and end of the study.

Case 2: Single site study of TMS values collected at multiple time points. Similar to case 1, except now we collect TMS 
values on each participant annually over 10 years.
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Case 3: Multiple site study of TMS values collected at multiple time points. Similar to case 2, except now participants 
come from multiple sites.

In hierarchical modeling terms, cases 1 and 2 are two-level models: level 1 represents the repeated TMS values over 
time for each participant (“within-subject”) model and level 2 represents the TMS values between participants 
(“between-subject” model).). Case 3 is a three-level model which extends the two-level model with level 3 representing 
the TMS values among sites.

Challenges of Longitudinal Neurodegenerative Disease Studies

Correlated Data

Measurements in longitudinal studies are correlated by design. Correlation exists between 

repeated measures on the same individual (e.g., cases 1, 2) or from clustering of individuals 

across sites (e.g., case 3). Correlation within a site exists because subjects from the same site 

may have similar responses due to the site investigator, study protocol variations or 

equipment (e.g., MRI scanners). Attempts are always made to standardize assessments 

through training and use of phantoms in the case of scanners (i.e., a specially designed 

object that helps to evaluate and tune a scanner for reliability purposes). Ignoring the 

different sources of correlation in longitudinal studies has severe consequences: higher false 

positive rates and invalid confidence intervals from underestimated standard errors [8].

Another concern of longitudinal studies, particularly with multi-site studies, is handling 

vastly different numbers of participants across sites. Unequal sample sizes between sites 

have three key consequences. First, it risks violating the constant variance assumption of 

ANOVA-based methods (“Starter methods for longitudinal data analysis” section) that is not 

an issue for more advanced modeling approaches (“Modern methods for longitudinal data” 

section). Second, power is affected and is determined by the site with the smallest sample 

size. Third, even in more advanced modeling approaches, some effects may not be 

detectable. For example, if one site has a large number of “high” disease category 

participants and another site has a very small number of “low” disease category participants, 

then the effect of disease category may not be easily identified.

Irregularly Timed Data

Longitudinal studies generally encourage regularly occurring visits for data collection. But 

study participation frequency, and total study visits vary due to scheduling limitations and 

dropout. In our TMS example, individuals in the “high” or “medium” disease category may 

have limited mobility because they have more severe disease as the study progresses and 

may miss scheduled visits.

Missing Data

Missing data is the most problematic issue as there is no universally accepted correction, and 

inappropriate ones can have negative consequences.

Impact of Missing Data—Missing data can decrease the study’s statistical power and 

increase bias. Statistical power improves whenever the study’s sample size increases or 

variability of the study’s outcome measure (e.g., total motor score) is accurate. 
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Unfortunately, missing data negatively impacts the sample size and variability. First, 

analyses that exclude participants with missing values inadvertently reduce the study’s 

sample size, potentially reducing the statistical power. Second, when participants who would 

have had extreme data values drop out (e.g., participants with very high or very low TMS), 

the variability of the study’s outcome measure is incorrectly underestimated.

Missingness Mechanisms—Proper analysis of missing data requires understanding the 

“missingness mechanism” which describes why missing data occur [9]. Three mechanisms 

exist: missing completely at random, missing at random, and missing not at random. We 

provide examples of each mechanism using cases 1, 2, and 3 where the outcome variable is 

the total motor score (TMS). Table 1 provides a summary of how the methods discussed in 

this paper behave under each missingness mechanism.

Missing Completely at Random (MCAR): MCAR is when the missingness of the outcome 

variable is completely unsystematic. For example, consider case 1 where TMS is measured 

on two occasions. Suppose budget cuts force the investigator to reduce the number of 

subjects assessed at the second evaluation. If the investigator randomly samples among those 

participants initially evaluated, then missingness at the second time point is MCAR. This is 

because the subsample is random and not related to any other variable in the study.

Verifying MCAR can be achieved with Little’s test [9] which examines group characteristics 

(e.g., mean) of participants with and without missing data. If characteristics are not equal for 

both groups, MCAR does not hold.

Missing at Random (MAR): MAR is when the probability that an outcome is missing is 

related to some other fully observed variable in the model, but not the variable with the 

missing value itself. In case 1, for example, suppose family history information is 

additionally collected on all participants at the first visit. If participants with at least two 

family members who have HD are less likely to return for the second evaluation, then the 

missingness is MAR. This is because the likeliness of missing data depends on the observed 

family history information.

Testing between MAR versus MCAR can be achieved with the SPSS missing data module. 

The general rule, however, is to assume the missingness mechanism is MAR unless there are 

strong reasons to assume MCAR.

