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Thermogenesis is an important homeostatic mechanism
essential for survival and normal physiological functions in
mammals. Both brown adipose tissue (BAT) (i.e. uncoupling
protein 1 (UCP1)-based) and skeletal muscle (i.e. sarcolipin
(SLN)-based) thermogenesis processes play important roles in
temperature homeostasis, but their relative contributions differ
from small to large mammals. In this study, we investigated the
functional interplay between skeletal muscle- and BAT-based
thermogenesis under mild versus severe cold adaptation by
employing UCP1�/� and SLN�/� mice. Interestingly, adapta-
tion of SLN�/� mice to mild cold conditions (16 °C) significantly
increased UCP1 expression, suggesting increased reliance on
BAT-based thermogenesis. This was also evident from struc-
tural alterations in BAT morphology, including mitochondrial
architecture, increased expression of electron transport chain
proteins, and depletion of fat droplets. Similarly, UCP1�/� mice
adapted to mild cold up-regulated muscle-based thermogenesis,
indicated by increases in muscle succinate dehydrogenase activ-
ity, SLN expression, mitochondrial content, and neovascular-
ization, compared with WT mice. These results further confirm
that SLN-based thermogenesis is a key player in muscle non-
shivering thermogenesis (NST) and can compensate for loss of
BAT activity. We also present evidence that the increased
reliance on BAT-based NST depends on increased autonomic
input, as indicated by abundant levels of tyrosine hydroxylase
and neuropeptide Y. Our findings demonstrate that both BAT
and muscle-based NST are equally recruited during mild and
severe cold adaptation and that loss of heat production from one
thermogenic pathway leads to increased recruitment of the
other, indicating a functional interplay between these two ther-
mogenic processes.

Thermogenesis is an important homeostatic mechanism
essential for survival and normal physiological functions in
mammals. In mice, BAT is a highly specialized organ and serves
as a major site of nonshivering thermogenesis (NST)3 at both
neonatal and adult stages (1, 2). Studies have shown that uncou-
pling protein 1 (UCP1)-mediated dissipation of the proton gra-
dient in mitochondria is the basis of heat generation in BAT
(3–5). Intriguingly, UCP1 knockout (UCP1�/�) mice were
found to be sensitive to acute cold exposure but could be grad-
ually adapted to severe cold (4 °C), suggesting the existence of
other sites for NST. In addition to BAT, skeletal muscle has
been suggested to be an important site of NST in mammals (6,
7). Recent work from our laboratory has demonstrated that
sarcolipin (SLN), a regulator of the sarco/endoplasmic reticu-
lum Ca2�-ATPase (SERCA) pump, plays an important role in
muscle-based NST (8 –12). We showed that loss of SLN can
severely compromise muscle-based heat production and
whole-body temperature maintenance (9, 13). Therefore, we
explored whether muscle- and BAT-based thermogenesis work
together during cold adaptation. We recently reported that
skeletal muscle— based thermogenesis can compensate for loss
of BAT thermogenesis in UCP1�/� mice (13).

Despite recent advances in our understanding of the roles
played by BAT and muscle in temperature homeostasis, it is
unclear whether a functional coordination exists between the
two systems. Although it is speculated that a direct cross-talk
between BAT and skeletal muscle might exist (14 –17), the
mechanism is presently not known. There are many unan-
swered questions, such as whether these two systems are
recruited by a common pathway, whether the recruitment of
BAT and skeletal muscle relies on signals from the hypothala-
mus and central nervous system, and whether there is a hierar-
chy of recruitment. Furthermore, it is also unknown to what
extent these two systems can compensate for each other during
different degrees of cold adaptations. To address some of these
questions, we took advantage of genetically altered mouse mod-
els (UCP1�/� and SLN�/� mice) and explored the functional
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interplay between muscle and BAT. We especially investigated
how these two thermogenic sites are able to compensate for the
loss of one another during mild (16 °C) and severe (4 °C) cold
adaptation. We further tested the hypothesis that muscle-based
NST can be hyper-recruited in the absence of BAT function by
challenging UCP1�/� mice to mild cold, a low level of cold
stimulus that does not evoke shivering response in skeletal
muscle (18).

