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Summary
Fusarium head blight is a devastating disease of small grain cereals such as bread wheat (Triticum

aestivum). The pathogen switches from a biotrophic to a nectrotrophic lifestyle in course of

disease development forcing its host to adapt its defence strategies. Using a genetical genomics

approach, we illustrate genome-wide reconfigurations of genetic control over transcript

abundances between two decisive time points after inoculation with the causative pathogen

Fusarium graminearum. Whole transcriptome measurements have been recorded for 163 lines of

a wheat doubled haploid population segregating for several resistance genes yielding 15 552 at

30 h and 15 888 eQTL at 50 h after inoculation. The genetic map saturated with transcript

abundance-derived markers identified of a novel QTL on chromosome 6A, besides the previously

reported QTL Fhb1 and Qfhs.ifa-5A. We find a highly different distribution of eQTL between time

points with about 40% of eQTL being unique for the respective assessed time points. But also for

more than 20% of genes governed by eQTL at either time point, genetic control changes in time.

These changes are reflected in the dynamic compositions of three major regulatory hotspots on

chromosomes 2B, 4A and 5A. In particular, control of defence-related biological mechanisms

concentrated in the hotspot at 4A shift to hotspot 2B as the disease progresses. Hotspots do not

colocalize with phenotypic QTL, and within their intervals no higher than expected number of

eQTL was detected. Thus, resistance conferred by either QTL is mediated by few or single genes.

Introduction

Analogous to phenotypic quantitative trait loci (QTL) variation in

transcript levels can be mapped to loci governing the expression

of underlying genes. Originally termed ‘genetical genomics’

(Jansen and Nap, 2001) expression QTL (eQTL) approaches

combined with transcriptome-wide mRNA abundance measure-

ments allow to generate a detailed picture of changes in the

regulatory landscape based on genotypic differences in structured

and natural populations. In strongly investigated biological

systems such as human (Brown et al., 2013; Dixon et al., 2007)

or Arabidopsis thaliana (Lowry et al., 2013), full genome

sequences and haplotypes for large panels of individuals with

reduced linkage disequilibrium can be fully exploited to yield not

only genetic loci but causative polymorphisms for mapped eQTL.

However, studies in large and complex crop plants such as

hexaploid wheat (Triticum aestivum) still lack behind, as many of

the required genomic resources are only being implemented

(Jordan et al., 2015; The International Wheat Genome Sequenc-

ing Consortium, 2014). Nonetheless, relevant insights on the

genetics of gene expression regulation have been acquired from

less resolved experiments (Breitling et al., 2008; Brem et al.,

2002; Schadt et al., 2005; Yvert et al., 2003). The feasibility of

eQTL studies in crops to detect causative variants was demon-

strated by Druka et al. (2008), who successfully correlated the

barley (Hordeum vulgare) Rpg1 R-gene locus to a large effect

eQTL corresponding to the cloned stem rust resistance gene Rpg1

in a segregating biparental population. Similar studies to identify

candidate genes or master regulators in crop plants were

conducted in barley (Chen et al., 2010; Moscou et al., 2011),

Brassica rapa (Hammond et al., 2011), maize (Zea mays, Shi

et al., 2007) and rice (Oryza sativa, Wang et al., 2014). These

findings have been expanded by moving from candidate genes to

systems biology to describe the biology underlying transcriptional

hotspots – loci that govern the expression of hundreds of genes

– by illustrating the concerted action and functional similarities of

groups of co-expressed genes therein (Keurentjes et al., 2007;

Munkvold et al., 2009; Wang et al., 2014).

The response of wheat to the prevalent pathogen Fusarium

graminearum, causing Fusarium head blight (FHB), has been

extensively investigated on the phenotypic level yielding dozens

of QTL in diverse germplasm (Buerstmayr et al., 2009). The

spectrum of resistant responses is mainly categorized in resis-

tance against initial penetration of the pathogen (type I) and

resistance against spreading of the disease (type II) (Schroeder

and Christensen, 1963). The complex nature of the underlying
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resistance mechanisms has been investigated in transcriptomic

studies in near-isogenic material (Hofstad et al., 2016; Nuss-

baumer et al., 2015) but not on the population level: After

infection F. graminearum commences with a biotrophic life style

but switches to necrotrophy after roughly 48 h. This switch is

set off or followed by the production of high amounts of the

trichothecene toxin deoxynivalenol (DON) that elicits oxidative

stress and shuts down ribosomal peptidyltransferase activity

(Pestka, 2010). These dynamic changes are countered by

massive reprogramming of the host transcriptional response

(Nussbaumer et al., 2015). The outcome of these interactions is

much determined by the plants correct response at the right

time to counteract the multifaceted effects of DON (Audenaert

et al., 2014).

Mapping eQTL in a population segregating for FHB resistance

seems well suited for observing the transcriptional dynamics

underlying these interactions. Here, we captured transcriptome

profiles at two time points after inoculation with F. gramin-

earum from the CM-82036 9 Remus doubled haploid (DH)

population that segregates for two prominent resistance QTL

Fhb1 and Qfhs.ifa-5A (Buerstmayr et al., 2002, 2003). Both

time points after inoculation depict snapshots before and after

the host reaction to DON in near-isogenic lines derived from the

same parental genotypes (Kugler et al., 2013). We have

explored the population-wide transcriptomic data to (i) saturate

the genetic map with transcript-derived markers (TDM) yielding

a yet undescribed resistance QTL in this population after

revisiting previously generated phenotypic data. We (ii) describe

eQTL and candidate genes mapping to the intervals of all three

QTL and (iii) used a systems biology approach to analyse eQTL

accumulated in hotspots at either time point to describe the

reconfiguration of the transcriptional landscape as the disease

progresses.

Results

Improved map resolution yields a novel FHB resistance
QTL

Global expression profiles at 30 and 50 h after inoculation (hai)

were captured from F. graminearum-inoculated wheat heads of

163 individuals of the Remus 9 CM-82036 DH population

including the parents using a custom 8 9 60 k Agilent

microarray (Santa Clara, CA). A total of 1500 TDM exhibiting

distinct biallelic expression patterns between the parental lines

were used in combination with existing SSR and AFLP

genotypes (Buerstmayr et al., 2002) to generate an improved

genetic map of 33 linkage groups including 183 TDMs and 247

other nonredundant marker scores (Table S1). We employed

phenotypic data previously published by our group for type II

resistance (Buerstmayr et al., 2002) and field resistance,

assessing primarily type I and to a lesser extent type II

resistance by spray inoculation (Buerstmayr et al., 2003), as

well as resistance again DON (Lemmens et al., 2005) and

combined these data with new phenotypes for type II

resistance obtained in the greenhouse in course of this study

for QTL mapping (Table S2). Significant thresholds for loga-

rithm of odds values (LOD) were obtained using simple interval

mapping (SIM) and the Haley–Knot regression method with

1 cM intervals (P-value ≤ 0.01, 1000 permutations).

Using the new saturated map, we detected a novel field

resistance QTL on chromosome 6A, placed in a 1.8 cM interval

between markers S1824_1_6A_1 and A_99_P490642 and

confirmed the previously reported strong contributions to type II

resistance and DON resistance from Fhb1 and to field resistance

by Qfhs.ifa-5A (Figure 1). The resistant allele for the 6A QTL

originated from the Fhb1 and Qfhs.ifa-5A donor CM-82036.

Similar to Qfhs.ifa-5A, the 6A QTL does not contribute to

resistance against DON.

