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Abstract. We investigate the addition of symmetry and temporal context information to a deep convolutional
neural network (CNN) with the purpose of detecting malignant soft tissue lesions in mammography. We
employ a simple linear mapping that takes the location of a mass candidate and maps it to either the con-
tralateral or prior mammogram, and regions of interest (ROIs) are extracted around each location. Two differ-
ent architectures are subsequently explored: (1) a fusion model employing two datastreams where both ROIs
are fed to the network during training and testing and (2) a stagewise approach where a single ROI CNN is
trained on the primary image and subsequently used as a feature extractor for both primary and contralateral
or prior ROIs. A “shallow” gradient boosted tree classifier is then trained on the concatenation of these features
and used to classify the joint representation. The baseline yielded an AUC of 0.87 with confidence interval
[0.853, 0.893]. For the analysis of symmetrical differences, the first architecture where both primary and con-
tralateral patches are presented during training obtained an AUC of 0.895 with confidence interval [0.877,
0.913], and the second architecture where a new classifier is retrained on the concatenation an AUC of
0.88 with confidence interval [0.859, 0.9]. We found a significant difference between the first architecture
and the baseline at high specificity with p ¼ 0.02. When using the same architectures to analyze temporal
change, we yielded an AUC of 0.884 with confidence interval [0.865, 0.902] for the first architecture and
an AUC of 0.879 with confidence interval [0.858, 0.898] in the second setting. Although improvements for
temporal analysis were consistent, they were not found to be significant. The results show our proposed
method is promising and we suspect performance can greatly be improved when more temporal data become
available. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.4.044501]
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1 Introduction
Breast cancer screening in the form of annual or biennial breast
x-rays is being performed to detect cancer at an early stage. This
has been shown to significantly increase chances of survival,
with some studies showing a reduction in breast cancer mortality
of up to 40%.1 Human reading of screening data is time con-
suming and error prone; to aid interpretation, computer-aided
detection and diagnosis (CAD)2–5 systems are developed. For
mammography, CAD is already widely applied as a second
reader,6,7 but the effectiveness of current technology is disputed.
Several studies show no increase in sensitivity or specificity
with CAD8 for masses or even a decreased specificity without
an improvement in detection rate or characterization of invasive
cancers.9,10

During a mammographic exam, images are typically
recorded of each breast, and the absence of a certain structure
around the same location in the contralateral image will render
an area under scrutiny more suspicious; conversely, the presence
of a similar tissue less so. In addition, due to the annual or bien-
nial organization of screening, there is a temporal dimension
and similar principles apply: the amount of fibroglandular tissue
is expected to decrease, rather than increase with age and,

therefore, novel structures that are not visible on previous
exams, commonly referred to as priors, spark suspicion.

In medical literature, an asymmetry denotes a potentially
malignant density that is not characterized as a mass or archi-
tectural distortion. Four types are distinguished: (1) a plain
asymmetry refers to a density lacking convex borders, seen in
only one of the two standard mammographic views; (2) a focal
asymmetry is visible on two views but does not fit the definition
of a mass; (3) a global asymmetry indicates a substantial differ-
ence in total fibroglandular tissue between left and right breast;
and (4) a developing asymmetry refers to a growing asymmetry
in comparison to prior mammograms.11,12 These types are gen-
erally benign but have been associated with an increased risk13

and are sometimes the only manifestation of a malignancy. To
the best of our knowledge, no relevant work has been done that
compares reader performance of malignancies with and without
left and right comparisons, but asymmetry is often mentioned by
clinicians as an important clue also to detect malignancies that
are classified as a mass. The merit of temporal comparison mam-
mograms on the other hand has been well studied and is gen-
erally known to improve specificity without a profound impact
on sensitivity for detection.14–18

Burnside et al.15 analyzed a set of diagnostic and screening
mammograms and concluded that in the latter case, comparison
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with previous examinations significantly decreases the recall
rate and false-positive rate, but does not increase sensitivity.
Varela et al.16 compared the reading performance of six readers
and found the performance drops significantly when removing
the prior mammogram, in particular in areas of high specificity,
relevant for screening. Roelofs et al.17 also investigated the merit
of prior mammograms in both detection and assessment of
malignant lesions. Their results show performance was signifi-
cantly better in the presence of a prior exam, but no more lesions
were found. They subsequently postulate priors are predomi-
nantly useful for interpretation and less so for initial detection.
Yankaskas et al.18 additionally investigated the effect of notice-
able change in tissue in mammograms. They generated separate
sets of current-prior examination pairs with and without notice-
able change and observed that recall rate, sensitivity, and cancer
detection rate are higher when change is noted but specificity is
lower, resulting in a higher false-positive rate.