The findings of this study reveal that even a mild cold (16 °C)
challenge was sufficient to evoke a significant remodeling of
both BAT and skeletal muscle, suggesting that both systems are
recruited during mild cold adaptation. The most interesting
finding was that loss of SLN in muscle led to a robust up-regu-
lation of UCP1 expression, along with structural remodeling of
BAT even under mild cold, corroborating our central idea that
muscle NST is an important component of cold adaptation.
The results from this study also suggest that there is a func-
tional interplay between BAT and muscle that can be recruited
to compensate for the loss of one another, although the exact
mechanism remains less well-understood.

Results

UCP1�/� mice require more energy during cold adaptation

Several earlier studies have shown that, cold adaptation
comes at a significant energy cost. Therefore, we used indirect
calorimetry to determine whole-body oxygen consumption
(VO2), an index of energy expenditure of the animal. As shown
in Fig. 1A, regardless of genotype, cold exposure increased VO2.
At thermoneutrality, SLN�/� and UCP1�/� mice consumed
less oxygen compared with the WT, suggesting that they con-
tribute to the basal metabolic rate. Interestingly, when housed
at 4 °C, VO2 of UCP1�/� mice was significantly higher com-
pared with WT mice, indicating that increased reliance on
muscle-based thermogenesis is energetically more costly. On
the other hand, SLN�/� mice consumed less oxygen compared
with UCP1�/� littermates, which may indicate that BAT-based
NST is energetically more efficient. Intriguingly, during cold
challenge, SLN�/� mice showed a high degree of fluctuation in
core body temperature (Tc) compared with the WT and were
unable to maintain a constant Tc, especially during the first few
days of cold exposure (Fig. 1B). In contrast, UCP1�/� mice
were able to maintain a constant Tc during the whole period of
cold challenge, like the WT littermates. In comparison with the
WT, both SLN�/� and UCP1�/� mice showed a decrease in
body weight (Fig. 1C). We found that this decrease in body
weight is primarily due to loss of fat deposits without changes in
muscle mass. During mild cold, UCP1�/� mice consumed
more food than WT mice (Fig. 1D). Under extreme cold, both
UCP1�/� and SLN�/� mice consumed a similar amount of
food, much more than the WT. All of these data, taken together,
suggest that an optimal combination of BAT and skeletal mus-
cle— based NST is important and that loss of either requires
extra energy investment for Tc maintenance.

Loss of SLN up-regulates UCP1-based thermogenesis even
under mild cold

A major objective of this study was to determine whether
there is a hierarchy in the recruitment of BAT versus skeletal

muscle–based thermogenesis and, when SLN is absent,
whether BAT-based thermogenesis is hyper-recruited during
cold adaptation, especially under mild cold. For cold adaptation
studies, mice were reared and maintained at thermoneutrality
(29 °C � 1.0 °C), a housing temperature that does not activate
cold-induced thermogenesis (19). To study the impact of mild
and severe cold, the housing temperature was decreased to
16 °C � 1.0 °C (termed mild cold) for 2 weeks and further
decreased to 4 °C � 1.0 °C (termed severe cold) for 2 additional
weeks. SLN�/� mice showed a similar level of physical activity
at mild cold compared with WT littermates (Fig. 1E), and we
did not observe any shivering response during housing at 16 °C.
We show here that even mild cold adaptation has a significant
effect on fat content in BAT of WT and SLN�/� mice. There is
a greater loss of fat droplets in SLN�/� mice compared with
WT littermates under mild cold, which is further pronounced
after extreme cold adaptation (Fig. 2A). UCP1 staining was sim-
ilar between WT and SLN�/� mice at thermoneutrality, but,
upon cold exposure, UCP1 expression is induced in both
SLN�/� and WT mice. Interestingly, the UCP1 expression level
was substantially up-regulated in SLN�/� mice in comparison
with WT mice, as shown by immunostaining and Western blot
analysis (Fig. 2, B—E). As the mitochondrial inner membrane is
the basis of BAT-based NST, we further examined changes in
mitochondrial ultrastructure and the expression of electron
transport chain proteins under mild and severe cold. We show
that cold adaptation led to up-regulation of complex 1 and 4 in
BAT from SLN�/� mice compared with the WT. Moreover,
expression of mitochondrial transcription factor A, a regulator
of mitochondrial DNA replication and repair, was increased in
SLN�/� mice upon cold adaptation. Electron microscopic anal-
yses of the BAT ultrastructure show that, at thermoneutrality,
mitochondria contains a less dense crista structure in all three
genotypes. On the other hand, even mild cold adaptation
induced significant changes in mitochondrial architecture,
with a greater density of cristae, in SLN�/� mice compared
with WT littermates (Fig. 3). Further exposure to severe cold
(4 °C) increased mitochondrial crista density both in WT and
SLN�/� mice, but it was more apparent in SLN�/� littermates.
The mitochondrial architecture in UCP1�/� mice was, how-
ever, unaffected by cold exposure, indicating loss of BAT
function.