Establishing the eQTL-atlas of the wheat response to
FHB

15 552 (30 hai) and 15 888 eQTL (50 hai) were generated from

normalized expression data of 163 DH lines (SIM, Haley–Knot
regression, 1 cM walking steps). Significance thresholds were

determined by selecting the 95th percentile from the distribution

of the maximum LOD scores (P-value < 0.01, 1000 permuta-

tions). The majority of eQTL in each experiment had LOD values

between 3 and 6 (48% at 30 hai and 56% at 50 hai) or higher

than 10 (31% at 30 hai and 27% at 50 hai, Figure S1a). 40% of

the significant eQTL at 30 hai and 32% of eQTL at 50 hai

explained 20% or more of the target genes expression variation

(Figure S1b). Roughly 82% of all recorded genes are under the

control of a single eQTL. About 15% were affected by two eQTL

and only a few hundred genes were governed by three eQTL or

more (Table S3). To identify segregating expression of genes

with changed expression pattern between 30 hai and 50 hai –
indicating a changed response to the pathogen in time – we

generated eQTL from the differences of normalized, log2-

transformed signal intensities recorded at either time point

(DeQTL = 50–30 hai) yielding 1880 DeQTL governing the expres-

sion of 2036 genes. Additionally, 370 and 301 differentially

expressed genes (DEG) between mock and F. graminearum-

inoculated parental lines Remus and CM-82036 were detected at

30 hai and 4735 and 4272 DEG 50 hai respectively, which reflects

the magnitude of recorded expression changes in the DeQTL
analysis (Table S4).

Most eQTL are not physically located proximal (cis) to the

position of the genes under their control. Such trans-acting eQTL

map distal to target genes at the positions of regulatory elements

that influence gene expression variation. To establish a robust

LOD threshold to differentiate cis from trans-eQTL, we estimated

the genetic positions of 7662 genes corresponding to eQTL at

either time point by transposing our map data to the consensus

map of the wheat reference cultivar Chinese Spring used the

wheat genome zipper (Mayer et al., 2011; Figure S2a). Genes

mapping within 15 cM of the corresponding eQTL were declared

cis-eQTL. The distributions of recorded cis-LOD (median 16.48, 30

hai; 13.72, 50 hai) and trans-LOD (5.3 and 5.1) were used to

estimate an arbitrary LOD threshold of 10, to best separate

cis- and trans-eQTL (Figure S2b). Applied onto the entire eQTL,

data 68.5% of eQTL were thus considered trans-eQTL at 30 hai

and 73.3% at 50 hai, which is in good agreement with reports

from literature (i.e. Swanson-Wagner et al., 2009).

eQTL colocalizing to FHB resistance QTL

eQTL data can be directly explored for (cis) eQTL mapping into

phenotypic QTL intervals. Nineteen and 21 eQTL at 30 hai and 50

hai map within a 3 cM interval including Fhb1 between markers

Gwm389 and Barc133 (Table S4). None of these matched the 28

candidate genes located in the recently sequenced interval of

Fhb1 (Schweiger et al., 2016), because many of these comprise

variety-unique genes, are poorly expressed and/or are annotated

as low confidence genes. Still, trans-regulated eQTL may be

implicated as downstream targets of the QTL activity. The locus
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does not accumulate a higher than average number of eQTL (see

below). Single trans-eQTL (Table S4) such as a small molecule

UDP-glycosyltransferase (A_99_P029249, GenBank accession:

BG274933) may yet be contributing to metabolize DON

(Poppenberger et al., 2003).

One hundred and four (30 hai) and 83 (50 hai) eQTL of which

50 are shared between time points map to the 2 cM interval

between TDM A99_P308566 and Barc141 describing Qfhs.ifa-5A

on linkage group 5A-1 (Table S4). Type I, penetration resistance

against initial infection of the pathogen conferred by Qfhs.ifa-5A

requires early activation and may be active at both time points. Of

the eQTL present at both time points 18 and 26 genes are higher

expressed across the population for the susceptible QTL allele or

the resistant allele, respectively (Figure S3) but none were also

DEG in the parental lines. Thus, constitutively expressed genes

need to be considered as candidates: Of these several genes with

higher transcript abundance for the resistant allele contain

annotations that could explain the QTL activity, including a
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Figure 1 Interval analysis and effect plots of QTL for (a) field resistance, (b) type II resistance and (c) resistance against DON. AUDPC refers to the area

under the disease pressure curve, REW to the relative ear weight and FHB severity to the percentage of diseased spikelets. The phenotypes are described in

more detail in Table S2.
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receptor-like protein kinase (A_99_P352346, tentative consensus

ID: TC433868), a previously described lipid transfer protein

(CUST_769_PI425885773, CA635994, Schweiger et al., 2013)

and a XH/XS domain-containing protein (CUST_1123_

PI425860077, BJ274407) implicated in RNA-directed DNA methy-

lation (Ausin et al., 2012).

Only four (30 hai) and two eQTL (50 hai) are associated to the

location of the field resistance QTL identified on chromosome 6A

between markers S1824_1_6A_1 and c6A_1.loc9 (Table S4).

A_99_P342731 (TC382014) encoding a receptor kinase corre-

sponds to an eQTL present at both time points, which may

participate in early pathogen recognition. Two eQTL relate to

genes encoding aquaporins that regulate water permeability and

re-establish the disturbed plant cell osmotic balance and nutrient

homoeostasis in response to stress (Afzal et al., 2016).

Three major eQTL hotspots orchestrate the segregating
defence response

eQTL in both experiments were not equally distributed across the

genome but formed clusters at several positions. We estimated

significant deviations from the expected number of eQTL

per chromosome (total eQTL/cM * chromosome length, P-

value ≤ 0.0001, chi-square test). Standardized residuals (SR =
(observed–expected/(expected)�2) larger than 2.33 indicated

significant higher numbers of eQTL than expected (P-

value ≤ 0.001) on seven linkage groups at either time points, of

which six were detected in both time points. The linkage group

comprising chromosome 2B (SR = 45.31) contained higher num-

bers only in the 50 hai data set and linkage group 2 of

chromosome 5B (SR = 2.88) only in the 30 hai data set.

To determine whether the significantly higher abundance of

eQTL originates from regulatory hotspots, the number of eQTL/

cM was plotted along the genome (Figure 2) and significance

thresholds of 78 (30 hai), 90 (50 hai) and 10 (DeQTL) eQTL/cM
were established by permutation test from the 99.9th percentile

of the sorted, highest recorded eQTL frequencies (1000 permu-

tations). This identified five regions, of which hotspots on

chromosome 2B at 50 hai, chromosome 4A and chromosome

5A at both time points show a highly increased ratio of trans-

eQTL (eQTL with LOD < 10) compared to the genome-wide

average.

Potentially coregulated eQTL in each hotspot were further

dissected into groups of co-expressed genes by hierarchical

clustering of the normalized and transformed transcript abun-

dance measurements (Figure S4). Most of these clusters are

enriched for eQTL with distinct biological functions based on

Gene Ontology (GO) terms (Figure 3a, track I). Yet, these co-

expression clusters do not uniformly show higher expression for

a distinct parental allele and allelic effects in each cluster vary

largely with a median heritability per hotspot ranging from 0.14

to 0.18 (Figure 3a, track II). To give additional weight to the

interpretation of each cluster also trans-eQTL ratios and DeQTL
content were established (Figure 3a, track II and Figure 3b and

c). All hotspot and cluster-related data are deposited in

Table S5.

