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Abstract

Aims—1) To identify trajectories of cannabis use across adolescence, 2) to measure the influence 

of cannabis use characteristics on functional connectivity of the nucleus accumbens (NAcc), and 

3) to assess whether patterns of functional connectivity related to cannabis use are associated with 

psychosocial functioning 2 years later.

Design—The Pitt Mother & Child Project (PMCP) is a prospective, longitudinal study of male 

youth at high risk for psychopathology based on family income and gender.

Setting—Participants were recruited between age 6–17 months from the Women, Infants, and 

Children Nutritional Supplement program (WIC) in the Pittsburgh, Pennsylvania area.

Participants—N=158 PMCP young men contributed fMRI and substance use data at age 20.

Measurements—Latent class growth analysis was used to determine trajectories of cannabis use 

frequency from age 14–19. Psychophysiological interaction (PPI) analysis was used to measure 

functional connectivity between the NAcc and prefrontal cortex (PFC). Adolescent cannabis use 

trajectory, recent frequency of use, and age of initiation were considered as developmental factors. 

We also tested whether functional connectivity was associated with depressive symptoms, 

anhedonia, and educational attainment at age 22.

Findings—We identified three distinct trajectories of adolescent cannabis use, characterized by 

stable high, escalating, or stable low use. Cannabis use trajectory group had a significant effect on 

NAcc functional connectivity to the medial PFC (F=11.32, Z=4.04, pFWE-corr=.000). The 
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escalating trajectory group displayed a pattern of negative NAcc-mPFC connectivity that was 

linked to higher levels of depressive symptoms (r=−.17, p=.041), anhedonia (r=−.19, p=.028), and 

lower educational attainment (t=−2.77, p=.006) at age 22.

Conclusions—Pattern of cannabis use frequency across adolescence in US youth could have 

consequences for mood symptoms and educational attainment in early adulthood via altered 

function in neural reward circuitry.

Introduction

Cannabis use is a critical and growing public health problem among adolescents and young 

adults. In the United States, adolescent cannabis use has increased since the mid-2000s and 

is consistently higher than nicotine use, with 44.5% of 12th graders reporting lifetime use of 

cannabis in 2016, and 6.0% reporting daily use in the last 30 days (1). Although a majority 

of adolescents consider cannabis benign (2), adolescent use is associated with poor 

educational attainment (3) and mental health problems in adulthood (4). Risk for use, use-

related problems, and poor psychosocial outcomes are particularly high among male 

adolescents who live in urban, low-SES settings (5). However, the mechanisms linking 

adolescent cannabis use to poor psychosocial functioning in early adulthood remain poorly 

understood.

Adolescent cannabis use has been linked with a constellation of negative outcomes that 

share motivational impairments, including depression (4), anhedonia – difficulty with 

motivation for or enjoyment of rewarding experiences (6), and low academic achievement, 

including poor school performance and early school drop-out (3). All of these factors can 

have profound negative impacts on adult functioning in vocational and social domains (3, 7), 

suggesting that altered motivational processing may be a core feature of cannabis abuse that 

can lead to a variety of problematic outcomes (8).

One potential mechanism for the effects of adolescent cannabis use on motivation and later 

psychosocial functioning is via alterations in neural reward circuitry, which is consistently 

implicated in the initiation and maintenance of substance use, and the transition to addiction 

(for review, please see 9). Critical regions in this circuit include the striatum, the PFC, 

including the anterior cingulate cortex (ACC), and the thalamus (9–11), which collectively 

integrate information about reward, motivation, and long-term goals to guide adaptive 

behavior (12). Previous literature has reported altered morphology and neural response to 

reward in these regions among adolescent and adult cannabis users (13).