Muscle-based thermogenesis is hyper-recruited in UCP1�/�

mice under mild cold stress

We found that loss of SLN led to an up-regulation of UCP1
even under mild cold challenge; therefore, we next investigated
whether loss of UCP1 function leads to enhanced recruitment
of skeletal muscle-based thermogenesis. To better define the
recruitment of muscle thermogenesis, we studied changes in
metabolic activity and mitochondrial structure by performing
SDH staining (an index of oxidative metabolism) and electron
microscopy of skeletal muscle tissues (Fig. 4). At thermoneu-
trality, the SDH staining pattern of quadriceps muscle from all
three genotypes did not show a marked difference, whereas
adaptation to mild cold stress increased SDH activity in quad-
riceps muscle of UCP1�/� and WT mice but not in SLN�/�

mouse muscle (Fig. 4A). At 4.0 °C, quadriceps from UCP1�/�
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mice showed a dramatic increase in SDH activity compared
with SLN�/� muscle, suggesting that muscle-based (SLN-me-
diated) thermogenesis is activated to compensate for the loss of
BAT activity. We also observed that loss of UCP1/BAT activity
led to an up-regulation of SLN expression in red gastrocnemius
and soleus muscle under mild and severe cold (Fig. 4, B and C).
These data suggest increased reliance on muscle-based NST in
UCP1�/� mice even under mild cold. Further, the skeletal mus-
cle mitochondrial respiration capacity was significantly com-

promised in SLN�/� mice adapted to severe cold compared
with their WT littermates ( Fig. 4D). Electron microscopic anal-
ysis showed that mitochondrial abundance and ultrastructure
underwent significant alteration in response to cold adaptation.
Interestingly, quadriceps muscle of cold adapted UCP1�/�

mice contained more intermyofibrillar mitochondria with elab-
orate crista structure compared with WT littermates (Fig. 5,
A–C). The muscle tissues from UCP1�/� also contained a
higher level of lipid droplets, indicating increased fatty acid oxi-
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Figure 1. Physiological measurements of SLN�/� and UCP1�/� mice during cold adaptation. A, oxygen consumption during housing at 29.0 °C � 1.0 °C,
16 °C � 1.0 °C, and 4 °C � 1.0 °C. The insets show average oxygen consumption for WT, UCP1�/�, and SLN�/� at 29.0 °C � 1.0 °C, 16 °C � 1.0 °C, and 4 °C �
1.0 °C. B, Tc as measured during the entire cold adaptation. Bar graphs show the average Tc during different cold exposure periods. Black arrows under the
graphs indicate a switch in ambient temperature. C, body weight in grams at the end of the cold challenge. D, average food consumption per mouse per day
in grams. E, ambulatory physical activity (xy axes) measured at different housing temperatures. Each break in the infrared beam is counted as one. One-way
ANOVA test for multiple comparisons was performed to analyze statistical difference. The data for the WT at given ambient temperature were treated as a
control for statistical analysis. Data from 6 animals/group were analyzed. W, wild type; U, UCP1�/�; S, SLN�/�. No statistical difference is labeled as ns.
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dation and energy demand in muscle. However, cold-induced
enhancement of intermyofibrillar mitochondrial abundance
and ultrastructure was not observed in the muscle of SLN�/�

