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Abstract

Background—Aerobic exercise at a sub-symptom heart rate has been recommended as therapy 

for Post-Concussion Syndrome (PCS). Assessing adherence with an accurate heart rate monitoring 

instrument is difficult limiting the proliferation of large-scale randomized controlled trials.

Objective—To evaluate the validity of the Fitbit Charge HR against electrocardiogram (EKG) to 

monitor heart rate during a treadmill-based exercise protocol.

Design—A methods comparison study.

Setting—Sports medicine research center within a tertiary care institution.

Participants—A convenience sample of 22 healthy participants (12 female) aged 18–26 years 

(mean age: 22 ± 2 years).

Methods—Fitbit Charge HR heart rate measurements were compared to EKG data concurrently 

collected while participants completed the Buffalo Concussion Treadmill Test (BCTT).

Main Outcome Measures—Agreement between Fitbit Charge HR and EKG was assessed by 

intraclass correlation coefficients (ICC3,1), Bland-Altman limits of agreement, and percent error.

Results—We observed a strong single-measure absolute agreement between Fitbit Charge HR 

and EKG (ICC3,1 = 0.83; 95% CI: 0.67 – 0.90). Fitbit Charge HR underestimated heart rate 

compared to EKG (mean difference = −6.04 beats per min (bpm); SD = 10.40 bpm; Bland-Altman 
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95% limits of agreement = −26.42 to 14.35 bpm). 69.9% of Fitbit heart rate measurements were 

within 10% error compared to EKG, and 91.5% of all heart rate measurements were within 20% 

error.

Conclusions—While the mean bias in measuring heart rate was relatively small, the limits of 

agreement between the Fitbit Charge HR and EKG were broad. Thus, the Fitbit Charge HR would 

not be a suitable option for monitoring heart rate within a narrow range. For the purposes of post-

concussion exercise therapy, the relatively inexpensive cost, easy implementation, and low 

maintenance make Fitbit Charge HR a viable option for assessing adherence to an exercise 

program when expensive clinical equipment is unavailable.

Introduction

Behavioral and physiological self-monitoring devices may facilitate individualized medical 

care. By measuring and recording data on activity, heart rate, and sleep quality, such devices 

can provide objective information about a patient’s day-to-day life. This information is 

useful when lifestyle modifications have been prescribed, particularly given the difficulty in 

assessing patient adherence to modifications critical to clinical improvement. Additionally, 

self-monitoring devices may measure meaningful clinical outcomes (e.g. average or 

maximum heart rate during exercise activities) and offer motivation for the patients 

themselves. This is only possible if the self-monitoring device provides accurate information 

for its clinical purposes. In the past two years, Fitbit-like devices’ validity, reliability, and 

feasibility of the activity monitoring function have been published, and mostly have been 

found to be accurate [1–8]. However, only a few studies report these devices’ accuracy in 

measuring heart rate [9–12] and sleep [13–16].

One potential self-monitoring device application is tracking prescribed home exercise 

protocols for patients with Post-Concussion Syndrome (PCS). These novel rehabilitation 

approaches demonstrate promising results in resolving symptoms refractory to cognitive and 

physical rest [17,18]. As many as 10% of concussed athletes will continue endorsing 

symptoms for more than the seven days typically required for recovery, with nearly one-

quarter of these athletes continuing to experience symptoms 6–12 weeks after injury [19]. 

Patients with refractory concussion symptoms are clinically diagnosed with PCS, although 

no consensus has been reached on the symptom duration required for this diagnosis.

Specific recommendations for treating PCS patients are not well established. Typically, the 

same guidelines governing the acute period following concussion are used. This 

conservative management plan entails complete physical and cognitive rest with a gradual 

return-to-activity that is implemented when symptoms resolve [20,21]. The problem with 

this approach is that by the definition of PCS, symptoms are not resolving in a timely 

manner and further rest is unlikely to hasten symptom resolution.