Cannabis exposure is hypothesized to impact brain structure and function via 

downregulation and desensitization of neural endocannabinoid receptors (14), which are 

densely expressed throughout the cortex and basal ganglia (15). These receptors regulate 

neuronal migration, axonal pathfinding, and the generation of glial cells, indicating that the 

endocannabinoid system has an important influence on synaptic pruning and myelination 

(16). Therefore, cannabis exposure may influence reward circuit function by altering the 

connectivity of key regions. Congruently, several studies have reported altered connectivity 

in association with cannabis use, including aberrant resting-state functional connectivity 

(rsFC) of the default mode, insula, and lateral visual networks among cannabis users (17, 
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18), reduced interhemispheric rsFC among cannabis dependent adolescents (19), and 

heightened rsFC of the medial frontal gyrus in association with cannabis use among high 

risk youth (20). Furthermore, increased functional connectivity between the PFC and 

occipitoparietal cortex has been reported in association with increased cognitive control 

demands among heavy cannabis users relative to controls (21), and cannabis dependent 

individuals display heightened functional connectivity between the PFC and basal ganglia 

during successful inhibition, relative to non-dependent cannabis users (22).

Functional connectivity of the NAcc, the locus of initial drug response and a hub of the 

reward circuit (9), could be influenced by use over time (23). Indeed, acute cannabis 

exposure has been found to decrease rsFC between the NAcc and PFC, ACC, striatum, and 

thalamus (24), and reduced rsFC between the NAcc and PFC has been reported among 

patients with schizophrenia and cannabis use disorder relative to controls (25). In particular, 

one previous report demonstrated that regular cannabis users display greater functional 

connectivity between the NAcc and the ACC, striatum, and cerebellum to cannabis cues 

relative to neutral cues (26). However, to our knowledge no previous studies have examined 

functional connectivity of these regions in relation to non-drug reward or among young 

adults with various patterns of cannabis use over time.

Because the onset and peak of cannabis use occur during adolescence when widespread 

neurodevelopmental changes in reward systems are ongoing, adolescence represents a 

vulnerable window for drug effects (27). Cannabis use follows a clear developmental 

pattern: initiation typically occurs by the mid-teens (28) and peaks before age 25 (28), and 

use disorders are most prevalent between ages 15–20 (29). Animal studies have 

demonstrated that cannabis exposure in adolescence is associated with more severe and 

persistent behavioral changes relative to adult exposure, particularly decreased reward 

motivation and greater depressive-like behaviors (30), but neural and psychosocial effects in 

human adolescents are not well understood. In particular, the influence of cannabis use on 

NAcc connectivity could be moderated by 1) trajectories of exposure (consistent vs. 

escalating vs. decreasing use) across development; 2) recent frequency of use; and/or 3) 

developmental timing of use (i.e. early- vs. late-onset use).

Distinct trajectories of cannabis use could have different consequences for the development 

of neural circuitry and implications for functioning. For example, sharply increasing 

exposure across adolescence could have pernicious effects on reward circuitry because of 

challenges to adaptation during a window of rapid development (31). Indeed, there is 

evidence to suggest that an escalating pattern of cannabis use in adolescence is as predictive 

of clinically significant substance use in adulthood as early-onset use (32) and may be even 

more strongly associated with problem behavior than a pattern of persistently high use (33). 

Conversely, recent studies have indicated that some cannabis-related cognitive changes can 

reverse after abstinence in long-term users, suggesting that patterns of use over time might 

not be as impairing as level of recent use (34).

Alternatively, early initiation and consistent high-frequency use could confer particularly 

strong risk because of the duration and intensity of exposure at a vulnerable period in 

development. Congruently, several studies have demonstrated that earlier-onset cannabis use 
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(i.e., beginning by age 16) is associated with more significant abnormalities in PFC function 

(27), worse neuropsychological functioning (35), educational problems (3), and later drug 

dependence (36). Another consideration is that many cannabis users also use alcohol (37), 

and cannabis effects may be attenuated when accounting for alcohol use (38).