mice. We further examined whether increased muscle thermo-
genesis requires enhanced vascularization to increase the sup-
ply of oxygen, humoral factors, and nutrients. CD31 staining
shows that skeletal muscle from cold-adapted UCP1�/� mice
has greater blood vessel density compared with WT littermates
(Fig. 5, D and E). In contrast, blood vessel density did not sig-
nificantly change in the muscle of cold-adapted SLN�/� mice.
These data together suggest that SLN is essential for muscle-
based thermogenesis.

Increased autonomic input to BAT in cold-exposed SLN�/�

mice

Next, we wanted to investigate whether direct autonomic
nervous input and adrenergic signaling to BAT is involved in
the up-regulation of BAT function. We chose to investigate
tyrosine hydroxylase (TH), a rate-limiting enzyme in the pro-
duction of neurotransmitter epinephrine in the sympathetic
neuron endings that innervate the BAT (20). The expression of
TH was induced during cold adaptation in BAT (Fig. 6A). Inter-
estingly, there is a greater induction of TH in the BAT of
SLN�/� mice both under mild and extreme cold adaptation
compared with the controls. Intriguingly, mild cold did not
induce TH in UCP1�/� mice, whereas severe cold led to signif-
icant induction of TH. Neuropeptide Y (NPY) is another regu-
lator of BAT function. NPY in the hypothalamus antagonizes
epinephrine-mediated BAT activity (21–23). However, to our
surprise, NPY levels were found to be higher in BAT of SLN�/�

compared with WT mice in response to cold adaptation (Fig. 6,
B and C). The immunohistochemistry data were further sup-
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Figure 3. Electron microscopy of BAT from cold-adapted mice. Represent-
ative electron micrographs of BAT from cold-adapted mice are presented.
The images presented as top panels and bottom panels for each genotype
were obtained at low and high magnification, respectively. Housing temper-
ature is indicated at the top. N, nucleus; L, lipid droplet; M, mitochondria. At
thermoneutrality, mitochondria in BAT exhibit a very low abundance of crista
structures irrespective of genotype. Interestingly, upon cold exposure, there
is an increase in the abundance of mitochondrial cristae in WT and SLN�/�

mice (top and bottom rows, respectively) but not in the UCP1�/� littermates.
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ported by Western blotting analysis of the NPY protein (Fig.
6D). We also investigated whether increased vascularization is
an important determinant of enhanced BAT function. To
detect neovascularization, we performed CD31 staining of BAT
tissues from mild– and severe cold–adapted animals (Fig. 6B).
The BAT from SLN�/� mice showed a significant increase in
CD31 staining compared with the WT, suggesting increased
reliance on BAT-based heat production (Fig. 6, B and C).
UCP1�/� mice also showed an increase in CD31 staining, as
reported previously (24). In addition to NPY, VEGF receptor 2
(VEGF-R2) plays an important role in the vascularization of
BAT (25) and is vital for the performance and recruitment of
NST in BAT. Western blotting analysis shows that SLN�/�

adapted to mild cold expressed more VEGFR2 than WT litter-
mates (Fig. 6, D and E). Adaptation to extreme cold led to sig-
nificant up-regulation of VEGFR2 expression in the BAT from
WT and SLN�/� mice. These observations are also supported
by immunohistochemistry. Taken together, these data indicate
that direct autonomic input and vascularization are important
for increased recruitment of BAT under conditions where mus-
cle-based NST is compromised.