Missing Not at Random (MNAR): MNAR is when the missingness depends on the missing 

values themselves. In Case 1, for example, suppose TMS values are fully observed at the 

first evaluation, but some are missing at the second, and that no family history information 

was collected at the first visit. If the missing values are from participants who have at least 

two family members with HD, then this is MNAR because the missingness depends on the 

unobserved family history information. To better understand this, note the distinction 

between our examples from MAR and MNAR. For MAR, the missingness at the second 

evaluation depends on observed family history information, whereas missingness in the 

MNAR example depends on unobserved family history information.
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It is impossible to distinguish MNAR from MAR because doing so involves comparisons 

with unobserved missing data. When missingness is suspected to be MNAR, it is important 

to consult with a statistician to develop an appropriate model that accounts for this 

missingness mechanism. The usual approach is a joint model where the missingness model 

is varied and tested using sensitivity analyses [8].

Non-recommended Practices for Missing Data—Several simple remedies have been 

proposed for missing data, but are not generally recommended.

Complete-Case Analysis: This analyzes data only from those participants whose data is 

observed throughout the entire study. When missingness is MCAR, complete-case analysis 

yields unbiased parameter estimates. Otherwise, it yields biased, less precise estimates.

Last Observation Carried Forward (LOCF): LOCF replaces a participant’s missing 

values with the last observed one. Assuming a participant will maintain that last observed 

value is unrealistic in most neurodegenerative disease studies.

Imputation Methods: Simple mean imputation replaces missing observations with the 

mean for that variable. Conditional mean imputation (or regression) replaces missing 

observations with predictions from regressing the outcome on other completely observed 

variables.

Despite their simplicity, both methods impute missing values only once and thus disregard 

the uncertainty of the imputed values. Such single imputation biases standard errors 

downward, leading to artificially narrow confidence intervals that give a false view of the 

estimate’s precision.

A remedy is multiple imputation where multiple copies of the original data are generated 

and missing values are replaced from an appropriate stochastic model. The copies are 

analyzed as complete data sets and parameter estimates from each set are combined to 

produce a single estimate. Standard errors take into account the uncertainty of the 

imputation process. Despite their advantages over single imputation, multiple imputation is 

still not recommended by the FDA.

Recommended Practices for Missing Data—The FDA recommends approaches that 

account for the missing data mechanism such as generalized estimating equations 

(“Generalized estimating equations (GEE)” section) and mixed random effect models 

(“Mixed effects regression (MER)” section), with the latter being most preferred because of 

its ability to handle a more general missingness mechanism (MAR compared to MCAR for 

generalized estimating equations).

Starter Methods for Longitudinal Data Analysis

Change Score Analysis

When there are only two time points in the study (e.g., case 1), a straightforward approach is 

analyzing the change score: the differences between the measures at each time point. For 
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case 1, a change score is the changes in TMS measured at the start and end of the study. To 

compare change scores between the “low,” “medium,” and “high” disease categories, one 

could use a one-way analysis of variance (ANOVA). A one-way ANOVA is valid here 

because we are analyzing change scores, not repeated measures individually (hence the 

correlation problem is removed).

Analyzing change scores has been widely used in neurodegenerative disease research. For 

HD, Sturrock and colleagues [10] used the approach to evaluate longitudinal in vivo brain 

metabolite profiles in HD over a 24-month period. Poudel and colleagues [11] assessed 

longitudinal changes in white matter microstructure in HD over an 18-month period.

ANOVA Approaches

ANOVA approaches for longitudinal data include a repeated measures ANOVA and 

multivariate ANOVA (MANOVA). Both focus on comparing group means (e.g., the TMS 

scores between “low,” “medium,” and “high” disease categories), but neither informs about 

subject-specific trends over time.

ANOVA approaches are limited in handling irregularly timed and missing data. Repeated 

measures ANOVA requires all participants be measured at the same number of time points, 

and MANOVA requires fully complete data. Applying ANOVA methods to data with 

missing observations yields biased parameter estimates [12].

Repeated Measures ANOVA—Repeated measures ANOVA assesses group differences 

over time. Group sizes may be different, but subjects must be measured at the same number 

of time points. A repeated measures ANOVA is appropriate for case 2, and we describe the 

model in terms of this example.

The approach uses two main factors (time and disease category in case 2) and an interaction 

term (time × disease category) to assess group differences over time. For case 2, the time 

main effect tests if TMS significantly changes over time averaged across disease categories. 

The disease category main effect tests whether, on average, one disease group has higher 

TMS than another. The interaction term, when statistically significant, indicates that the 

effect of time varies between disease categories. This variation can be observed by plotting 

the sample means of TMS over time by disease category: one may observe if TMS for one 

disease category increases (or decreases) over time compared to another.