Symmetry is often used as a feature in traditional CAD sys-
tems detecting pathologies such as lesions in the brain,19 pros-
tate cancer,20 and abnormalities in the lungs.21 Most research on
mammographic asymmetries involves the classification of a
holistic notion of discrepancy rather than the incorporation of
this information in a CAD system.22,23 Published work on tem-
poral analysis typically relies on the extraction of features from
both current and prior exams, which are combined into a single
observation and fed to a statistical learning algorithm.24,25 For
detection, an additional registration step is performed.26 This
has been shown to significantly increase the performance of
the traditional, handcrafted feature-based systems.

Recent advances in machine learning, in particular deep
learning,27–30 signified a breakthrough in artificial intelligence
and several pattern recognition applications are now claiming
human or even super human performance.31–34 Deep convolu-
tional neural networks (CNNs)27 are currently dominating leader
boards in challenges for both natural35 and medical image analy-
sis challenges.36–38 Rather than relying on engineers and domain
experts to design features, the systems learn feature transforma-
tions from data, saving enormous amounts of time in develop-
ment. The adoption of deep neural networks in medical image
analysis was initially reluctant, but the community has recently
seen a surge of papers39 some showing significant improvements
upon the state-of-the art.40–43

The vanilla CNN architecture is a generic problem solver for
many signal processing tasks but is still limited by the constraint
that a single tensor needs to be fed to the front-end layer, if no
further adaptations to the network are made. Medical images
provide an interesting new data source, warranting adaptation
of methods successful in natural images. Several alternative
architectures that go beyond the patch level and work with
multiscale44 or video45–47 have been explored for natural scenes.
In these settings, multiple datastreams are employed, where each
datastream represents, for instance, a different scale in the image
or frames at different time points in a video. Similar ideas have
been applied to medical data, most notably the 2.5D simplifica-
tion of volumetric scans.40,48,49

In this paper, we extend previous work50 and investigate the
addition of symmetry and temporal information to a deep CNN
with the purpose of detecting malignant soft tissue lesions in
mammography. We employ a simple linear mapping that
takes the location of a mass candidate and maps it to either
the contralateral or prior mammogram, and regions of interest

(ROIs) are extracted around each location. We subsequently
explore two different architectures:

1. A fusion model employing two datastreams where
both ROIs are fed to the network during training
and testing.

2. A stagewise approach where a single ROI CNN is
trained on the primary image and subsequently used
as feature extractor for both primary and contralateral
or prior ROIs. A “shallow” gradient boosted tree
(GBT) classifier is subsequently trained on the concat-
enation of these features and used to classify similar
concatenations of features in the test set.

Examples of symmetry pairs are shown in Fig. 1. Figure 2
shows several examples of temporal pairs.

To the best of our knowledge, this is the first CAD and deep
learning approach incorporating symmetry as a feature in a CAD
system and the first CAD paper exploring deep neural networks
for temporal comparison. Even though the methods are applied
to mammography, we feel results may be relevant as well for
other medical image analysis tasks, where the classification
of anomalies that occur unilaterally or develop over time is
important, such as lung, prostate, and brain images.

The rest of this paper is divided into five sections. In the fol-
lowing section, we will outline the data preprocessing, candidate
detector, and linear mapping used. In Sec. 3, the deep neural
architectures will be described followed by a description of

Fig. 1 Examples of symmetry pairs. Top row: Very suspicious malig-
nant lesion (a) regardless of its contralateral counterpart (b). Middle
row: Malignant lesion (a) that is more suspicious in the light of its con-
tralateral image (b). Bottom row: Normal structure (a) that is less sus-
picious in the light of its contralateral image (b).
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the data and experimental setup in Sec. 4. Results will be dis-
cussed in Sec. 5, and we will end with a conclusion in Sec. 6.