Discussion

Homoeothermic mammals maintain a constant Tc through
multiple thermogenic mechanisms (26). It is well-known that
BAT and skeletal muscle are major sites of heat production (2,
27–29). Although BAT is known to generate heat through NST
(UCP1-dependent uncoupling) (2, 30 –33), some studies have
questioned whether muscle has the ability to generate heat
through NST (34). Other studies suggest a potential role for
skeletal muscle in NST in human and animal models (18,
35– 40). Nedergaard and co-workers argue (34, 41) that
increased shivering is the only mechanism for cold adaptation
in UCP1�/� mice and questioned the existence of muscle-

based NST. We have reported earlier that SLN-mediated
uncoupling of SERCA is an important contributor to NST in
muscle (8 –10, 12, 13, 42, 43). Therefore, in this study, we inves-
tigated whether SLN-based NST is up-regulated when BAT
function is impaired and vice versa. This study took advantage
of mild cold exposure (which does not evoke a shivering
response) to investigate the recruitment of muscle- versus
BAT-based NST mechanisms in UCP1�/� and SLN�/� mice.
A key finding of this study was that exposure to mild cold was
sufficient to cause significant up-regulation of UCP1 expres-
sion in SLN�/� mice, a level comparable with UCP1 expression
seen in severe cold (4 °C). The increased recruitment of BAT is
further supported by increased mitochondrial remodeling, as
evident from ultrastructural studies and up-regulation of
mitochondrial electron transport chain complex proteins. In
addition, we have reported previously that adaptation of
SLN�/� mice to 4 °C caused increased beiging of inguinal
white adipose tissue (13). Taken together, this study pro-
vides experimental evidence that BAT-based thermogenesis
is recruited to a greater extent in the absence of SLN, indi-
cating that muscle is also an important site of NST and crit-
ical for cold adaptation.

In this study, we examined whether loss of UCP1 leads to
increased reliance on muscle-based NST, especially under con-
ditions of mild cold challenge, where shivering is not a major
mechanism of thermogenesis (44). We found that mild cold
exposure at 16 °C is sufficient to activate muscle-based thermo-
genesis, and this is evident even in WT control mice. Interest-
ingly, mild cold adaptation led to a greater up-regulation of SLN
expression in skeletal muscle of UCP1�/� mice compared with
WT littermates. Our data also showed an increase in oxidative
capacity in skeletal muscle of UCP1�/� mice compared with
SLN�/� littermates. This was supported by an increased abun-

WT

500 µM

A
29 °C 4 °C16 °C

SDH activity staining

SLN
Myoglobin

SLN
CASQ1

B 4 °C16 °C29 °C

Red
gastroc-
nemius

Soleus

UC
P1

-/-

SL
N-

/-

W
T

UC
P1

-/-

SL
N-

/-

W
T

UCP1-/-SLN-/-WT

SL
N

/C
on

tr
ol

29°C

UC
P1

-/-W
T

Red gastrocnemius SoleusC
**

** **

0.0

0.2

0.4

0.6

*

0.0

0.5

1.0

1.5

2.0

ns ns

UCP1-/-

SLN-/-

16°C

UC
P1

-/-W
T

UC
P1

-/-W
T

4°C 29°C

UC
P1

-/-W
T

16°C

UC
P1

-/-W
T

UC
P1

-/-W
T

4°C

O
C

R
 (p

m
ol

/m
g)

0

100

200
400

600

800 SLN-/-
WT

* * *

****
***

PM
C

AD
P

Cy
tC

G
lu

ta
m

at
e

Su
cc

in
at

e

Muscle O2 consumptionD

Figure 4. Up-regulation of oxidative metabolism and SLN in the skeletal muscle of UCP1�/� mice during cold adaptation. A, representative images
showing SDH staining of skeletal muscle. B, Western blot of SLN showing increased expression after cold adaptation in UCP1�/� mice. Myoglobin and
calsequestrin 1 (CASQ1) were used as internal loading controls. C, quantification of SLN expression in oxidative skeletal muscle after adaptation to cold. D,
mitochondrial respiration of soleus muscle from WT and SLN�/� mice adapted to severe cold (4 °C). Statistical difference was analyzed using one-way ANOVA
for multiple comparisons. No statistical difference is labeled as ns.