Treadmill-based testing can determine both readiness of return-to-activity and aerobic 

exercise level in which the patient should engage. Preliminary studies have suggested using 

controlled and graded exercise, measured by a sub-symptom threshold target heart rate, as a 

PCS treatment to decrease symptoms and improve recovery time; however, the underlying 

mechanism by which this is achieved is not fully understood [17,18,20,22,23]. The Buffalo 
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Concussion Treadmill Test (BCTT) was developed as a way to estimate sub-symptom 

threshold heart rate by gradually raising heart rate in a controlled manner [18,20,24]. The 

inability to accurately measure heart rate in nonclinical settings (e.g. during home-based 

rehabilitation) and to quantify adherence to exercise therapy are major barriers to studying 

the efficacy of exercise as a PCS treatment in larger randomized controlled trials. The use of 

daily self-report logs when prescribed extensive at-home exercise regimens have been found 

to be largely inaccurate at capturing total amount of physical activity [25,26].

When exercise has been prescribed to PCS patients, the exercise dose intensity should be 

restricted to a heart rate whereby the patient does not experience symptom exacerbation. 

Leddy et al. suggest a heart rate that is 80% of the symptom-eliciting/exacerbating level 

determined through a treadmill-based exercise test [18]. An accurate self-monitoring device 

would be beneficial both to the patient, by providing real-time heart rate feedback, and to the 

provider, by providing detailed reports on their patient’s activity frequency, duration, and 

intensity, as judged by heart rate. The purpose of this study was to evaluate the Fitbit Charge 

HR’s ability to provide real-time, quantitative feedback on heart rate for use in PCS 

rehabilitation therapy. In this report, we delimit the scope of our investigation to the Fitbit 

Charge HR’s agreement with electrocardiogram (EKG) in measuring heart rate in healthy, 

non-concussed individuals during the BCTT [20]. In consideration of recent studies 

outlining the accuracy of Fitbit devices in activity monitoring function [4,5,7,8,13], we 

hypothesize the Fitbit Charge HR will have good agreement with EKG in measuring heart 

rate during exercise. We report on the validity of Fitbit Charge HR device through intra-class 

correlation, Bland-Altman limits of agreement, and percent error.

Methods

Participants

A convenience sample of 22 participants (12 female) aged 18–26 years old (mean age: 22 

± 2 years; mean mass: 71.16 ± 17.34 kg; mean height: 175.09 ± 14.73 cm) was recruited. 

Participants with an underlying heart condition, history of epilepsy, seizure, or balance 

disorder, recent musculoskeletal injury or concussion, reliance on an external device to 

ambulate, or who were pregnant, were excluded from the study. All participants provided 

informed consent. The study comprised one visit for exercise testing and a seven-day home 

trial in which the participants wore the Fitbit Charge HR device while sleeping; results from 

the sleep-related arm of study are not presented here. The study was approved by the 

Institutional Review Board at the authors’ institution.

Instrumentation

The Fitbit Charge HR was chosen because of its ability to provide continuous heart rate 

display and recording, as well as its ability to record sleep quality and quantity. Per the 

manufacturer’s description, the device’s PurePulse™ light-emitting diodes on the skin-facing 

surface monitor blood volume changes to continuously estimate heart rate [27]. The device 

stores heart rate data at 1 second intervals during exercise tracking (so-called “Activity 

Mode,” per manufacturer), and at 5 second intervals at all other times. The Fitbit Charge HR 

was not used in Activity Mode, but rather kept in its default setting to emulate the subjects’ 

Powierza et al. Page 3

PM R. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



typical use, because subjects may not remember to switch the device to the activity mode. 

Seven Fitbit Charge HR devices were used in total and randomly selected for each 

participant.

EKG data was acquired at 500 samples/sec using the Biopac MP150 system. Heart rate was 

estimated by R–R interval using AcqKnowledge analysis software, which automatically 

identifies points of the ECG complex and calculates timing intervals to determine heart rate.

Settings were changed on the Fitbit Charge HR devices so that seconds were included in the 

time display. The time on the computer collecting EKG data was synced to match the time 

displayed on the Fitbit Charge HR devices to the second.

Exercise Protocol

Participants were outfitted with the Fitbit Charge HR on their non-dominant hand, 

approximately 2 centimeters from the ulnar styloid process, and lead II of the wireless EKG. 

The EKG leads were placed at the right midclavicular line above the nipple and at the left 

midclavicular line below the nipple, with a grounding lead placed at the right midclavicular 

line below the nipple. A baseline heart rate was measured while each participant was sitting 

and restricting movement, before they completed the BCTT, as described previously [20]. 