2 Methods

2.1 Candidate Detection

We generally follow the candidate detection setup described in
Kooi et al.41 To get potential locations of lesions and extract
candidate patches, we make use of a popular candidate detector
for mammographic lesions.51 It employs five features based on
first- and second-order Gaussian kernels, two designed to spot
the center of a focal mass and two looking for spiculation
patterns, characteristic of malignant lesions. A final feature indi-
cates the size of optimal response in scale-space. We sub-
sequently apply a random forest52 classifier to generate a
likelihood map on which we perform nonmaximum suppres-
sion. All optima are treated as candidates and patches of
250 × 250 pixels, or 5 cm at 200 μm, are extracted around
each center location. Since many candidates are too close to
the border to extract full patches, we pad the image with zeros.

For data augmentation, we follow the scheme described in
Kooi et al.41 Each patch in the training set containing an anno-
tated malignant lesion is translated 16 times by adding values
sampled uniformly from the interval ½−25; 25� (0.5 cm) to the
lesion center. Each original positive patch is scaled 16 times
by adding values sampled uniformly from the interval
½−30; 30� (0.6 cm) to the top left and bottom right of the bound-
ing box. All patches, both positive and negative are rotated using
four 90 deg rotations. This results in ð1þ 16þ 16Þ4 ¼ 132
patches per positive lesions and 4 per negative. In practice,
these operations are computed on the fly during training, to pre-
vent large datasets on disk. After candidates have been gener-
ated, locations are mapped to the same point in the contralateral
image or the prior.

2.2 Mapping Image Locations

Finding corresponding locations between two mammograms is
a challenging problem due to two main factors: (1) apart from
the nipple and chest wall, which may not always be visible, there
are no clear landmarks to accommodate feature-based registra-
tion and (2) the transformation is highly nonlinear. Before the
mammogram is recorded, the breast is strongly deformed: the
viewing area is optimized and dose is minimized by stretching
the breast. In addition, the compression plates may not always
touch the breast at the same location causing some movement of
tissue within the breast.

A comparative study among several commonly applied regis-
tration methods by Van Engeland et al.53 found a simple linear
approach based on the position of the nipple and center of mass
alignment outperformed more complex methods such as warp-
ing. We propose a similar approach based on two landmarks. To
obtain these points, the whole breast area is first segmented
using simple thresholding, followed by a linear Hough trans-
form to segment the pectoral muscle,54 in the case of a medio-
lateral oblique (MLO) image. The row location of the front of
the breast (an approximation of the nipple location) p1 is sub-
sequently estimated by taking a point on the contour of the
breast with the largest distance to the line output by the
Hough transform. A column point in the pectoral muscle or
chest wall p2 is taken by drawing a straight line from this

Fig. 2 Examples of temporal pairs. The right column represents the
current and the left column the prior image it is compared with, using
the mapping described in Sec. 2.2.

Fig. 3 To incorporate symmetry and temporal information, we make
use of a simple mapping, based on two coordinates indicated by the
end points of the yellow line. (a) A region of interest (ROI) represented
by the green box is extracted around a potential malignant lesion loca-
tion, indicated by the green dot, found by a candidate detector. The
location is subsequently matched to either (b) the prior or (c) the con-
tralateral image. We explore two deep convolutional neural network
(CNN) fusion strategies to optimally capture the relation between con-
tralateral and prior images.
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point perpendicular to the fit output by the Hough transform.
The lesion center in the image under evaluation q ¼ ðqr; qcÞT ,
where qr and qc denote the row and column location, respec-
tively, is subsequently mapped to the estimated lesion center q 0
in the contralateral or prior image according to

EQ-TARGET;temp:intralink-;e001;63;697q 0 ¼ q − pþ p 0; (1)

with p ¼ ðp1; p2ÞT and p 0 ¼ ðp 0
1; p

0
2ÞT the same points in the

contralateral or prior mammogram. In other words, we simply
clamp the x-distance to the chest wall and the y-distance to the
estimated location of the nipple. An example is provided
in Fig. 3.

Since most CNN architectures induce a decent amount of
translation invariance, the mapping does not need to be very pre-
cise. To further mitigate mapping errors, we introduce a form of
data augmentation by mapping each location in the image in
question to 64 different points in the comparison mammogram
by sampling the location from a Gaussian with zero mean and
10 pixel standard deviation.