Functional interplay between muscle and BAT

16620 J. Biol. Chem. (2017) 292(40) 16616 –16625



dance of intermyofibrillar mitochondria with elaborate crista
structure in skeletal muscle of UCP1�/� mice compared with
WT littermates. Increased neovascularization was more prom-
inent in cold-adapted UCP1�/� mice, indicating augmented
substrate/energy demand. Further, in UCP1�/� mice, the white
fat amount decreased, whereas food consumption was higher,
along with an increased abundance of lipid droplets in skeletal
muscle, indicating enhanced muscle thermogenesis. Adapta-
tion to severe cold (4 °C) also led to increased SLN expression in
oxidative muscle in UCP1�/� mice. These findings, taken
together, suggest that SLN-based thermogenesis can be
recruited to compensate for loss of BAT activity.

We were intrigued how loss of SLN can lead to hyper-recruit-
ment of BAT-based thermogenesis. Previous studies have
shown that BAT-mediated thermogenesis is activated and reg-
ulated by direct innervation of autonomic neurons from the
CNS and hypothalamus (45– 47). The findings from this study
show that loss of SLN led to an increase in expression of TH in
BAT upon cold adaptation, indicating higher autonomic adre-

nergic input. This supports the initial observation that BAT is
hyper-recruited in SLN�/� mice even under mild cold adapta-
tion. We have reported earlier that systemic adrenergic hor-
mone levels were not different between cold-adapted SLN�/�

and WT littermates (13). These data suggest that hyper-recruit-
ment of BAT in SLN�/� mice is not mediated by circulating
adrenergic hormones but direct input from autonomic neu-
rons. A novel finding of this study is that cold adaptation of
SLN�/� mice caused a significant up-regulation of the neu-
rotransmitter NPY in BAT; however, its role in BAT has not
been fully defined. The observed increase in endogenous
NPY could lead to increased vascularization of BAT, which
is essential for the hyper-recruitment of BAT-based NST.
This interpretation is also supported by increased expres-
sion of VEGF-R2 (known to promote neovascularization)
and CD31 under mild cold adaptation in the BAT of SLN�/�

mice. Based on these findings, we propose that NPY syner-
gistically works with epinephrine to recruit BAT-based
thermogenesis.
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Figure 5. Increased recruitment of skeletal muscle thermogenesis in UCP1�/� mice. A, transmission electron micrographs of skeletal muscle showing
intermyofibrillar mitochondrial abundance in quadriceps muscle. WT and UCP1�/� mice show higher mitochondrial abundance upon adaptation to cold. B,
high-magnification electron micrographs showing intermyofibrillar mitochondria with an increased density of crista structures, especially in UCP1�/� mice
acclimatized to cold. In contrast, intermyofibrillar mitochondria in muscles from SLN�/� mice do not show any elaboration of crista structures. C, number of
mitochondria per low magnification electron micrographs. D, expression of anti-cluster of differentiation 31 (CD31) in skeletal muscle. E, representative image
of immunostaining using anti-CD31 (green) and anti-laminin (red) antibodies to probe neovascularization of skeletal muscle. Statistical difference was analyzed
using one-way ANOVA for multiple comparisons. No statistical difference is labeled as ns.
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BAT plays a crucial role in mammalian evolution and adap-
tation to cold from small rodents to large mammals (1, 48 –51).
In most mammals, including humans, BAT is highly abundant
in neonatal stages and plays a dominant role during early post-
natal development (52, 53), whereas skeletal muscles are still
under development and not mature enough to be recruited for
shivering (10). Hence, the presence of BAT in abundant quan-
tities is beneficial for the survival of newborn babies; newborns
often have to incur huge heat loss because of a greater surface-
to-body ratio (48). In large mammals, the amount of BAT
decreases in adult stages and remains localized to only a few
sites in the body, and they mostly rely on skeletal muscle-based
thermogenesis. Although recent studies have shown that BAT
can be reactivated upon cold exposure in adult humans (54, 55),
the relative contribution of activated BAT to thermogenesis
awaits further clarification. The results from this study suggest
that, although BAT is an efficient system to generate heat, even
rodents rely on muscle-based NST for optimum temperature
homeostasis. The two systems are complementary in their
function, and when one system is impaired; the other comes to
the rescue and maintains survival of the organism. The detailed
mechanistic basis of how these two systems maintain a func-
tional cross-talk is an emerging area of research (56 –59). Sev-
eral studies suggest that these organs communicate with each
other through myokines and adipokines during high metabolic
demand, including thermogenesis (14, 16, 60). Future research
should examine how the autocrine and paracrine mechanisms
contribute to maintaining temperature homeostasis.