Reconfiguration of regulatory roles during disease
development

The hotspot on chromosome 2B gains momentum only at the

later time point, where it accumulates more than 2000 eQTL

1B 2B 4ABD 5A-2

4ABD 5A-2

4ABD 5A-2

30 hai

50 hai

50-30 hai

6B

1B 2B 6B

1B 2B 6B

600

400

eQ
T

L
eQ

T
L

eQ
T

L

200

600

400

200

150

100

50

Genome position

Genome position

Genome position

(a)

(b)

(c)

Figure 2 Frequency of eQTL at (a) 30 hai, (b) 50 hai and (c) DeQTL sorted

along the ordered wheat linkage groups/chromosomes. The green solid

horizontal line denotes 100 eQTL for scale, and the red dashed horizontal

line indicates the threshold for eQTL hotspots. Shaded areas indicate

linkage groups with hotspots.

Figure 3 Circular representations of interactions between regulatory hotspots. (a) Segments sizes of the inner ring and ribbon sizes represent the total

number of eQTL for each transcriptional hotspots detected at either 30 or 50 hai and shared number of eQTL respectively. Overlaps between these groups

of shared eQTL to other groups have not been considered. (I) Sizes of rim segments refer to the number of co-expressed eQTL in clusters generated for each

hotspot. Colours refer to the highest enriched GO terms (circular legend). Clusters numbering corresponds to the original data in Figure S4 and are given

only if mentioned in the text. (II) The percentage of trans-eQTL per cluster, the percentage of DeQTL as an indicator of expression difference between time

points and the heritability colour-coded for the allele with relative higher expression across the population are given for each cluster. (III) The localization of

‘shared’ eQTL between hotspots (central ribbons) in distinct clusters is indicated by second-tier ribbons for selected groups only to reduce complexity.

Analogous to (a) but ribbon colours reflect trans-eQTL ratios (c) and the percentage of eQTL, which are also DeQTL for either involved hotspot (c).
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(trans-eQTL ratio: 0.9) compared to 172 eQTL (trans-eQTL ratio:

0.5) at 30 hai. While many of the eQTL only come into existence

at 50 hai, 200 eQTL on 2B were under control of hotspots on 4A

and 5A at the earlier time point (Figure 3a, ribbons). Additionally,

45% of the 1415 genes unique to the 2B hotspot were under the

control of non hotspot-related eQTL at 30 hai spread throughout

the chromosomes.

The hotspot is strongly involved in regulating the segregating

defence response including the biosynthesis of phenylpropanoids

and efflux pumps (cluster 3_2B50, Figure 3a) as well as photo-

synthesis (4_2B50). Both clusters contain high trans-eQTL ratios

(>0.98) and a higher than average number of eQTL correspond to

DeQTL in 3_2B50 (14% compared to 8% for the hotspot

average), demonstrating an active role in defence response at this

time point. Genes in both clusters are highly accessed by other

hotspots (Figure 3a, track III).

The hotspot on chromosome 4A controls a higher transcrip-

tional activity at 30 hai (1223 eQTL) compared to 50 hai (991

eQTL). The biological mechanisms controlled at this locus change

fundamentally between time points: At 30 hai, clusters are heavily

enriched in defence-related terms, whereas at 50 hai, the highest

enriched terms relate to photosynthesis. In contrast to other

hotspots, transcript abundances in 4A at 30 hai are strongly

affected by the parental allele (Figure 3a, track II and Figure S4).

Especially, cluster 3_4A30 (90% trans-eQTL) has among the

strongest allele expression differences and only small variances

between the normalized transcript abundances. These tightly

controlled genes are higher expressed for the CM-82036 allele

and include transcription factors and kinases relevant for the

orchestration of genes in other clusters of 4A encoding for

different functions: These are predominantly enriched for fatty

acid biosynthesis and oxidative stress reduction terms (4_4A30,

biased for CM-82036 allele), drug efflux (2_4A30, Remus),

tryptophan biosynthesis (6_4A30, Remus) and biosynthesis of

phenylpropanoids (8_4A30, CM-82036).

At 50 hai, control of defence-associated genes has shifted from

the hotspot on 4A to 2B. Clear biological implications have only

been retrieved for few clusters including 2_4A50 (photosynthesis,

no allele preference discernible) of which many genes are

coregulated also by the hotspot on 2B.

Clusters in the hotspot on 5A do not seem to be directly

involved in defence response but mostly relate to photosynthesis,

glycine metabolism and photorespiration (3_5A30), sulphate

uptake via cysteine (1_5A30) and translation (2_5A30). Photores-

piration is a reoccurring term enriched also in 6_5A30 and

7_5A30), which share an expression bias for the Remus allele.

This process does not seem to be retained at 50 hai, as large

fractions of the 442 shared eQTL originate from clusters 1_5A30

and 2_5A30.

At 50 hai, almost 3000 regulated genes cover a wide variety of

molecular functions. As a common theme, a strong role in

translation and protein assembly may be discernible from the

cluster enrichments. Genes in cluster 2_5A50 are highly accessed

also by other hotspots. It is strongly enriched for amino acid

biosynthesis, which also include defence-related pathways lead-

ing to the production of phenylpropanoids. Related functions are

enriched in 5_5A50 (tRNA aminoacylation) and 7_5A50 (ribo-

some biogenesis, tRNA processing).

Our findings show that distinct biological mechanisms in single

hotspots are higher expressed for different alleles. It is therefore

nontrivial to pinpoint strong cis-eQTL encoded within the hotspot

intervals as causal genes based on annotations, allelic effect or

LOD values alone. Nevertheless, to limit the range of potential

causative genes in each hotspot, we separated eQTL with

LOD > 10 by the parental allele providing the higher expression

and the heritability observed for this eQTL at either time point

(Figure 4a, Table S6) and for expression differences observed for

the parents alone (Figure 4b). Cis-eQTL on hotspot 2B predom-

inantly retain the same allelic effect and heritability between time

points (Figure 4a), although the hotspot only gains momentum at

50 hai. Thus these genes are possibly unrelated to the hotspot

activity, also none of the eQTL show a striking higher expression

difference at the later time point compared to the earlier time

point that could be associated with the formation of the hotspot

(Figure 4b). For a group of eQTL allele preference changes,

predominantly, from the Remus allele to the CM-82036 allele at

the later time point. Also eQTL with large expression differences

between parents were only observed with higher transcript

abundances for the CM-82036 allele, which is in line the higher

expression for the CM-82036 allele of genes in most 2B clusters.

A gene possibly implicated in the formation of the hotspot is

A_99_P510277 (R2 = 0.84 at 50 hai, TRAES_2B_5E8AC26AF.1)

encoding a protein kinase.

Highly significant eQTL on 4A are fewer in numbers but follow

the same trend as observed for 2B. Strikingly, the largest effect

eQTL showed reduced expression differences at the later time

point, which may directly relate to the dominant defence reaction

at 30 hai. Among these, a leucine-rich repeat protein higher

expressed for the Remus allele is prominent candidate (R2 = 0.93

at 30 hai, A_99_P382312, EST TA106095_4565). The strong

activity in defence at 30 hai is reflected by a large number of high

effect trans-eQTL at 30 hai. This group is enriched for GO terms

relating to oxidative stress reduction and includes P450 monooxy-

genases and glutathione-S transferases, efflux pumps and

defence-related transcription factors (Figure 4b). For the majority

of these eQTL, the control shifted to the hotspot on 2B at the

later time point.