We examined adolescent pattern of cannabis use, reward circuit function, and psychosocial 

adjustment in a high-risk sample: low-income young men from an urban setting (5) who 

have been assessed longitudinally since infancy as part of the Pitt Mother & Child Project 

(39). Specifically, our aims were to 1) determine distinct trajectories of cannabis use across 

adolescence, 2) measure the influence of cannabis use trajectory, recent frequency of use, 

and age of initiation on functional connectivity between the NAcc and PFC, and 3) to assess 

whether patterns of functional connectivity are associated with affective functioning and/or 

educational attainment 2 years later. Based on prior evidence that regular cannabis users 

display greater NAcc connectivity to cannabis-related stimuli (26), we hypothesized that a 

stable, high-frequency pattern of use across adolescence, greater recent cannabis use, and 

early initiation would be associated with reduced functional connectivity in response to non-

drug-related monetary reward. Furthermore, we hypothesized that trajectory of use across 

adolescence—because of developmental vulnerability—would have predictive power for 

reward circuit function even above the contributions of current use. Finally, we hypothesized 

that cannabis-related alterations in reward circuitry at age 20 would predict higher 

depressive symptoms, higher anhedonia, and lower educational attainment at age 22.

Methods

Design

The Pitt Mother & Child Project (PMCP) is a prospective, longitudinal study of risk and 

resiliency among low-income male participants recruited from the Pittsburgh, Pennsylvania 

area (39). This study was initiated in 1991 and a total of N=310 families were recruited from 

Women, Infant, and Children Nutritional Supplement Program (WIC) Clinics when 

participants were 6–17 months old. Participants completed in-person assessments at age 1.5, 

2, 3.5, 5, 5.5, 6, 8, 10, 11, 12, 15, 17, 20, and 22. This study has the strength of allowing for 

concurrent examination of the relative influence of adolescent trajectory of cannabis use, 

recent frequency of use, and age of onset. Because subjects were recruited in infancy and 

followed prospectively, it was not possible to control the number of participants that would 

ultimately go on to engage in cannabis use. Rather, we took a data-driven approach to 

determine the different trajectories of cannabis use that were present among PMCP 

participants, and to use these trajectory groups as the basis for our functional connectivity 

analyses.

Participants

Participants were n=158 PMCP participants who completed an fMRI scan and substance use 

measures at age 20. All subjects were eligible to participate in the imaging study unless they 

reported any standard MRI contraindications. Procedures were approved by the University 

of Pittsburgh Institutional Review Board. All participants provided written informed consent 

to study procedures and were compensated for their participation.
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Measures

Cannabis Use—Cannabis use characteristics were assessed at age 20 using the Lifetime 

History of Drug Use and Drug Consumption (40), a psychometrically sound, semi-structured 

interview. This was the first visit at which participants were asked about their frequency and 

quantity of use across development. For each year since their first use, participants reported 

their average days/month of cannabis use, average quantity, maximum quantity, and 

maximum number of days using their maximum quantity of cannabis. Retrospective report 

of cannabis use is valid (41), and may sometimes be more accurate than concurrent report 

because adolescents may under-report their current use because of concerns about legal 

consequences (42). The current analyses focused on average frequency of use for each year 

and age of initiation.

Alcohol Use—Annual alcohol use frequency (days/month) and quantity (average number 

of drinks/occasion) for each year since participants’ first alcohol use were assessed at age 20 

using the Lifetime Drinking History (43). The product of alcohol use frequency and quantity 

was calculated for each year and average alcohol exposure from age 10 to 19 was included 

as a covariate in all functional connectivity analyses.

Age 22 Psychosocial Outcomes

Depression: Participants completed the Beck Depression Inventory (BDI; 44) at age 20 and 

22, a widely used, 21-item self-report questionnaire that had adequate reliability in this 

sample (α=.89). BDI scores did not change significantly from age 20 to 22 (F(302,1)=.803, 

p=.371).

Anhedonia: At age 22 only, participants completed the Snaith-Hamilton Pleasure Scale 

(45), a psychometrically sound, 14-item questionnaire appropriate for measuring anhedonia 

in typical and clinical samples. Reliability was adequate in this sample (α=.851).

Educational Attainment: Participants reported their highest level of school completed on a 

13-point scale (“below grade 9” to “completion of graduate degree”) (46). For the current 

analyses, participants were classified as having either obtained “high school diploma (or 

GED) or less” or “some higher education or more” (39.9% at age 20; 52% at 22). 