Experimental procedures

The generation of UCP1�/� and SLN�/� mice has been
described previously (9, 13, 33). Mice double heterozygous
(UCP1�/�; SLN�/�) for UCP1 and SLN on a C57Bl/6J back-
ground reared at 29 °C � 1 °C were intercrossed to obtain
homozygous knockouts for individual proteins and WT con-
trols. The study protocol was approved by the Ohio State Uni-
versity Institutional Animal Care and Use Committee. All ani-
mal procedures were carried out in our Association for
Assessment and Accreditation of Laboratory Animal Care–
accredited animal facility and conducted in accordance with
the Guide for the Care and Use of Laboratory Animals. Male
mice were maintained in a temperature-controlled room at
29 °C � 1 °C and fed a chow diet (Harlan Labs, rodent diet 17%
kcal/fat).

Cold adaptation

All cold exposures were carried out in a temperature-con-
trolled metabolic chamber. SLN�/� (n � 11), UCP1�/� (n �
10), and WT (n � 13) mice previously maintained at 29 °C �
1 °C were individually housed in the temperature-controlled
unit. The ambient temperature was decreased to 16 °C and
maintained for a period of 2 weeks, and four mice were removed
from the experiment; tissues were harvested and snap-frozen in
liquid nitrogen for future analysis. Then ambient temperature
was decreased to 4 °C, and the remaining mice were housed at
4 °C for a further 2 weeks. Body temperature was monitored at
the same time (9 a.m., 4 p.m., and 10 p.m.) every day using
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Figure 6. Increased recruitment of BAT-based thermogenesis in SLN�/� mice during cold adaptation. A, chromogenic staining (brown) of BAT with
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implanted thermal transponders (IPTT300, Bio Medic Data
System, Seaford, DE). Body weight and food consumption were
measured twice weekly.

Metabolic monitoring

During the complete period of cold adaptation, oxygen
consumption, carbon dioxide production, and physical
activity were continuously measured by the Oxymax
Comprehensive Lab Animal Monitoring System (CLAMS,
Columbus Instruments, Columbus, OH). Heat was calcu-
lated using oxygen consumption and carbon dioxide produc-
tion. Physical activity was analyzed by taking total of beam
breaks for the xy axes only.

Measurement of mitochondrial respiration

Measurement of mitochondrial function (oxygen consump-
tion) in permeabilized muscle fibers was performed at 37 °C
using Oxygraph 2K (Oroboros Inc., Innsbruck, Austria) as
described earlier (8).

Histology of BAT

BAT was fixed in 10% formalin and embedded in paraffin.
These formalin-fixed, paraffin-embedded (FFPE) samples
were sectioned at 5 �M on a Microm 350s microtome. The
slides were air-dried overnight and stained with hematoxylin
and eosin using the Thermo Shandon Sequenza system at
room temperature. Images were collected using a compound
microscope. Statistical analysis was performed applying one-
way ANOVA using GraphPad Prism 6 software.

Electron microscopy and SDH activity staining of muscle
tissues

Longitudinal sections of skeletal muscles were taken after
the indicated period of cold adaptation and fixed with 1%
glutaraldehyde solution. The samples were processed by the
core facility. Electron micrographs were obtained using a
Tecnai G2 Spirit transmission electron microscope (FEI,
Hillsboro, OR). SDH activity staining was performed on sec-
tions of muscles as described earlier (43), and images were
acquired using a compound microscope. Statistical analysis
was performed applying one-way ANOVA using GraphPad
Prism 6 software.