Discussion

A map saturated with transcript-derived markers
uncovers a novel field resistance QTL

We first revisited previously published phenotypic data sets for

FHB resistance using an updated map saturated with TDM. The

increased genetic resolution yielded a novel field resistance QTL

positioned on the distal end of linkage group 6A_1. This novel

QTL partly explains the higher field resistance of CM-82036 near-

isogenic lines (NILs) that are lacking both Fhb1 and Qfhs.ifa-5A in

comparison to the susceptible parent Remus (B. Steiner, personal

communications). In this region, two other FHB QTL have been

previously reported from different donor parents (Anderson

et al., 2001; Schmolke et al., 2005). The QTL on 6A was

associated with strong field resistance after spray inoculation,

but did not affect resistance to spreading that is assessed by point

inoculations. Possibly, the 6A QTL detected by Anderson et al.

(2001), assessed by counting the number of infected spikelets

after point inoculation, relate to the same gene: Their resistance

donor parent ND2603 is – just as CM-82036 – a direct derivative

from Sumai-3, the popular Chinese resistance source.

Fhb1 does not elicit a strong transcriptional response

None of the 28 genes encoded in the unique haplotype including

Fhb1 is represented by the microarray, predominantly because

these genes are either variety-unique genes, are poorly expressed
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and/or annotated as low confidence genes. The recently claimed

Fhb1 gene encoding a ‘pore-forming toxin’-like protein (Rawat

et al., 2016) is no exception as it is only little expressed gene and

unique for the Fhb1 region (Schweiger et al., 2016). Rawat et al.

(2016) suggest that it acts in recognition of fungal carbohydrates

and exerts a toxic effect to the fungus. This activity of a sole gene

would explain why our study did not detect a larger group of

trans-eQTL mapped to this locus. The proposed Fhb1 gene

however does not explain resistance conferred to DON alone,

which most likely is encoded by a second gene in the same

region, which includes both traits (Schweiger et al., 2016). Again,

we detected no direct downstream activity such as the higher

expression of genes causing the toxins efficient metabolization

such as gluco-conjugation (Poppenberger et al., 2003), and thus

also these proposed mechanisms need to be reconsidered.

We propose several candidates that may encode Qfhs.ifa-5A.

However, these have to be treated with care: The QTL resides in

the pericentromeric region of chromosome 5A, and the chromo-

somal interval might include many genes. To narrow down

candidates for this QTL, other technologies such as deletion

mapping of irradiated hybrids (Riera-Lizarazu et al., 2008) might

be more suitable than approaches relying on meiotic

recombinations. Also Qfhs.ifa-5A does not overlap with loci

governing large transcriptional changes. Similar observations have

been made before: no regulatory hotspot mapped to the position

of the qualitative resistance locus Rpg-TTKSK on chromosome 5H

of barley (Moscou et al., 2011) or on one of the several Puccinia

hordei resistance genes in a different study on barley (Chen et al.,

2010).

Highly dynamic eQTL landscape in disease development

The eQTL landscape recorded at both time points is highly

different. About 40% of all eQTL at either time point were

unique, and more than 2000 of the 9323 eQTL detected at both

time points map to different linkage groups. Also transcript

abundance levels change in time. These have been mapped by

1800 DeQTL of which a majority accumulate to the positions of

three large regulatory hotspots. The observed differences

between experiments may also be attributed to other factors

than genetic control of transcription levels in response to the

pathogen: Despite controlled light conditions, an average 4 hour

difference between sampling time points will affect the expres-

sion levels of genes associated to the circadian clock. Yet, even

these do not suffice to explain the massive concerted
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reconfiguration of genetic control of genes encoding similar

functions between hotspots (Figure 3): For instance, the hotspot

on 2B governing the expression of more than 2000 genes is only

formed at 50 hai. It takes control not only of genes for which no

eQTL has been detected at the earlier time point, but also seizes

control of about 200 genes regulated by other hotspots at the

earlier time point and many more eQTL unrelated to any hotspot.

Similar reports exist for barley, where a single large hotspot taking

control of eQTL from several loci after inoculation with Puccinia

graminis has been described (Moscou et al., 2011). Large scale

reconfigurations following different treatments have also been

described in a RIL population of Brassica rapa following calcium or

magnesium treatment compared to mock (Graham et al., 2014).

Regulatory hotspots

Two hotspots on chromosomes 1B and 6B were excluded from

further analysis: both lack the typical high trans-eQTL content

and likely represent recombination-poor regions: the large

putative hotspot on 1B corresponds to the widely used 1BL/1RS

wheat/rye translocation (Rabinovich, 1998) present in many

CIMMYT-derived lines such as CM-82036, which does not

recombine with the respective region on 1B of Remus. The

remaining three regulatory hotspots govern the expression of

thousands of genes. These may have been formed as the

consequence of large pleiotropic effects of a single regulatory

gene or by separate coupled loci or polymorphisms in shared cis-

regulatory elements of genes controlling different traits (Wagner

and Zhang, 2011). Pleiotropy is a common observation in QTL

mapping (Yan et al., 2011) and pleiotropic effects manifesting as

regulatory hotspots at the positions of phenotypic QTL or strong

cis-acting eQTL have been frequently described (Fu et al., 2009;

Keurentjes et al., 2007). Highly pleiotropic genes are under the

effect of purifying selection, thus these are less likely to acquire

polymorphisms that confer strong resistant phenotypes as these

may perturb the delicate balance of the pleiotropic mechanisms.

Thus their effect sizes on transcript abundance variations are

limited, yet some minor phenotypic effects were recorded at the

position of hotspots on chromosomes 2B and 4A (Figure 1) that

are both enriched for defence-related GO terms. Apparently,

these are part of a general response mechanism and may be

differentially mounted as a consequence of differences in disease

progression between resistant and susceptible lines, while

contributing little to the overall resistance: Susceptible NILs

without Fhb1 and Qfhs.ifa-5A showed a strong transcriptional

response to the pathogen in contrast to their resistant sister lines,

which did not require to activate these genes (Schweiger et al.,

2013).

In our analysis, clustered transcript abundances showed a

directional bias towards one parental allele with highly varying

effect sizes of the respective alleles on the variation of transcript

abundances. Nevertheless, not all clusters in each hotspot

followed the same haplotype bias. The extent of allelic dominance

is hotspot specific: Potokina et al. (2008) found higher expression

for one parental allele to range between 56% and 90% in

hotspots detected in biparental population of barley. The study of

Li et al. (2013) showed strong haplotype bias for nine of 10

hotspots with at least 78% of the genes higher expressed for one

parent. A more balanced distribution would suggest that the

hotspot composition is a result of linked polymorphisms affecting

unrelated traits. This issue needs also to be strongly considered

when interpreting the biological implications of the observed

hotspots.

The results summarized in Figure 3 imply two central mech-

anisms enriched in the hotspot on 4A: Defence-related genes at

30 hai with a haplotype bias predominantly for CM-82036 and

secondly genes relating to respiration and amino acid biosynthesis

at 30 hai biased for the Remus allele. A third group strongly

coregulated by the hotspot at 2B at 50 hai relates to photosyn-

thesis. Within the 2B hotspot, all clusters with significant

functional enrichments showed a haplotype bias for the CM-

82036 allele including the respective photosynthesis clusters.

These separate mechanisms seem to support the linkage model.