Educational attainment increased from age 20 to age 22 (X2=57.85, p=.00).

Functional Connectivity Analysis

fMRI Acquisition Procedure—Participants (n=186) underwent functional imaging on a 

Siemens TIM Trio 3T scanner using a gradient echo planar imaging (EPI) sequence with 34 

axial slices (3.1mm thick; TR/TE=2000/28ms, FOV=20cm, matrix=64×64), as reported 

previously (47–55). A reference EPI scan was acquired and inspected for artifacts and 

signal. Twenty-eight participants were excluded because of intoxication (n=4), psychosis 

(n=1), <75% response rate (n=13), poor coverage (n=8), or unusable data (n=2), resulting in 

the final sample of n=158 included in the current analyses. All participants had <2mm mean 

movement in any direction.
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The fMRI paradigm was an 8-min, 24-trial, slow event-related card-guessing game that 

assesses response to anticipation and receipt of monetary reward (see 49 for task details). 

Participants guessed whether a card was high or low, anticipated win or loss, and received 

feedback and monetary outcome. Trials were presented in a fixed, pseudorandom order, with 

participants unaware of fixed outcomes. This task robustly activates reward circuitry, 

including the NAcc (see Supplemental Figure 1 for task main effects).

fMRI Functional Connectivity Analysis—We conducted preprocessing and analysis 

using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Imaging data were realigned, unwarped, co-

registered to segmented structural images, spatially normalized into standard stereotactic 

space (Montreal Neurological Institute) using a 12-parameter affine model, and smoothed 

with a 6mm FWHM Gaussian filter. Voxel-wise signal intensities were ratio normalized to 

the whole-brain global mean. Functional connectivity analyses of win anticipation > loss 

anticipation and win outcome > loss outcome were conducted using psychophysiological 

interaction (gPPI) (for description of PPI, please see 56). These contrasts were chosen 

because PPI analyses require the contrast of 2 active task conditions (rather than 1 active 

condition and 1 baseline condition) (56). The bilateral NAcc, defined anatomically using 

WFU PickAtlas (v. 3.0.4), was the seed region because of its critical role in reward 

processing (12) and association with substance use (10). Functional connectivity was 

examined between the NAcc and a region of interest including the PFC and ACC, defined 

anatomically using WFU PickAtlas (v. 3.0.4) to include Brodmann Areas 9–12, 24–25, 32–

33, and 44–47 (see supplemental Figure 2).

Data Analyses

Aim 1: Developmental Trajectory of Adolescent Cannabis Use—Trajectory group 

analyses used frequency of cannabis use from age 14–19 years. This range covers a large 

portion of adolescence, includes the typical age of initiation (28), and included past-year use 

because assessments occurred on or around participants’ 20th birthdays. We used a latent 

class growth analyses in MPlus, which identifies clusters of people in common 

developmental pathways (58, 59). Models with 1–4 groups were tested (Supplementary 

Table 1). We followed recommendations that the smallest group contain at least 5% of the 

sample (60).

Aim 2: Influence of Cannabis Use Characteristics on Age 20 Functional 
Connectivity—One-way ANOVA was used to test the effect of trajectory group on NAcc 

functional connectivity. Clusters demonstrating significant effects of trajectory group were 

used as a mask for post-hoc pairwise t-tests. Regression was used to test the effect of recent 

frequency of cannabis use and age of initiation on NAcc functional connectivity. Daily 

nicotine use, antisocial personality disorder (present/absent), lifetime alcohol exposure, and 

SES were covariates because of their influence on reward circuitry (61) or association with 

trajectory group. Functional connectivity with the PFC was tested at p<.005 (57) and 

correction for multiple comparisons used a cluster-level FWE-corrected p<.05 threshold 

(62). This threshold was selected to balance risk for Type I and Type II error, based on 

current recommendations in the field (57). Carter et al. (57) calculated power curves to 

illustrate sample sizes necessary to detect moderate effects at various statistical thresholds. 
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Based on their calculations, a threshold of p<.001 would be likely to obscure meaningful 

effects in on our current sample size, whereas a threshold of p<.005 would allow us to detect 

a moderate effect.