A downside of repeated measures ANOVA is it assumes the measured outcomes have equal 

variances and covariances over time. This may be unrealistic since variances tend to increase 

with time and covariances decrease with increasing intervals in time. The MANOVA model, 

in comparison, makes more flexible variance-covariance assumptions as discussed next.

MANOVA—MANOVA models treat repeated observations as a vector (i.e., observations are 

multivariate). For example, in case 2, for each person in each disease category, the 

multivariate observations are 10-dimensional vectors of the TMS scores measured over 10 

years.
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MANOVA makes no assumptions about the variance-covariance structure of the repeated 

measures, and thus removes misspecification concerns. Despite this flexibility, MANOVA 

requires complete data. Subjects with incomplete data are either removed from the analysis 

or have missing values imputed, both of which are disadvantageous (“Non-recommended 

practices for missing data” section). Furthermore, MANOVA models do not allow time-

varying predictors which is critical to modeling disease dynamics.

The limitations of ANOVA approaches lend toward the use of modern approaches that 

robustly handle challenges of longitudinal studies as discussed next.

Modern Methods for Longitudinal Data

Two preferred methods for longitudinal data are generalized estimating equations model 

(GEE) [13] and mixed effects regression (MER) [14]. Both allow time-invariant predictors 

that never change (e.g., gender, genotype) and time-varying predictors (e.g., age), and handle 

irregularly timed and missing data without the need for explicit imputation.

Generalized Estimating Equations (GEE)

Overview—A GEE model is designed for analyzing the regression relationship between 

covariates and repeated responses, but not the correlation structure of the repeated responses. 

If the latter is of interest, a GEE is inappropriate and one should consider MER (“Mixed 

effects regression (MER)” section). In estimating the regression parameters, the correlation 

structure in a GEE is represented using a working, potentially incorrect model (see 

“Modeling correlation” section). Even when the working model is incorrect, however, the 

GEE approach yields unbiased parameter estimates. Traditionally, GEEs are intended for 

two-level hierarchical data (e.g., cases 1 and 2), but recent work [15] has allowed extensions 

to three levels (e.g., case 3).

GEEs have been widely used in the neurodegenerative disease literature. For HD, Maroof 

and colleagues [16] used GEEs to model trajectories of cognitive scores (repeated response) 

in relation to time, education and baseline age. Keogh and colleagues [1] used GEEs to 

separately assess longitudinal performance of motor, cognitive and neuropsychiatric 

functions (repeated response) in relation to medication use.

Advantages and Limitations—Two primary advantages of GEEs are its robustness to 

misspecification of the repeated measures’ correlation structure and its computational 

simplicity. Estimation in GEEs uses a working correlation structure that may be inconsistent 

with the observed correlations of the repeated measures. Regardless, the regression 

parameter estimates are consistent, but associated standard errors are incorrect when the 

working correlation structure is wrong. Standard errors of time-dependent covariates are 

generally overestimated and time-independent covariates are underestimated. See [17] for 

recommended corrections to standard error estimates.

The ability to yield valid estimates even when the correlation structure is not correctly 

modeled is a similar benefit to that for MANOVA models (“MANOVA” section), but GEEs 

are more advantageous in that they do not disregard participants with incomplete data. 
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Finally, estimation in GEEs is carried out with quasi-likelihood methods which is 

computationally easier than full-likelihood methods (as done for MER).

Limitations of GEEs are threefold. First, GEEs assume missing data are MCAR which may 

not hold for neurodegenerative disease studies. Extensions to the more flexible MAR 

assumption have been proposed including a weighted-estimating equations approach [8]. 

Second, one cannot perform hypothesis testing on correlation parameters since these are not 

directly estimated. Third, usual methods (e.g., likelihood ratio tests, Akaike/Bayesian 

Information Criterions) cannot be used to test and compare model fits because the focus is 

solely on regression parameters, not all model parameters (i.e., regression and correlation 

parameters). All of these limitations are handled by MER models.

Modeling Correlation—Estimation of regression parameters in a GEE is carried out 

under a working correlation structure for the repeated measures, meaning that a (possibly 

incorrect) model is chosen to represent the correlation observed between repeated measures. 

The working structure is selected at the beginning of the analysis, and we recommended that 

it resemble the observed correlations for better estimation of standard errors. However, even 

if the working structure is incorrect, regression parameter estimates remain consistent. We 

describe next four common working structures and provide guidance on each.