Photosynthesis-related genes might also segregate independently

of disease development. Large genotype-dependent expression

differences for photosynthesis-related genes have also been

identified in a recent eQTL study on tomato (Ranjan et al.,

2016). Nonetheless, the formation of all three mechanisms may

be the consequence of concerted action in response to the

pathogen: We have previously demonstrated the extensive effects

of F. graminearum infection on the primary metabolism, leading

to elevated respiration rates and increased amino acid biosyn-

thesis in NILs derived from this DH population (Nussbaumer et al.,

2015). Also photosynthesis is directly negatively affected by

pathogen stress (Berger et al., 2007). We could confirm this in

detail by comparing our findings to the published data from

Nussbaumer et al. (2015): Wherein photosynthesis-related genes

(GO:0015979) are less expressed in response to the pathogen

compared to mock, while this effect was stronger in the

susceptible genotypes.

In contrast, clusters of the hotspot on chromosome 5A did not

exhibit a trend for general higher expressed for one parental

allele. These clusters also show enrichments for more diverse

mechanisms than on the other hotspots. eQTL therein at first

seem unrelated to defence, because the large section of eQTL

retained between time points – representing a ‘core’ functionality

– contained only a small number of DeQTL compared to retained

eQTL in the 4A hotspot. Nonetheless, this hotspot seems to play

an essential role in the hosts’ reaction to DON:

Fusarium graminearum switches from a biotrophic to a

nectrotrophic lifestyle coincides with the production of large

amounts of DON (Audenaert et al., 2014) about 48 h after

inoculation (Pritsch et al., 2000). DON acts mainly via the

inhibition of protein biosynthesis by blocking the ribosomal

peptidyltransferase centre (Pestka, 2010), causing a variety of

resistance-unrelated reactions such as increased ubiquitination to

remove unfinished peptide chains (Lucyshyn et al., 2008) and

increased biosynthesis of amino acids and tRNA ligases possibly to

maintain translational activity (Nussbaumer et al., 2015; Warth

et al., 2014). Corresponding GO terms were enriched at 50 hai in

clusters of hotspot 5A. DON also elicits the production of reactive

oxygen species (ROS, Nobili et al., 2014). Segregating reaction to

oxidative stress was recorded at 30 hai on hotspot 4A but also on

5A at 30 hai for terms relating to photorespiration, which also

acts in the metabolism of ROS (Sørhagen et al., 2013).

Taken together, our analysis illustrates massive genome-wide

transcriptional changes of the host to adapt to the pathogen,

which itself transforms from a biotrophic to a necrotrophic

lifestyle. We highlight three master regulatory hotspots that

orchestrate the expression of thousands of eQTL. Their compo-

sition is highly dynamic in time and the control of major defence

mechanisms and other processes switches between loci as the

disease progresses. To further describe these hotspots, future

work needs to be addressed by technologies that use a complete

reference genome for RNAseq mapping and high density SNP
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maps combined with at best large unstructured populations

providing low enough linkage disequilibrium to limit the list of

causative candidate genes and better resolve the underlying biol-

ogy. Additionally, mutant lines from the proposed cis-regulatory

genes may be directly characterized on the transcriptional and

phenotypic level.

Experimental procedures

Plant material and greenhouse experiments

Vernalized seed of 190 individuals from the spring wheat CM-

82036 9 Remus DH population (Buerstmayr et al., 2002) and

parental lines were germinated and vernalized for an additional 3

weeks (4 °C, 12 h light/dark regime) before being transferred to

the greenhouse. Plants were potted in a mixture of compost, sand

chalk and peat.

The experimental design was a completely randomized design.

Each line was planted in an individual pot (with two seedlings)

and in five replications (pots). Greenhouse temperatures were

gradually increased from 15 °C/13 °C during day/night to 20 °C/
18 °C and a 16 h/day photoperiod at the time of anthesis.

Five heads per genotype and sampling time point were

required for RNA samples, and 10 heads per genotype were

phenotyped to validate the strong segregation for F. gramin-

earum resistance in the population. To handle more than 3000

individually treated heads, the experiment was split and con-

ducted in two consecutive greenhouse trials in 2010 and 2011.

Sixteen common DH lines were used as replicates in both

experiments as well as the parental lines. Each experiment

comprised an equal number of lines that included either, none

or both of the previously reported resistance QTL, Fhb1 and

Qfhs.ifa-5A.

Fusarium graminearum macroconidia spores were isolated

from mung bean medium, eluted in water and stored at �80 °C.
For each day of inoculation, aliquots of spores were thawn and

diluted to 50 000 conidia/mL. Spore germination rates were

tested prior each experiment. Six central spikelets on each

flowering wheat head were inoculated with 10 lL spore

suspension for subsequent RNA extraction. Tissue was collected

from the inoculated material as described in Schweiger et al.

(2013) at 2 pm for samples taken 30 hai and at 10 am for

samples taken 50 hai, shock-frozen in liquid nitrogen and stored

at �80 °C for further processing. For phenotyping, two central

spikelets were point inoculated. Mock inoculations were only

used for parental lines. FHB severity was recorded at 10, 14 and

21 days after inoculation.

RNA extraction, microarray hybridization and data
processing

RNA was extracted from 100 mg of ground tissue comprising

samples from five pooled heads using the RNeasy plant mini kit

(Qiagen, Venlo, The Netherlands) and checked on a Bio-Rad

Experion automated electrophoresis unit (Hercules, CA). Gene

expression profiles were captured using a custom-built 8 9 60 K

one-colour microarray design based on the Agilent microarray

platform (design ID 031677, Agilent, Santa Clara, CA). The design

includes the company’s commercial 4 9 44 k wheat gene

expression array and about 1500 probes that have been designed

based on ESTs previously reported as responsive to F. gramin-

earum (Bernardo et al., 2007; Golkari et al., 2007, 2009; Han

et al., 2005; Hill-Ambroz et al., 2006; Jia et al., 2009; Kruger

et al., 2002; Li and Yen, 2008; Schweiger et al., 2013;

Walter et al., 2008). Sample preparation, hybridization to

microarrays and scanning were performed at the facilities of

the Austrian Institute of Technology (AIT, Vienna, Austria).

Genotypes of which one or both arrays at either time point

showed poor properties in the Agilent quality report were

excluded from subsequent analysis resulting in 163 samples

including the parents for the eQTL analysis and additional three

arrays for each parent treated either with mock or F. gramin-

earum. Raw data were corrected for background noise and

normalized using the R bioconductor/limma package (R Devel-

opment Core Team, 2008; Ritchie et al., 2015).

Alignment software BLAT (Kent, 2002) was used to align ESTs

corresponding to microarray probes to the IWGSC wheat genes

(version 2.3) by considering the best scoring matches only. GO

terms from these data were used for enrichment analysis using R

bioconductor package GOstats (Falcon and Gentleman, 2007). To

obtain functional descriptions for EST sequences, we first

determined putative open reading frames (ORFs) using the

TRANSDECODER software version 2.0.1 (https://transdecoder.

github.io/) with a minimum ORF length of 240 bp. A total of

74,918 putative ORFs were identified and used as input for the

AHRD tool release version 2.0 (https://github.com/groupschoof/

AHRD).