Aim 3: Relation between Age 20 Functional Connectivity and Age 22 
Psychosocial Outcomes—Pearson bivariate correlation analyses tested whether 

functional connectivity related to adolescent cannabis use was associated with depression, 

anhedonia, or educational attainment at age 22.

Results

Developmental Trajectory of Adolescent Cannabis Use

Trajectory analyses yielded a 3-group model (Supplementary Table 1). The stable-high 
group (6.9%; n=11) contained participants with an early age of initiation who had consistent, 

high-frequency use. The escalating group (22.9%; n=36) contained participants who 

exhibited increasing frequency of use and typical age of onset. The stable-low group (70.2%; 

n=111) contained participants who reported either no (n=33) or infrequent (n=78) cannabis 

use. (Figure 1; Table 1).

Influence of Cannabis Use Characteristics on Age 20 Functional Connectivity

Trajectory—Consistent with previous reports (22), groups did not vary significantly in 

their BOLD activation, but differed significantly in functional connectivity between the 

bilateral NAcc and the medial PFC to win outcome > loss outcome (Table 2). The escalating 

group displayed negatively correlated activation of the NAcc and mPFC, whereas activity in 

these regions was positively correlated in both the stable-low and stable-high groups. Post-

hoc pairwise t-tests revealed that functional connectivity differed significantly between the 

escalating and stable-low groups (k=509, pFWE-corr=.002, t=4.57, Z=4.41, peak MNI: −6, 

32, 16). The difference between the escalating and stable-high trajectory groups (k=145, 

puncorrected=.014, t=4.40, peak MNI: 0, 48, 38) did not meet the FWE-corrected significance 

threshold (see Figure 2).

Recent frequency of cannabis use and age of initiation did not predict functional 

connectivity

Relation between Age 20 Functional Connectivity and Age 22 Psychosocial Outcomes

Negative functional connectivity between the NAcc and the region of the mPFC that 

differentiated the cannabis use trajectory groups at age 20 was associated with higher 

depression, higher anhedonia, and lower educational attainment at age 22 (Table 2).

Discussion

For young men from urban, low-SES backgrounds, trajectory of cannabis use across 

adolescence was related to differences in NAcc functional connectivity in response to 

receiving monetary reward at age 20, even after controlling for average annual alcohol use. 

Functional connectivity, in turn, was associated with higher depressive symptoms and 

anhedonia, and lower educational attainment at age 22. Most notably, an escalating pattern 
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of cannabis use across adolescence—rather than stable, high-frequency use—was associated 

with negative functional coupling between the NAcc and mPFC.

According to the incentive sensitization model, repeated substance use leads to a 

sensitization of the reward system to drug-related stimuli relative to natural rewards (63, 64) 

and circuit-level changes in the mesocortiolimbic system give rise to attentional and 

decision-making biases that promote drug-seeking behavior (65). Congruently, recent 

studies have reported that cannabis use is linked to stronger functional NAcc-ACC 

connectivity to cannabis cues (26), but blunted NAcc response to monetary cues (66), and 

the current study reports negative NAcc-mPFC connectivity to monetary reward among 

those with an escalating pattern of adolescent cannabis use. Future studies should include 

both drug-related and non-drug-related rewards to evaluate whether individuals with an 

escalating pattern of cannabis use may display a shift away from natural rewards and toward 

drug rewards (63). This could also contribute to symptoms of depression and anhedonia, as 

well as impaired educational performance.