The independent correlation structure assumes there is no correlation between repeated 

measures. This is a simple, yet unrealistic choice for longitudinal data, and one that results 

in large efficiency loss for time-varying covariates [18]. It is a fair choice for initial analyses 

to quickly assess the regression relationship between covariates and repeated responses.

The exchangeable correlation assumes correlations within a cluster are equal. In our 

example, consider TMS at baseline for all participants clustered by disease category (or by 

sites). An exchangeable correlation structure assumes that the correlation between TMS 

values of any two participants within a disease category (or within a site) is the same 

regardless of which participants are chosen. That is, participants are exchangeable within a 

disease category (or within a site). The correlation between participants from different 

disease categories (or different sites) is zero.

An example where exchangeable correlation is unreasonable is case 2 where clusters are the 

participant’s TMS values over 10 years. Assuming exchangeable correlation means that the 

correlation between TMS values in years 1 and 2 is the same as the correlation of TMS 

values between years 1 and 10. This is unrealistic since TMS values closer in time (years 1 

and 2) are more likely to have higher correlation than those farther apart (years 1 and 10). In 

practice, an exchangeable correlation is reasonable when “objects” in a cluster can be moved 

without impact; e.g., participants in the same disease category or site, but not measures over 

time. An autoregressive correlation is more appropriate for case 2 as described next.

The autoregressive correlation accounts for time-varying correlation by assuming that 

measurements taken closer in time are more highly correlated than measurements taken 

farther apart. In practice, this structure is identified using an autocorrelation plot which 
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displays the correlation by time-lag (e.g., ACFPLOT in SAS). A steadily decreasing plot is 

indicative of autoregressive correlation.

An unstructured correlation makes no assumptions about the correlation form and uses 

different parameters for each correlation component (i.e., for n time points, there are 

n(n-1)/2 components). Though flexible, this model is computationally costly. In case 2, with 

10 time points, there are 10(10-1)/2=45 separate correlations to be estimated. The large 

number of computations decreases accuracy of parameter estimates and may even lead to 

model fitting failure. In practice, an unstructured correlation is recommended when there are 

few time points.

Mixed Effects Regression (MER)

Overview—MER models provide information regarding the regression relationship 

between covariates and repeated responses, and about the correlation structure of the 

repeated response. It captures correlations of repeated measures using “random effects” that 

serve to describe cluster-specific trends over time. In case 2 where clusters are individuals, 

random effects can serve to describe each participant’s trend over time, and in case 3, an 

additional random effect can serve to differentiate sites. Random effects allow estimation of 

cluster-specific effects useful for understanding interindividual variability in longitudinal 

responses and cluster-specific predictions.

MERs have been widely used in neurodegenerative disease studies. For HD, Tabrizi and 

colleagues [19] used linear MERs to assess the longitudinal changes of different outcomes: 

clinical, cognitive, quantitative motor, neuropsychiatric assessments and MRI measures of 

the brain over a 36-month period. Each outcome was separately modeled using MERs and 

clusters corresponded to each person’s annual measures over the 36-month period. Long and 

colleagues [20] used linear MERs to estimate the timing of motor impairments and Collins 

and colleagues used it to assess finger tapping as a longitudinal marker of HD progression.

Advantages and Limitations—A MER model is advantageous over GEEs in that (i) it 

allows multi-level hierarchical models that allow predictions for each data hierarchy level. 

(ii) One may perform hypothesis testing on correlation parameters since they are directly 

estimated. (iii) Usual methods (e.g., likelihood ratio tests, Akaike/Bayesian Information 

Criterions) can be used to test and compare model fits because all model parameters (i.e., 

regression and correlation parameters) are estimated. (iv) It is more robust to missing data 

and assumes missingness is MAR which is more general than the MCAR assumption of 

GEEs.

A primary limitation of MER models is their computational complexity over GEEs 

particularly with nonlinear MER as it involves time-consuming numerical integration over 

the random effects. A second limitation is the reliance on correct specification of the mean 

and correlation structure of the repeated responses for valid hypothesis testing conclusions. 

We discuss next the impact of misspecification.

Modeling Correlation—Correlation in MERs is captured through random effects and 

their associated distributions. In theory, correctly estimating model parameters requires 

Garcia and Marder Page 9

Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2017 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accurately specifying the random effect distribution (the standard assumption is a normal 

distribution) [21]. But in practice, an incorrect distribution may not have severe 

consequences.

When the random effects distribution is specified incorrectly, but the covariates and random 

effects are independent, then parameter estimates and associated standard errors are valid 

[22•]. Otherwise, when the covariates and random effects are dependent, then bias is 

incurred [23, 24].