Briefly, this protocol entails recording heart rate while the participant walks on a treadmill 

beginning with an incline of zero at a speed of 3.3–3.6 mph (1.48–1.61 m/s), varying only to 

accommodate walking comfort. After 2 minutes, the incline was raised by 1% and then 1% 

every subsequent minute, with speed held constant throughout the protocol. The protocol 

was terminated when either the maximum incline of 10% was reached, a heart rate 

exceeding 149 bpm was verified by EKG, or the participant asked to discontinue. The 

termination guidelines were created in attempt to mimic the estimated length of time and 

intensity of exercise that is typical in the BCTT protocol [20].

Data Retrieval

Heart rate data from Fitbit Charge HR devices were extracted from the Fitbit website via a 

third-party program called Fitabase (Small Steps Labs). The Fitabase program allowed for 

automated time-stamped heart rate measurements collected by Fitbit Charge HR devices, 

data that are not normally as conveniently exported at the Fitbit consumer-level. Heart rate 

data were exported from Fitabase in an excel format, allowing for easier data analysis. Use 

of Fitabase was necessary for this validation study, but would not be necessary for patients to 

monitor heart rate during exercise therapy.

Data Reduction

The Fitbit Charge HR recorded a heart rate measurement with variable intervals ranging 

between 2–15 seconds. Step interpolation was used to resolve the Fitbit Charge HR heart 

rate data to one measurement per second. This interpolation aligns with the real-time heart 

rate display of the device, which projects the last measurement recorded until there is a 

change in the heart rate measurement.
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Heart rate from the EKG system was calculated using the R–R interval and was down-

sampled and time-stamp matched to the one-second-resolved, interpolated Fitbit Charge HR 

data. We manually removed artifacts where the EKG waveform trace was improperly 

labelled (e.g. a motion artifact being labelled as an R wave resulting in a false R–R interval). 

Furthermore, we removed readings where there was a change of 20 bpm or greater over one 

second; such an artifact may result from a premature ventricular contraction. We also 

discarded data where the heart rate was recorded to be less than 40 bpm or greater than 170 

bpm. Less than 2.3% of data were removed using these filtering rules.

Statistical Analysis

Statistical analyses were performed using IBM SPSS 19 and SAS 9.3; figures were created 

in R. First, we compared the point estimates of heart rate at each second. Next, we created 5- 

and 10-second centered moving averages for each system and compared the resultant 

averages. To examine the agreement between the Fitbit Charge HR and the EKG system we 

computed intraclass correlation coefficients (ICC3,1), Bland-Altman limits of agreement, and 

percent error. The ICC3,1 were calculated using a 2-way, mixed model in which participants 

were treated as random effects and the two systems as fixed effects. Bland-Altman limits of 

agreement were calculated using a repeated-measures, matched replicates model, as 

described previously [28]. We report the 95% confidence intervals throughout. The percent 

error between each measurement from the devices was calculated by taking the absolute 

difference between the Fitbit Charge HR and EKG measurements and dividing by the EKG 

heart rate; we report the percent error as the percentage of error measurements that were less 

than 10% or less than 20%. Lastly, we employed a linear mixed model to determine if 

significant differences in measurement error were observed between the Fitbit Charge HR 

devices used in our study.

Results

We collected a mean of 860 seconds (SD: 90s) across 22 participants (18,415 pairs of 

heartrate readings). On visual inspection, Fitbit Charge HR data did not track well with EKG 

for three subjects. A sample of individual time-series plots are given in Figure 1. Single-

measure, absolute agreement ICC3,1 was 0.83 (95% CI: 0.67 – 0.90). A Bland-Altman plot 

was created for all 22 participants using the subject-specific mean difference and mean heart 

rate for each subject (Figure 2). The overall mean difference in heart rate between Fitbit 

Charge HR and EKG was −6.04 bpm (SD: 10.40 bpm, 95% limits of agreement:−26.42 to 

14.35 bpm). Individual Bland-Altman plots are shown in Figure 3, with a summary of the 

mean difference and individual limits of agreement in Figure 4. 69.9% percent of Fitbit 

Charge HR heart rate readings were within 10% of the mean EKG heart rate readings, and 

91.5% of Fitbit Charge HR heart rate readings were within 20% of the mean EKG heart rate.