3 Deep Convolutional Neural Networks
The CNN architecture exploits structure of the input by sharing
weights at different locations in the image, resulting in a con-
volution operation, the main workhorse of the CNN. The main
difference between deep models and conventional statistical
learning methods is the nested nonlinear function the architec-
ture represents. At each layer, the input signal is convolved with
a set of K kernels W ¼ ðW1;W2; : : : ;WKÞ and biases
B ¼ fb1; b2; : : : ; bKg are added, each generating a new set of
feature maps Xk. These features are subjected to an elementwise
nonlinear transform σð·Þ and the same process is repeated for
every convolutional layer l0; l1; : : : ; lL

EQ-TARGET;temp:intralink-;e002;63;390Xl
k ¼ σðWl−1

k ⊗ Xl−1 þ bl−1k Þ: (2)

Convolutional layers are generally alternated with pooling
layers that subsample the resulting feature maps, generating
some translation invariance and reducing the dimensionality
as information flows through the architecture. After these layers,
the final tensor of feature maps is flattened to a vector xl and
several fully connected layers are typically added, where
weights are no longer shared

EQ-TARGET;temp:intralink-;e003;63;281xl ¼ σðWlxl−1 þ blÞ: (3)

The posterior distribution over a class variable yi, given input
patch X0 is acquired by feeding the last level of activations xL to
either a logistic sigmoid for single class or a softmax function
for multiclass

EQ-TARGET;temp:intralink-;e004;63;205PðyijX0;ΘÞ ¼ softmaxðxL;W; bÞ ¼ ew
T
i x

LþbLi
P

K
k¼1 e

wT
k x

LþbLk
; (4)

with Θ is the set of all weights and biases in the network and wi
is the vectorized set of weights leading to the output node of
class i. The whole network can be seen as a parameterized fea-
ture extractor and classifier, where the parameters of the feature
transformation and classifier are learned jointly and optimized
based on training data.

The parameters in the network are generally learned using
maximum likelihood estimation or maximum a-posteriori,

when employing regularization and default backpropagation.
Increasing depth up to some point seems to improve efficiency
and reduce the amount of parameters that need to be learned,
without sacrificing performance or even increases overall
performance.55–57 The gradient of the error of each training sam-
ple is dispersed among parameters in every layer during back-
propagation and hence becomes smaller (or in rare cases
explodes), which is referred to as the fading gradient problem.
Common tricks to quell this phenomenon are smart weight ini-
tialization,58,59 batch normalization,33 and nonsaturating transfer
functions such as rectified linear units or recently exponential
linear units (ELU).60

3.1 Fusion Architectures

Partly inspired by the work of Karpathy et al.,45 we propose to
add the contralateral and (first prior) temporal counterparts of a
patch as separate datastreams to a network. In principle, the
datastreams can be merged at any point in the network, with
simply treating the additional patch as a second channel the
extreme case. Neverova et al.46 postulated the optimal point
of fusion pertains to the degree of similarity of the sources,
but to the best of our knowledge, no empirical or theoretical
work exists that investigates this. We evaluate two architectures:

1. A two-stream network where kernels are shared and
datastreams are fused at the first fully connected
layer. Figure 4 provides an illustration of this network.

2. A single patch, single stream network is used as a fea-
ture extractor by classifying all samples in the training
and test set and extracting the latent representation of
each patch from the first fully connected layer xfc1 of
the network. This feature representation of the primary
and either contralateral or prior ROI are concatenated
and fed to a “shallow” GBT classifier to generate a
new posterior that captures both symmetry or (first
prior) temporal information.

The second approach is far easier to train, since it does not
entail reoptimizing hyperparameters of a deep model, which is
tedious and time consuming. A downside is that the kernels
effectively see less data and are therefore potentially less optimal
for the task. In addition, the second setup is more prone to over-
fitting. We will elaborate on this in the discussion.

In general, there are a lot less temporal than symmetry sam-
ples because they require two rounds of screening and symmetry
samples only one. To compare these architectures, we could
simply take a subset of the data where each current exam has
both a contralateral and prior counterpart. Unfortunately, this
yields a relatively small number of positive samples, and in
early experiments, we found the (base) performance to be
very marginal and not sufficient to provide a fair comparison.
We therefore view missing prior exams simply as missing
data. Although missing data have been well studied in the sta-
tistics community,61 relatively little has been published with
respect to discriminative models.