Covariates and random effects depend on each other when, for example, the variability of 

the random effect depends on the patient’s disease category (case 1) or site location (case 2). 

Testing for this dependence can be done using the Hausman chi-squared test [24]. If there is 

no evidence of dependence, then we recommend applying the MER assuming random 

effects are normally distributed. Otherwise, the investigator should consult with a statistician 

and use a procedure that makes no modeling assumptions about the random effect 

distribution [22•].

Time-Varying Predictors

GEEs and MERs can model time-varying predictors useful for understanding disease 

progression. For example, changing medication usage (yes/no response) or changing 

medication dosage, or changing blood pressure and weight.

Time-varying predictors are typically modeled using linear combinations of splines which 

are flexible curves that connect two or more points [25]. Spline modeling involves two 

decisions: (i) the choice of the spline functions and (ii) the number of splines used. These 

decisions impact how precisely and smoothly (wiggliness) the time-varying effects are 

captured. Fortunately, these decisions have been well-studied, and the recommended 

approach is using P-spline functions with the number of splines automatically selected from 

a criterion that maximizes accuracy and minimizes wiggliness [26]. This approach is 

available in R (mgcv) and SAS (PROC GAM).

Conclusions

We discussed challenges of longitudinal data from neurodegenerative disease studies (data 

that are correlated, irregularly timed and/or missing) and major techniques that handle them 

(GEEs and MERs). Simpler ANOVA-based approaches cannot handle irregularly timed and 

missing data. It resorts to modeling complete-cases or imputing missing values, and the 

focus rests on comparing group means rather than subject-specific trends over time.

GEEs and MERs overcome these challenges, the former providing estimates that are 

population averaged and the latter providing subject-specific estimates. These two estimates 

agree only for continuous normal outcomes with the identity link. When the missing data are 

MCAR, GEE and MER models produce unbiased parameter estimates. But when the 

missing data are MAR, GEE does not perform well, but MER models do as long as mean 

and variance-covariance structure are modeled properly. The greater flexibility of MERs 
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lends preference to using them over GEEs for longitudinal data, and is recommended by the 

FDA for observational studies and clinical trials.

MERs have become a standard in studies of HD for properly modeling correlated 

longitudinal data. It has been frequently used in analyses of prospective, observational, 

multi-center longitudinal studies such as COHORT [27], PHAROS [3], PREDICT [2•], and 

TRACK-HD [19]. Dorsey and colleagues [27] used a MER model to reveal a monotonic 

decline of movement, cognition, behavior and function using data from COHORT consisting 

of measures from participants and controls who had at least 3 consecutive years of 

longitudinal data. For PHAROS [3], Biglan and colleagues used a MER model, adjusted for 

age and sex, to differentiate linear trends of motor, cognitive, psychiatric, and functional 

decline between individuals with and without the HD mutation. Paulsen and colleagues [2•] 

used a MER model on PREDICT data to reveal that imaging variables based on regional 

brain volumes had the largest effect sizes in detecting differences between premanifest HD 

participants and controls. Tabrizi and colleagues [19] also used a MER model to compare 

phenotypic differences between controls, premanifest HD, and early HD participants.

Each analysis encountered different challenges, particularly in dealing with missingness and 

timing of data collection. COHORT, PHAROS, and PREDICTwere at least 6 year studies, 

whereas TRACK-HD was only a 3-year study. A challenge, thus, in analyzing TRACK-HD 

was dealing with weak statistical power because of few HD converters. The analysis of 

COHORT also had issues of missing data. Follow-up in COHORT was intermittent, and of 

the 1514 participants, only 366 had at least 3 consecutive years of longitudinal data, 

meaning that the analysis was a type of complete-case analysis which may be improved 

upon using data from all 1514 participants. The analyses of PHAROS and PREDICT had 

fewer issues with missing data, having used all longitudinal data collected, and having 

dropout rates less than 5%. Follow-up times in data collection also differed: COHORT, 

PREDICT, and TRACK-HD had 1-year follow-ups and PHAROS had 9-month follow-ups. 

Despite the regularity of these observations, more frequent observations could help to 

minimize missing data and more accurately detect rates of decline. A modern push towards 

more frequent data collection is the use of sensors, microelectronics, and 

telecommunications that now provide inexpensive, wearable systems to track HD 

impairments more frequently, even at the convenience of a patient’s home setting [28]. 

Techniques discussed in this paper can serve as a starting point for analyzing the more 

frequently collected sensor data, but more advanced techniques [29] are recommend as the 

volume of data increases and validation against clinically collected UHDRS data should be 

considered for validation.
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