Immunohistochemistry of BAT

For UCP1 staining, 5 �M FFPE samples were stained using
anti-UCP1 antibody (catalog no. ab10983, Abcam) at 1:1000
dilution for 2 h at room temperature after citrate antigen
retrieval using a Biocare Decloaker pressure cooker. Secondary
antibody from the Leica Bond Polymer Refine detection kit
(DS9800) was used and enzymatically stained with ImmPACT
DAB peroxidase (HRP) substrate (SK-4105). For NPY and
CD31 dual staining, 5 �M FFPE samples were processed using
the Leica Bond ChromoPlex 1 dual detection kit (DS9477) con-
taining the DAB and alkaline phosphatase chromogens. Anti-
NPY (catalog no. D7Y5A; dilution, 1:300) was obtained from
Cell Signaling Technology, and anti-CD31 (catalog no. DIA-
310; dilution, 1:25) was purchased from Dianova GmBH. The
secondary antibody for the rabbit primary antibody was taken

from the Leica Bond Polymer Refine detection kit (DS9800),
and that for the rat primary was from Biocare Rat alkaline
phosphatase-Polymer (RT518). For TH staining, the primary
antibody (catalog no. ab76442; dilution, 1:2500) was ob-
tained from Abcam. The rabbit secondary polymer and
the DAB chromogen were from the Leica Bond Polymer
Refine detection kit (DS9800). All slides were counterstained
with hematoxylin. The slides were scanned using a Leica
Aperio Scanscope XT using a �20/0.75 Plan Apo Olympus
objective. The percentage of positive expression was mea-
sured using the HaloTM platform from Indica Labs, Inc. Tis-
sues from at least two animals from each genotype and hous-
ing temperature were analyzed applying one-way ANOVA
using GraphPad Prism 6.

Immunohistochemistry of muscle

The frozen samples were sectioned at 10 �M on a Leica 1900
cryostat. The slides were removed from a �80 °C freezer,
allowed to come to room temperature, and stained using the
Thermo Shandon Sequenza system. The muscle samples were
dually stained for CD31 (DIA-310, clone SZ31, Dianova
GmBH, used at a dilution of 1:25) and laminin (catalog no.
PA1-16730, Thermo Fisher, used at a dilution of 1:1000). Im-
munofluorescence staining was achieved using the secondary
antibodies Alexa Fluor 647 IgG (A21244, dilution of 1:250) and
Alexa Fluor 488 IgG (A11006, dilution of 1:250) for laminin and
CD31, respectively. The primary antibodies were treated for 2 h
at room temperature and the secondary antibodies for 1 h at
room temperature. At the final step, DAPI was applied for 5
min, and coverslips were applied using Prolong Gold Antifade
Mountant (Thermo Fisher Scientific). The intensity of CD31
staining was measured using ImageJ software, and statistical
difference was calculated applying one-way ANOVA using
GraphPad Prism 6 software.

Western blotting

Protein levels were quantified using the Western blotting
technique using our protocols published previously (8, 13). The
primary antibodies used included oxidative phosphorylation
antibody mixture (catalog no. MS604, used at 1:2000 dilution)
from MitoSciences, anti-UCP1 (catalog no. MAB6158, used at
1:3000 dilution) from R&D Systems, anti-mitochondrial tran-
scription factor A (Tfam, catalog no. sc-23588, used at 1:1000
dilution) from Santa Cruz Biotechnology Inc., anti-NPY (cata-
log no. D7Y5A, used at 1:500 dilution) from Cell Signaling
Technology, anti-VEGF-R2 (catalog no. D5B1, used at 1:2000
dilution) from Cell Signaling Technology, anti-CASQ1 (catalog
no. MA3-913, used at 1:2000 dilution) from Thermo Fisher
Scientific, and anti-myoglobin antibody (catalog no. sc-74525,
used at 1:3000 dilution) from Santa Cruz Biotechnology Inc.
The anti-SLN (1:1000 dilution) antibody was custom-gener-
ated in the laboratory of M. P. Western blotting was repeated at
least three times for each protein, and intensities were quanti-
fied using ImageJ. Statistical difference was analyzed using one-
way ANOVA for multiple comparisons with GraphPad Prism 6
software. The data for the WT at each temperature were treated
as a control for interpretation.
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