Linkage mapping

A genetic map using 161 DH lines was generated with

CarthaG�ene (de Givry et al., 2005) using an existing set of 247

AFLP and SSR marker scores and 183 TDM relating to biallelic

expression patterns of single genes across the population. To

generate TDMs, the normalized expression values for across all

genotypes and parents were clustered by k-means clustering

using the R package fpc and validated the coherence of these

clusters by Z-test (alpha = 0.001). Genotypes that did not match

this criterion were treated as missing data. A maximum distance

of 30 cM and a minimum LOD threshold of 3 were used to

partition markers into linkage groups. The most likely positions of

the markers along the linkage groups were determined using the

commands nicemapl, mfmapl, flips, build and annealing in

CarthaG�ene. Genetic distances in cM were generated with the

Kosambi function. Markers with less than 0.6 cM distance were

merged and the resulting linkage groups compared to consensus

maps deposited at Graingenes (http://wheat.pw.usda.gov/GG2/).

Phenotypic QTL mapping

Published phenotypic data were analysed for QTL using the

functions calc.genoprob and sim.geno from the R/qtl package

(Broman et al., 2003) with 1 cM stepping distance and 16

simulated replicates. Interval mapping was performed using

the Haley–Knott regression model (Haley and Knott, 1992).

The scanone function was used to determine LOD signif-

icance thresholds for type I error (P-value ≤ 0.01, 1000

permutations).

Differential gene expression analysis

Differentially expressed genes (DEG) for parental lines CM-82036

and Remus were generated using the eBayes function of the R

bioconductor package limma from three replicates of each line

and treatment (mock and F. graminearum) sampled during the

2012 trial. The false discovery rate was controlled at an adjusted

P-value of 0.05 (Benjamini and Hochberg, 1995) and an arbitrary

fold-change cut-off of 2 was chosen to select more strongly

changed DEG.
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Expression QTL mapping

Simple interval mapping (SIM) was performed using R/qtl, and the

same parameters for imputing marker data and regression analysis

have been employed as described in the phenotypic QTL mapping

section. All 163 lines from both trials in 2010 and 2011 were

combined in one analysis. A year-effectwas considered by adding a

cofactor for year in the regression model (‘addcovariate’ in the

scanone function of R/QTL). A genome-wide significance threshold

for eQTL was determined by selecting the average 95th percentile

generated from the representative null distribution of the maxi-

mum LOD scores (P-value ≤ 0.01, 1000 permutations). Three

individual eQTL mappings were carried out for the data sampled at

30 and 50 hai as well as for a data set generated by subtracting the

30 hai probe signal intensities from the 50 hai probe signal

intensities to identify genes showing expression differences

between the two time points after F. graminearum inoculation

across the population (DeQTL = 50–30 hai).

Expression profiles of genes under control of the same

regulatory hotspot have been clustered using the ‘dist’ function

in R for hierarchical clustering including parameter methods

‘Euclidian’ and ‘Ward’s’ to generate the distance matrix. The

scaled expression values (mean=0; standard deviation=1) of each
eQTL were used as independent variables. An additional factor

was included to correct for a ‘year’ effect.

Acknowledgements

We thank Klemens Vierlinger for assistance in the microarray

experiments. Manuel Spannagl and Christian Ametz are acknowl-

edged for bioinformatical support as well as Marc Lemmens for

providing the F. graminearum spore inoculum. This work was

supported by grants (SFB F3705, F3711) of the Austrian Science

Fund (FWF). The authors declare no conflict of interest.

Author contributions

Microarray design, data analysis and interpretation, manuscript

writing: WS. Greenhouse inoculations, phenotyping, microarray

analysis, phenotypic and expression QTL: MS-Z. Mapping to

IWGSC reference and annotations: TN. Funding and project

design: KFXM, HB.

References

Afzal, Z., Howton, T., Sun, Y. and Mukhtar, M. (2016) The roles of aquaporins

in plant stress responses. J. Dev. Biol. 4, 9.

Anderson, J., Stack, R., Liu, S. and Waldron, B. (2001) DNA markers for

Fusarium head blight resistance QTLs in two wheat populations. Theor. Appl.

Genet. 102, 1164–1168.

Audenaert, K., Vanheule, A., H€ofte, M. and Haesaert, G. (2014)

Deoxynivalenol: a major player in the multifaceted response of Fusarium to

its environment. Toxins (Basel), 6, 1–19.

Ausin, I., Greenberg, M.V.C., Simanshu, D.K., Hale, C.J., Vashisht, A.A., Simon,

S.A., Lee, T. et al. (2012) INVOLVED IN DE NOVO 2-containing complex

involved in RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad.

Sci. USA, 109, 8374–8381.

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B, 57,

289–300.

Berger, S., Sinha, A.K. and Roitsch, T. (2007) Plant physiology meets

phytopathology: Plant primary metabolism and plant-pathogen interactions.

J. Exp. Bot. 58, 4019–4026.

Bernardo, A., Bai, G., Guo, P., Xiao, K., Guenzi, A.C. and Ayoubi, P. (2007)

Fusarium graminearum-induced changes in gene expression between

Fusarium head blight-resistant and susceptible wheat cultivars. Funct.

Integr. Genomics, 7, 69–77.

Breitling, R., Li, Y., Tesson, B.M., Fu, J., Wu, C., Wiltshire, T., Gerrits, A. et al.

(2008) Genetical genomics: spotlight on QTL hotspots. PLoS Genet. 4,

e1000232.

Brem, R.B., Yvert, G., Clinton, R. and Kruglyak, L. (2002) Genetic dissection of

transcriptional regulation in budding yeast. Science, 296, 752–755.

Broman, K.W., Wu, H., Sen, S. and Churchill, G.A. (2003) R/qtl: QTL mapping in

experimental crosses. Bioinformatics, 19, 889–890.

Brown, C.D., Mangravite, L.M. and Engelhardt, B.E. (2013) Integrative

modeling of eQTLs and cis-regulatory elements suggests mechanisms

underlying cell type specificity of eQTLs. PLoS Genet. 9, e1003649.

Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M.

and Ruckenbauer, P. (2002) Molecular mapping of QTLs for Fusarium head

blight resistance in spring wheat. I. Resistance to fungal spread (Type II

resistance). Theor. Appl. Genet. 104, 84–91.

Buerstmayr, H., Steiner, B., Hartl, L., Griesser, M., Angerer, N., Lengauer, D.,

Miedaner, T. et al. (2003) Molecular mapping of QTLs for Fusarium head

blight resistance in spring wheat. II. Resistance to fungal penetration and

spread. Theor. Appl. Genet. 107, 503–508.

Buerstmayr, H., Ban, T. and Anderson, J.A. (2009) QTL mapping and marker-

assisted selection for Fusarium head blight resistance in wheat: a review.

Plant Breed. 128, 1–26.

Chen, X., Hackett, C.A., Niks, R.E., Hedley, P.E., Booth, C., Druka, A., Marcel,

T.C. et al. (2010) An eQTL analysis of partial resistance to Puccinia hordei in

barley. PLoS ONE, 5, e8598.

Dixon, A.L., Liang, L., Moffatt, M.F., Chen, W., Heath, S., Wong, K.C.C., Taylor,

J. et al. (2007) A genome-wide association study of global gene expression.

Nat. Genet. 39, 1202–1207.

Druka, A., Potokina, E., Luo, Z., Bonar, N., Druka, I., Zhang, L., Marshall, D.F.

et al. (2008) Exploiting regulatory variation to identify genes underlying

quantitative resistance to the wheat stem rust pathogen Puccinia graminis f.

sp. tritici in barley. Theor. Appl. Genet. 117, 261–272.

Falcon, S. and Gentleman, R. (2007) Using GOstats to test gene lists for GO

term association. Bioinformatics, 23, 257–258.