In the context of recurrent neural networks (RNNs),62–64 sev-
eral imputation methods have been explored.65,66 Lipton et al.66

investigated two imputation strategies: zero-imputation, where
missing samples are simply set to zero and forward-filling
that sets the missing value to the value observed before that.
Their results show zero imputation with missing data indicators
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works best, but no significance analysis is performed. In a sim-
ilar spirit, we explore two strategies:

1. Use a black image when no prior is available. When a
woman skipped a screening round, we map the image
to the exam 4 years before the current or add a black
image if this is absent.

2. Use the image from the exam 4 years before the cur-
rent image and use the current when no prior is
available.

The first approach carries some additional information, in the
sense that the absence of a prior may also increase the likelihood
that an exam is positive, since more cancers are typically found
in the first round of screening. In the second setting, it is difficult
for the network to distinguish pairs where no change is observed
and pairs where simply no prior is available.

To add symmetry and temporal information simultaneously,
both architectures can trivially be extended with a third stream.
However, this requires some additional engineering; we, there-
fore, restrict this study to learning two separate models and will
propose ways to extend this in the discussion.

4 Experiments

4.1 Data

Our data were collected from a mammography screening pro-
gram in the Netherlands (screening midwest) and was recorded
with a Hologic Selenia mammography device at an original res-
olution of 70 μm. All malignant masses were biopsy proven and
annotated using contours drawn under the supervision of expe-
rienced radiologists. A candidate was considered positive, if the
locations were in or within 0.7 cm from an annotated malignant
lesion. Before presentation to the human reader, the image is
typically processed to optimize contrast and enhance the breast
periphery. To prevent information loss, we work on the raw
images instead and only apply a log transform that results in
a representation in which attenuation and pixel values are lin-
early related. The images are subsequently scaled to 200 μm
using bilinear interpolation.

Our dataset consists of 18,366 cases of 18,366 women.
Each case comprises one or more exams taken at intervals
of 2 years, unless a women skipped a screening. Each exam
again typically consists of four images: a craniocaudal and
MLO view of each breast. We generated training, validation,
and test set by splitting on a case level, i.e., samples from the
same patient are not scattered across sets. We took 65% for
training, 15% for validation, and 25% for testing. Annotated
benign samples were removed from our training set but kept
in the test set. Since not all benign samples are annotated in
our dataset, we cannot provide reasonable estimates of the
amount of samples. An overview of the data is provided in
Table 1.

4.2 Learning Settings and Implementation Details

The networks were implemented in TensorFlow67 and generally
follow the architecture used in Kooi et al.41 Hyperparameters of
all models were optimized on a separate validation set using ran-
dom search.68 For the deep CNNs, we employed VGG-like56

architectures with five convolutional layers with {16, 16, 32,
32, 64} kernels of size 3 × 3 in all layers. We used “valid” con-
volutions using a stride of 1 in all settings. Max pooling of 2 × 2
was used, using a stride of 1 in all but the final convolutional
layer. Two fully connected layers of 512 each were added.
Weights were initialized using the MSRA weight filler,59 with
weight sampled from a truncated normal, all biases were initial-
ized to 0.001. We employed ELU’s60 as transfer functions in all

Table 1 Overview of the data used for training, validation, and test-
ing. Findings refer to the amount of candidates (before data augmen-
tation). Number are separated by “/” where the first number indicates
the amount for training, the second the amount for validation, and the
third the amount for testing.

Findings Cases

Masses 869/210/470 796/189/386

Normal 200,982/54,566/74,799 3111/1482/1137

Fig. 4 To learn differences between left and right breast and temporal change around a candidate loca-
tion, we use a two-stream convolutional neural network (CNN). The first stream has as input a patch
centered at a candidate location, the second stream a patch around the same location in either the con-
tralateral image or the prior, using the mapping depicted in Fig. 3. All weights are shared across streams
and feature maps are concatenated before the first fully connected layer.
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layers. Learning rate, dropout rate, and L2-norm coefficient
were optimized per architecture.