Contrary to our expectations, the escalating trajectory group showed a distinct pattern of 

negative functional connectivity between the NAcc and mPFC, relative to both the stable-

low and stable-high groups. The stable-high group was characterized by lower SES, higher 

rates of antisocial personality disorder, and earlier age of cannabis use initiation. Both acute 

and chronic stress exposure have substantial impacts on endocannabinoid system 

functioning (67). Because this group has been exposed to a high level of stress, it is possible 

that cannabis exposure may have a different impact on neural development in these 

participants and may even buffer against neurotoxic effects of chronic stress. Future research 

is necessary to assess whether neural effects of cannabis exposure are moderated by early 

life or chronic stress. Alternatively, the brain may undergo neuroadaption in the context of 

early-onset, consistent use, which may attenuate exposure effects. Although early-onset 

substance use is a well-established risk factor for later substance dependence and poor 

psychosocial development, evidence suggests that an escalating trajectory of use is similarly 

harmful (32, 33, 68). Given the small size of our stable-high use group, future research is 

necessary to explore differential effects of stable-high versus escalating cannabis exposure 

and characteristics that distinguish individuals with each pattern.

Our findings that altered functional connectivity between the NAcc and PFC is associated 

with poor psychosocial outcomes supports the hypothesis that disrupted neural circuit 

function may result in poor regulation of motivational systems, including difficulty 

enhancing positive affect, pursuing goals, or focusing on future reward. The observed 

association between NAcc-mPFC functional connectivity and sub-threshold 

symptomatology has important implications, and the long-term consequences to SES, health, 

and social functioning could be dramatic. Among young men from urban, low-SES 

backgrounds, educational attainment may be a particularly salient marker of later status, 

including upward social mobility (69).

Our sample includes low-income males from an urban community, a particularly high-risk 

population (5). However, this focus prevented us from examining gender differences or 

effects in women, young people from higher SES, or young adults living in rural or suburban 
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communities. Additionally, our high-risk, prospective design precluded the ability to recruit 

subjects based on patterns of use. Rather, we took a data-driven approach to determine the 

different trajectories of cannabis use that were present within this sample. The small size of 

the resulting stable-high trajectory group may have limited our power to detect significant 

relationships with this group of participants. Future research could use larger samples or 

utilize additional risk criteria for sample inclusion, such as parental use of substances, 

mental health issues, or high levels of infant negative emotionality, to maximize the number 

of infants showing cannabis use in adolescence.

Finally, because neural response to reward was measured at age 20, it is impossible to 

disentangle premorbid patterns of neural function from effects of cannabis use. Individuals 

at high risk for substance abuse have been found to display differences in neural structure, 

function, and connectivity in the absence of personal substance use (70). Therefore, aberrant 

patterns of neural response to reward among cannabis users are likely to result from a 

combination of predisposing neural abnormalities and exposure effects that interact across 

development. Abnormalities in neural reward circuitry may also be influenced by early life 

stress (49) and/or neurotoxic effects of co-occurring alcohol exposure (71).

In conclusion, our findings suggest that different trajectories of adolescent cannabis use are 

associated with distinct patterns neural reward circuit function in early adulthood, with 

escalating use appearing to confer higher risk for impaired motivation, including higher 

depressive symptoms, anhedonia, and poor educational attainment. Alterations in reward 

circuit function represent a potential mechanism by which cannabis users experience 

psychosocial consequences that could be pernicious for adult functioning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Developmental Trajectories of Cannabis Use across Adolescence in Young Men with Low 

Socioeconomic Status
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Figure 2. 
Trajectory of Adolescent Cannabis Use Predicts Functional Connectivity of the Nucleus 

Accumbens in Response to Monetary Reward at Age 20 Controlling for Lifetime Alcohol 

Use.

Note. Functional connectivity within the medial prefrontal cortex (mPFC; A) differed for 

three trajectory groups (B). Bars in (B) represent mean functional connectivity for each 

trajectory group; error bars represent standard error of the mean. Group-effect results were 

used as a mask for post hoc tests comparing pairs of groups, which yielded a significant 

difference between the escalating and stable-low trajectory groups We note that using a 

statistical threshold of p<.001 for the overall group analysis yielded 3 smaller clusters within 

the current mPFC cluster (k=59, puncorrected=.013, F=11.32, Z=4.04, peak MNI: 6, 32, 16; 

k=39, puncorrected=.037, F=10.08, Z=3.78, peak MNI: 10, 30, 22; k=69, puncorrected=.008, 

F=10.06, Z=3.78, peak MNI: −6, 44, 36).
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