Fu, J., Keurentjes, J. J. B., Bouwmeester, H., America, T., Verstappen, F. W. A.,

Ward, J. L., Beale, M. H. et al. (2009) System-wide molecular evidence for

phenotypic buffering in Arabidopsis. Nat. Genet. 41, 166–167.

de Givry, S., Bouchez, M., Chabrier, P., Milan, D. and Schiex, T. (2005)

CARTHAGENE: Multipopulation integrated genetic and radiation hybrid

mapping. Bioinformatics, 21, 1703–1704.

Golkari, S., Gilbert, J., Prashar, S. and Procunier, J.D. (2007) Microarray analysis

of Fusarium graminearum-induced wheat genes: identification of

organ-specific and differentially expressed genes. Plant Biotechnol. J. 5, 38–49.

Golkari, S., Gilbert, J., Ban, T. and Procunier, J.D. (2009) QTL-specific microarray

gene expression analysis of wheat resistance to Fusarium head blight in

Sumai-3 and two susceptible NILs. Genome, 52, 409–418.

Graham, N. S., Hammond, J. P., Lysenko, A., Mayes, S., O Lochlainn, S., Blasco,

B., Bowen, H. C. et al. (2014) Genetical and comparative genomics of

Brassica under altered Ca supply identifies arabidopsis Ca-transporter

orthologs. Plant Cell, 26, 1–14.

Haley, C.S. and Knott, S.A. (1992) A simple regression method for mapping

quantitative trait loci in line crosses using flanking markers. Heredity (Edinb)

69, 315–324.

Hammond, J.P., Mayes, S., Bowen, H.C., Graham, N.S., Hayden, R.M., Love,

C.G., Spracklen, W.P. et al. (2011) Regulatory hotspots are associated with

plant gene expression under varying soil phosphorus supply in Brassica rapa.

Plant Physiol. 156, 1230–1241.

Han, F.P., Fedak, G., Ouellet, T., Dan, H. and Somers, D.J. (2005) Mapping of

genes expressed in Fusarium graminearum-infected heads of wheat cultivar

“Frontana”. Genome, 48, 88–96.

Hill-Ambroz, K., Webb, C. A., Matthews, A. R., Li, W., Gill, B. S. and Fellers, J. P.

(2006) Expression analysis and physical Mapping of a cDNA library of

Fusarium head blight infected wheat spikes. Crop Sci. 46, 15–26.

Hofstad, A.N., Nussbaumer, T., Akhunov, E., Shin, S., Kugler, K.G., Kistler, H.C.,

Mayer, K.F.X. et al. (2016) Examining the transcriptional response in wheat

ª 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 15, 1453–1464

Mina Samad-Zamini et al.1462



near-isogenic lines to infection and deoxynivalenol treatment. Plant Genome.

9, 1.

Jansen, R.C. and Nap, J.P. (2001) Genetical genomics: the added value from

segregation. Trends Genet. 17, 388–391.

Jia, H., Cho, S. and Muehlbauer, G.J. (2009) Transcriptome analysis of a

wheat near-isogenic line pair carrying Fusarium head blight-resistant

and -susceptible alleles. Mol. Plant-Microbe Interact. 22, 1366–1378.

Jordan, K.W., Wang, S., Lun, Y., Gardiner, L.-J., MacLachlan, R., Hucl, P., Wiebe,

K. et al. (2015) A haplotype map of allohexaploid wheat reveals distinct

patterns of selection on homoeologous genomes. Genome Biol. 16, 48.

Kent, W.J. (2002) BLAT - The BLAST-like alignment tool. Genome Res. 12, 656–

664.

Keurentjes, J.J.B., Fu, J., Terpstra, I.R., Garcia, J.M., van den Ackerveken, G.,

Snoek, L.B., Peeters, A.J.M. et al. (2007) Regulatory network construction in

Arabidopsis by using genome-wide gene expression quantitative trait loci.

Proc. Natl. Acad. Sci. USA, 104, 1708–1713.

Kruger, W.M., Pritsch, C., Chao, S. and Muehlbauer, G.J. (2002) Functional and

comparative bioinformatic analysis of expressed genes from wheat spikes

infected with Fusarium graminearum. Mol. Plant-Microbe. Interact. 15, 445–

455.

Kugler, K.G., Siegwart, G., Nussbaumer, T., Ametz, C., Spannagl, M., Steiner,

B., Lemmens, M. et al. (2013) Quantitative trait loci-dependent analysis of a

gene co-expression network associated with Fusarium head blight resistance

in bread wheat (Triticum aestivum L.). BMC Genom. 14, 728.

Lemmens, M., Scholz, U., Berthiller, F., Dall’Asta, C., Koutnik, A., Schuhmacher,

R., Adam, G. et al. (2005) The ability to detoxify the mycotoxin

deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium

head blight resistance in wheat. Mol. Plant-Microbe Interact. 18, 1318–1324.

Li, G. and Yen, Y. (2008) Jasmonate and ethylene signaling pathway may

mediate Fusarium head blight resistance in wheat. Crop Sci. 48, 1888–1896.

Li, L., Petsch, K., Shimizu, R., Liu, S., Xu, W.W., Ying, K., Yu, J. et al. (2013)

Mendelian and non-Mendelian regulation of gene expression in maize. PLoS

Genet. 9, e1003202.

Lowry, D.B., Logan, T.L., Santuari, L., Hardtke, C.S., Richards, J.H., Derose-

wilson, L.J., Mckay, J.K. et al. (2013) Expression quantitative trait locus

mapping across water availability environments reveals contrasting

associations with genomic features in Arabidopsis. Plant Cell, 25, 3266–3279.

Lucyshyn, D., Abolmaali, S., Weindorfer, H., Shams, M., Wiesenberger, G.,

Wilhelm, E., Lemmens, M. et al. (2008) Ubiquitin and fusarium resistance:

Lessons from wheat cDNAS conferring deoxynivalenol resistance in yeast.

Cereal Res. Commun. 36, 437–441.

Mayer, K.F.X., Martis, M., Hedley, P.E., Simkov�a, H., Liu, H., Morris, J.A.,

Steuernagel, B. et al. (2011) Unlocking the barley genome by chromosomal

and comparative genomics. Plant Cell, 23, 1249–1263.

Moscou, M.J., Lauter, N., Steffenson, B. and Wise, R.P. (2011) Quantitative

and qualitative stem rust resistance factors in barley are associated

with transcriptional suppression of defense regulons. PLoS Genet. 7,

e1002208.

Munkvold, J., Tanaka, J., Benscher, D. and Sorrells, M.E. (2009) Mapping

quantitative trait loci for preharvest sprouting resistance in white wheat.

Theor. Appl. Genet. 119, 1223–1235.

Nobili, C., D’Angeli, S., Altamura, M.M., Scala, V., Fabbri, A.A., Reverberi, M.

and Fanelli, C. (2014) ROS and 9-oxylipins are correlated with deoxynivalenol

accumulation in the germinating caryopses of Triticum aestivum after

Fusarium graminearum infection. Eur. J. Plant Pathol. 139, 423–438.

Nussbaumer, T., Warth, B., Sharma, S., Ametz, C., Bueschl, C., Parich, A.,

Pfeifer, M. et al. (2015) Joint transcriptomic and metabolomic analyses reveal

changes in the primary metabolism and imbalances in the subgenome

orchestration in the bread wheat molecular response to Fusarium

graminearum. G3: Genes - Genomes - Genetics, 5, 2579–2592.