Since the class ratio is in the order of 1/10,000, randomly
sampling minibatches will result in very poor performance as
the network will just learn to classify all samples as negative.
We, therefore, applied the following scheme. We generated
two separate datasets, one for all positive and one for all neg-
ative samples. Negative samples are read from the disk in
chunks and all positive samples are loaded into host RAM.
During an epoch, we cycle through all negative samples and
in each minibatch take a random selection of an equal amount
of positives, which are subsequently fed to GPU where gradients
are computed and updated. This way, all negative samples are
presented in each epoch, and the class balance is maintained.

Each configuration trained for roughly 10 days on a TitanX
12 GB GPU.

For the shallow model, we employ GBTs69 using the excel-
lent XGBoost implementation.70 We cross validated the shrink-
age and depth using 16 folds. Further parameters were tuned on
a fixed validation set using a coordinate descent such as scheme.
Since the last fully connected layer has size 512, the input to the
GBT comprised of 512 features for the single patch setting and a
feature vector of 1024 in the symmetry and temporal setting.

4.3 Results

Given the results from clinical literature regarding the merit of
priors, we focus our results on the classification of candidates
and, therefore, only present ROC curves, rather than FROC
curves that are commonly used for detection. To obtain confi-
dence intervals and perform significance testing, we performed
bootstrapping71 using 5000 bootstraps. All curves shown are the
mean curve from these bootstrap samples using cubic interpo-
lation. The baseline yielded an AUC of 0.870 with confidence
interval [0.853, 0.893].

Figure 5 shows the results of the single ROI baseline, and the
fusion architectures as described in Sec. 3.1 applied to the sym-
metry comparison. The first architecture where both patches are
presented during training yielded an AUC of 0.895 with confi-
dence interval [0.877, 0.913] and the second architecture where
a new classifier is retrained on the concatenation yielded an
AUC of 0.880 with confidence interval [0.859, 0.900]. We
find significant difference at high specificity on the interval
[0, 0.2], p ¼ 0.02 between the first architecture and the baseline,
but no significant difference on the full AUC (p ¼ 0.14). For the
second architecture, we did not find a significant difference
between either the baseline or the first architecture.

Figure 6 shows the results of the single ROI baseline and the
fusion architectures applied to the temporal comparison. We first
investigated the difference between the two different strategies
to handle missing priors. The approach using the same image
obtained an AUC of 0.873 with confidence interval [0.854,
0.892], the approach using the black image for missing priors
an AUC of 0.884 with confidence interval [0.866, 0.902]. We

Fig. 5 ROC curves of the baseline CNN using a single ROI and the
two fusing architectures described in Sec. 3.1 when presented with
the contralateral ROI.

Fig. 6 (a) ROC curves of the baseline CNN using a single ROI and the two strategies to handle missing
prior images both using architecture 1. (b) ROC curves of the baseline CNN using a single ROI and the
two fusing architectures described in Sec. 3.1 when presented with the prior ROI and black image
strategy.
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did not see a significant difference among the strategies
p ≫ 0.05; however, the strategy where the black image was
used has a higher AUC, and we have decided to use this to com-
pare the fusing architectures.

The first architecture where both patches are presented dur-
ing training obtained an AUC of 0.884 with confidence interval
[0.866, 0.902] and the second architecture where a new classifier
is retrained on the concatenation of both primary and symmetry
or temporal features reached an AUC of 0.879 with confidence
interval [0.858, 0.898]. We did not find a significant difference
among any of the architectures p ≫ 0.05, but improvements
were found to be consistent during early experiments. Results
will be discussed in the following section.

5 Discussion
From the curves in Figs. 5 and 6, we can see both symmetry and
temporal data improve performance but only see marginal
improvements with temporal data. The curves also show the
scheme where both ROIs are fed to a single network [architec-
ture (1) in Sec. 3.1] work best. As mentioned in Sec. 3.1, archi-
tecture (2) has the advantage that no new networks need to be
trained, which can take several months to do properly for large
datasets. Two disadvantages, however, are that (1) the kernels in
the network (parameters up to the first fully connected layer)
effectively see less data. In the first architecture, even though
the kernels are shared, they are trained on both the primary
and either symmetry or prior patch and, therefore, better
adjusted to the task. (2) Overfitting is a much bigger issue:
since the features are learned on most of the data the models
are trained on, the cross validation procedure of the GBT
often gave a strong underestimate of the optimal regularization
coefficients (depth, shrinkage in the case of the GBT), resulting
in strong gaps between train and test performance. Optimizing
this on a fixed validation set did not result in much better per-
formance. We have tried extracting features from deeper in the
network to mitigate this effect but found lower performance.