Centered moving averages over five and ten seconds were calculated for each device and 

compared using ICC3,1 and Bland-Altman limits of agreement. These moving averages 

resulted in modest improvement of the ICCs and tighter 95% limits of agreement, but 

negligible change in the mean difference between the devices. These results are presented in 
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the Table 1. Mean difference in heart rate did not vary significantly by Fitbit Charge HR 

device (F6,12=1.58, P=.24).

We ran the agreement analyses excluding the subjects with poor tracking between Fitbit and 

EKG (Table 2), resulting in some improvement in all measures. However, we have no 

compelling reason to believe the acquisition of data was compromised for these subjects.

Discussion

The purpose of this study was to assess the validity of heart rate measurements from the 

Fitbit Charge HR in comparison to the gold standard of EKG. Our finding that the Fitbit 

Charge HR underestimates heart rate (mean underestimation =−6.04 bpm) is unsurprising. 

Fitbit Charge HR uses a similar mechanism for heart rate estimation as standard pulse 

oximetry [27], which has been shown to underestimate heart rate in adults, especially during 

exercise [29,30]. Our results are consistent with a recent report by Jo et al., wherein the 

authors, comparing the Fitbit Charge HR to EKG, found a similar mean underestimate of 8.8 

bpm [10]. For the purposes of monitoring exercise activity intensity, an underestimation of 

approximately 6 bpm is of little clinical importance. The variability of the agreement 

between the devices is of much greater concern.

While the ICCs were generally high (>0.8) indicating a high overall consistency between the 

EKG and Fitbit Charge HR, the range of disagreement between the devices was rather large. 

The 95% limits of agreement were−26 and +14 bpm. This range represents the degree of 

uncertainty between the devices at the 95% confidence level. These limits did not appear to 

vary by mean heart rate. While these broad limits of agreement suggest the Fitbit Charge HR 

is not as accurate as the EKG, the percent error was generally low. Less than 10% of heart 

rate readings exceeded 20% error, and 30% of readings differed by more than 10%. The 

ICCs, mean difference, and limits of agreement were only marginally improved by using 

centered moving averages. Heart rate accuracy was not majorly improved by taking an 

average of the Fitbit Charge HR over five or ten seconds.

One possible cause of disagreement between devices may be due to differences in the 

devices’ method of estimating heart rate. EKG measures heart rate at a high sampling rate, 

estimating from a single R–R interval, which is inherently unstable. Fitbit Charge HR 

measures heart rate at a much lower sampling rate compared to EKG and thus would not 

reflect normal second-to-second heart rate variability. However, this inaccuracy may be 

clinically negligible, since we compared five- and ten-second centered moving averages, 

with only minimal improvement in the limits of agreement.

Although EKG is considered the gold standard for heart rate measurement, its use remains 

limited outside the clinical/medical setting. The EKG is designed for stationary patients, and 

leads should be placed by a trained professional to maintain maximal accuracy. In this study, 

a wireless EKG device was chosen to accommodate the motion inherent in the exercise 

protocol we employed. However, wireless EKG devices are inclined to have increased 

signaling noise as activity level increases, with increased errors seen during accelerated 
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movements [31]. Although our EKG data were fairly noise-free, a small percentage of data 

were filtered out to decrease any motion-related artifacts.

Three participants had poor quality Fitbit Charge HR data. We lack the data to determine 

why these participants had poor agreement between devices, but this may be suggestive of 

subsets of participants for which the Fitbit Charge HR is ill-suited. Poor performance of the 

devices could be a function of peripheral circulation in distal extremities, but since 

peripheral pulses were not assessed during our study, this remains speculative. Previous 

studies have suggested that changes in contact force between photoplethysmographic 

sensors, such as the one used by Fitbit Charge HR devices, and skin can affect the quality of 

blood flow, causing artifacts in heart rate measurement [32]. Improper positioning of the 

device, such as within a skin fold, or the presence of hair or sweat can interrupt signal 

transduction [33]. Even microstructures such as a participant’s skin pigmentation and 

vascular network have been suggested to cause variations in readings, although this remains 

uncertain [10,33]. The fit of the Fitbit Charge HR was assessed for each participant in our 

study and did not appear to be problematic per manufacturer guidelines. Our analysis did not 

provide any conclusions for why these three participants had poor Fitbit Charge HR data. 