Pestka, J.J. (2010) Deoxynivalenol: mechanisms of action, human exposure and

toxicological relevance. Arch. Toxicol. 84, 663–679.

Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R.,

Krska, R., Kuchler, K. et al. (2003) Detoxification of the Fusarium mycotoxin

deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana.

J. Biol. Chem. 278, 47905–47914.

Potokina, E., Druka, A., Luo, Z., Wise, R., Waugh, R. and Kearsey, M. (2008)

Gene expression quantitative trait locus analysis of 16 000 barley genes

reveals a complex pattern of genome-wide transcriptional regulation. Plant J.

53, 90–101.

Pritsch, C., Muehlbauer, G.J., Bushnell, W.R., Somers, D.A. and Vance, C.P.

(2000) Fungal development and induction of defense response genes during

early infection of wheat spikes by Fusarium graminearum.Mol. Plant-Microbe

Interact. 13, 159–169.

R Development Core Team (2008) R: A Language and Environment for

Statistical Computing. Vienna: Austria.

Rabinovich, S.V. (1998) Importance of wheat-rye translocations for breeding

modern cultivars of Triticum aestivum L. (Reprinted from Wheat: Prospects

for global improvement, 1998). Euphytica, 100, 323–340.

Ranjan, A., Budke, J.M., Rowland, S.D., Chitwood, D.H., Kumar, R.,

Carriedo, L., Ichihashi, Y. et al. (2016) eQTL regulating transcript levels

associated with diverse biological processes in tomato. Plant Physiol. 172,

1328–1340.

Rawat, N., Pumphrey, M.O., Liu, S., Zhang, X., Tiwari, V.K., Ando, K., Trick,

H.N. et al. (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin

domains and a pore-forming toxin-like domain conferring resistance to

Fusarium head blight. Nat. Genet. 48, 1576–1580.

Riera-Lizarazu, O., Vales, M.I. and Kianian, S.F. (2008) Radiation hybrid (RH) and

HAPPY mapping in plants. Cytogenet. Genome Res. 120, 233–240.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W. and Smyth, G.K.

(2015) Limma powers differential expression analyses for RNA-sequencing

and microarray studies. Nucleic Acids Res. 43, e47.

Schadt, E.E., Lamb, J., Yang, X., Zhu, J., Edwards, S., Guhathakurta, D.,

Sieberts, S.K. et al. (2005) An integrative genomics approach to infer

causal associations between gene expression and disease. Nat. Genet. 37,

710–717.

Schmolke, M., Zimmermann, G., Buerstmayr, H., Schweizer, G., Miedaner, T.,

Korzun, V., Ebmeyer, E. et al. (2005) Molecular mapping of Fusarium head

blight resistance in the winter wheat population Dream/Lynx. Theor. Appl.

Genet. 111, 747–756.

Schroeder, H.W. and Christensen, J.J. (1963) Factors affecting resistance

of wheat to scab caused by Gibberella zeae. Phytopathology, 53, 831–

838.

Schweiger, W., Steiner, B., Ametz, C., Siegwart, G., Wiesenberger, G.,

Berthiller, F., Lemmens, M. et al. (2013) Transcriptomic characterization of

two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and

Qfhs.ifa-5A, identifies novel candidate genes. Mol. Plant. Pathol. 14,

772–785.

Schweiger, W., Steiner, B., Vautrin, S., Nussbaumer, T., Siegwart, G., Zamini,

M., Jungreithmeier, F. et al. (2016) Suppressed recombination and unique

candidate genes in the divergent haplotype encoding Fhb1, a major

Fusarium head blight resistance locus in wheat. Theor. Appl. Genet. 129,

1607–1623.

Shi, C., Uzarowska, A., Ouzunova, M., Landbeck, M., Wenzel, G. and

L€ubberstedt, T. (2007) Identification of candidate genes associated with

cell wall digestibility and eQTL (expression quantitative trait loci) analysis

in a Flint x Flint maize recombinant inbred line population. BMC Genom.

8, 22.

Sørhagen, K., Laxa, M., Peterh€ansel, C. and Reumann, S. (2013) The emerging

role of photorespiration and non-photorespiratory peroxisomal metabolism in

pathogen defence. Plant Biol. 15, 723–736.

Swanson-Wagner, R., DeCook, R., Jia, Y., Bancroft, T., Ji, T., Zhao, X.,

Nettleton, D. et al. (2009) Paternal dominance of trans-eQTL influences gene

expression patterns in maize hybrids. Science, 326, 1118–1120.

The International Wheat Genome Sequencing Consortium (2014) A

chromosome-based draft sequence of the hexaploid bread wheat (Triticum

aestivum) genome. Science, 345, 1251788.

Wagner, G.P. and Zhang, J. (2011) Fundamental concepts in genetics: The

pleiotropic structure of the genotype–phenotype map: the evolvability of

complex organisms. Nature Rev. Genet. 12, 204–213.

Walter, S., Brennan, J.M., Arunachalam, C., Ansari, K.I., Hu, X., Khan, M.R.,

Trognitz, F. et al. (2008) Components of the gene network associated with

genotype-dependent response of wheat to the Fusarium mycotoxin

deoxynivalenol. Funct. Integr. Genomics, 8, 421–427.

Wang, J., Yu, H., Weng, X., Xie, W., Xu, C., Li, X., Xiao, J. et al. (2014) An

expression quantitative trait loci-guided co-expression analysis for

ª 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 15, 1453–1464

eQTL mapping of the wheat Fusarium interaction 1463



constructing regulatory network using a rice recombinant inbred line

population. J. Exp. Bot. 65, 1069–1079.

Warth, B., Parich, A., Bueschl, C., Schoefbeck, D., Neumann, N.K.N., Kluger, B.,

Schuster, K. et al. (2014) GC–MS based targeted metabolic profiling

identifies changes in the wheat metabolome following deoxynivalenol

treatment. Metabolomics, 11, 722.

Yan, W.H., Wang, P., Chen, H.X., Zhou, H.J., Li, Q.P., Wang, C.R., Ding,

Z.H. et al. (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating

grain productivity, plant height and heading date in rice. Mol. Plant, 4,

319–330.

Yvert, G., Brem, R.B., Whittle, J., Akey, J.M., Foss, E., Smith, E.N., Mackelprang,

R. et al. (2003) Trans-acting regulatory variation in Saccharomyces cerevisiae

and the role of transcription factors. Nat. Genet. 35, 57–64.

Supporting information

Additional Supporting Information may be found online in the

supporting information tab for this article:

Figure S1 Distribution of LOD scores and heritabilities for

recorded eQTL at 30 and 50 hai.

Figure S2 Plotted genetic positions of eQTL and target genes.

Figure S3 Hierarchical clustering of eQTL mapped to the Qfhs.ifa-

5A region.

Figure S4 Hierarchical clustering of eQTL expression profiles for

hotspots on 2B, 4A and 5A.

Table S1 Genotypes and marker distances for the Remus 9

CM-82036 DH population.

Table S2 Significant LOD for FHB field resistance, type II

resistance and DON resistance QTL.

Table S3 Distribution of eQTL per target gene.

Table S4 eQTL colocalizing with phenotypic QTL.

Table S5 Hotspot-related eQTL, cluster and GO data.

Table S6 Heritabilities and expression differences for hotspot

cis-eQTL.

ª 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 15, 1453–1464

Mina Samad-Zamini et al.1464