Since many exams do not have a prior, we explored two strat-
egies to fill in this missing data. In the first setting, we used a
black image when no prior image was available and in the sec-
ond strategy, the same image as the current was used. From the
curves in Fig. 6, we can see that in the first setting the prior ROI
does add some information; therefore, this approach is at least
not detrimental to performance. In the second setting, however,
we do not see an increase. A possible advantage of the first
approach is that it carries some additional information: the num-
ber of tumors found in the first screening round is often higher;
when using imputation methods mentioned by Lipton et al.64

this information is effectively lost. As also mentioned in
Sec. 3.1, the disadvantage of the second approach is that it is
difficult for the network to distinguish between malignant
mass-no prior pairs and malignant mass-malignant mass
pairs, since no change is typically associated with normal tissue.

In clinical practice, radiologists sometimes look back two
studies instead of one, when comparing the current to the
prior. Since this requires three screening rounds, this reduces
the size of our dataset again, if we want to emulate this and
more prior ROIs need an imputed image. Ideally, the neural net-
work architecture should accommodate a varying set of priors.
In early experiments, we have explored the use of RNNs,62–64 a
model designed for temporal data that can be trained and tested
on varying input and output sizes. We did not see a clear
improvement in performance but plan to explore this idea

more in future work. Since this model can work with varying
length inputs, it also provides an elegant way to handle missing
prior exams.

In this study, we have trained all networks from scratch.
Since the rudimentary features that are useful to detect cancer
in one view are expected to be almost as useful when combining
views, a better strategy may be to initialize the symmetry or tem-
poral two-stream network with the weights trained on a single
ROI. Similarly, since we expect similar features are useful to
spot discrepancies between left and right breast as to spot
differences between time points, the temporal network could
be initialized with the network trained on symmetry patches
or the other way around. Due to time constraints, this was
left to future work, but we suspect an increase in performance.

We have compared two different fusion strategies. As men-
tioned in Sec. 3.1, the datastreams can in principle be fused at
any point in the network, as done by Karpathy et al.45 However,
there is no guarantee that different architectures perform optimal
using the same hyperparameters. For instance, the weight
updates of lower layers change if fusion is performed at different
points higher in the network. In particular, the learning rate is
often found to be important and we feel comparison rings some-
what hollow if no extensive search through the parameter space
is done. Since a model typically trains for roughly a week, this is
infeasible with our current hardware and we have decided to
focus on the two presented models.

Since the focus of this paper is the presentation of two fusion
schemes for adding symmetry and temporal information to a deep
CNN, we have presented separate results for each. In practice,
when using a CAD system to generate a label for a case,
these should be merged into one decision. As mentioned in
Sec. 3.1, extending the network with a third datastream is trivial.
However, this limits the application to cases where both prior and
contralateral image are available. In our method, we have added a
black image, where priors were not available, and a similar
approach could be pursued in this setting. Another option
would be to train a third classifier on top of the latent represen-
tation from separate CNNs or the posterior output by separate
CNNs, possibly using a missing data model. Since training
deep neural networks and optimizing hyperparameters takes a
lot of time, we have left this for future work.

6 Conclusion
In this paper, we have presented two deep CNN architectures to
add symmetry and temporal information to a computer-aided
detection (CAD) system for mass candidates in mammography.
To the best of our knowledge, this is the first approach exploring
deep CNNs for symmetry and temporal classification in a CAD
system. Results show improvement in performance for both
symmetry and temporal data. Though in the latter case gain
in performance is still marginal, it is promising and we suspect
that when more data become available, performance will signifi-
cantly increase. Although the methods are applied to mammog-
raphy, we think results can be relevant for other CAD problems
where symmetrical differences within or between organs are
sought, such as lung, brain, and prostate images or CAD
tasks where temporal change needs to be analyzed, such as
lung cancer screening.
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