The reasons for poor quality Fitbit Charge HR data on some participants should be examined 

in future validation studies.

A limitation to these results is that our study population consisted of young, healthy, and 

physically-active adults. It is unknown if the agreement would change in those with more 

sedentary lifestyles, circulatory problems, or even those in our eventual clinical population 

of concussed athletes. Fitbit Charge HR would likely be susceptible to more errors with any 

high-intensity activity involving excessive arm movement (e.g., boxing, rowing, or P90X) or 

in individuals whose wrist size would prevent an adequate fit of the device. The walking 

treadmill protocol used was purposefully chosen to emulate previously proposed PCS 

exercise therapy [17,18,20,22,23]. As such, our results may not be generalizable to all 

intensities of exercise. A recent study by Jo et al. found that the Fitbit Charge HR was less 

accurate as the heart rate increased [10]. We did not observe a significant variation in mean 

differences between Fitbit Charge HR and EKG across heart rate, but given our protocol did 

not include vigorous exercise or a period of rest, this analysis is beyond the scope of our 

investigation. The agreement between devices during a higher intensity exercise protocol 

needs to be further studied.

Conclusion

With less than 10% of heart rate measurements exceeding 20% error, the Fitbit Charge HR 

provides a moderately accurate method to monitor heart rate during exercise in nonclinical 

settings. For individuals free from a cardiovascular disease that might require more advanced 

cardiac monitoring, the Fitbit Charge HR is a viable option for exercise tracking due to its 

relatively inexpensive cost, easy implementation, and minimal maintenance requirements. 

The Fitbit Charge HR may become a useful tool in PCS therapy in that it provides clinicians 

with an adequately accurate method to monitor adherence to exercise therapy. However, due 

to the broad limits of agreement between the Fitbit Charge HR and EKG, the device is a 
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poor choice for monitoring heart rate in real-time, particularly in the context of staying 

within a narrow range of heart rates or below a target heart rate.
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Figure 1. 
Time-series data for nine subjects; A–F show representative subjects (4, 21, 2, 5, 11, and 14, 

respectively) with heart rate data closely aligned for both Fitbit Charge HR and EKG. In 

contrast, G–I are subjects (3, 13, and 20, respectively) for whom there was large 

disagreement between the two devices.
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Figure 2. 
Bland-Altman plot of the mean difference in heart rate recordings by device for each subject. 

The overall mean difference and 95% limits of agreement are shown. The red data points 

reflect subjects for whom there was poor tracking between the EKG and Fitbit.
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Figure 3. 
Individual Bland-Altman plots are shown for each subject. The within-subject mean 

differences and 95% limits of agreement are shown as blue and red lines, respectively.
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Figure 4. 
The subject-specific mean difference between Fitbit and EKG are given as point estimates 

with 95% limits of agreement represented as error bars. The overlaid solid line is the overall 

mean difference between Fitbit and EKG heartrates and the overlaid dashed lines are the 

overall limits of agreement for the entire dataset.
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Table 1

Assessment of agreement between Fitbit and EKG (N=22). Mean Difference is computed by subtracting EKG-

derived heart rate from the Fitbit-measured heart rate, and reported in beats per minute

Comparison ICC (95% CI) Mean Difference (95% Limits of Agreement)

Single measures 0.83 (0.67, 0.90) −6.04 (−26.42, 14.35)

5 sec moving average 0.83 (0.66, 0.90) −6.07 (−25.73, 13.59)

10 sec moving average 0.84 (0.65, 0.91) −6.07 (−25.08, 12.95)
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Table 2

Assessment of agreement between Fitbit and EKG after removing three subjects with poorly tracking Fitbit 

and EKG data (N=19). Mean Difference is computed by subtracting EKG-derived heart rate from the Fitbit-

measured heart rate, and reported in beats per minute

Comparison ICC (95% CI) Mean Difference (95% Limits of Agreement)

Single measures 0.87 (0.76,0.92) −4.96 (−22.74,12.81)

5 sec moving average 0.88 (0.75,0.93) −5.00 (−21.95,11.95)

10 sec moving average 0.88 (0.75,0.93) −5.01 (−21.26,11.24)
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