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The Impact of parasitic loss on solar 
cells with plasmonic nano-textured 
rear reflectors
Claire E. R. Disney, Supriya Pillai & Martin A. Green

Significant photocurrent enhancement has been demonstrated using plasmonic light-trapping 
structures comprising nanostructured metallic features at the rear of the cell. These structures have 
conversely been identified as suffering heightened parasitic absorption into the metal at certain 
resonant wavelengths severely mitigating benefits of light trapping. In this study, we undertook 
simulations exploring the relationship between enhanced absorption into the solar cell, and parasitic 
losses in the metal. These simulations reveal that resonant wavelengths associated with high parasitic 
losses in the metal could also be associated with high absorption enhancement in the solar cell. We 
identify mechanisms linking these parasitic losses and absorption enhancements, but found that by 
ensuring correct design, the light trapping structures will have a positive impact on the overall solar 
cell performance. Our results clearly show that the large angle scattering provided by the plasmonic 
nanostructures is the reason for the enhanced absorption observed in the solar cells.

Photovoltaics can meet the global energy demand; with the promise of increased affordability with technology devel-
opment and economies of scale. To achieve this, cost reductions and increased efficiency are emphasised. Despite 
advances, photovoltaics have not yet reached their full potential. Silicon (Si) remains the dominant cell material, with 
cell performance hampered by silicon’s limited light absorption within the wavelength range around its band-edge 
– especially for thinner layers. Si is also attracting interest as the bottom cell in tandem photovoltaics. Hence there 
is increased focus on improving light absorption close to the band-gap of Si. Rear light trapping schemes would be 
crucial for such configurations, considering front textures would impede the growth process of the top cell.

One method for increasing light conversion within cells is to include structures which ‘trap’ light within the 
cell, channeling it such that its pathlength through the cell is increased1. The rear metal layer used as a back con-
tact for many cells acts as a mirror, giving much of the light increased chance for absorption when it is reflected as 
seen in Fig. 1(a). Thick Si cells have also used front-surface texturing to modify the angle at which light enters the 
cell, as in Fig. 1(b), giving it a chance to be ‘trapped’ within the cell - achieving multiple bounces. Besides being 
unsuitable for tandem cells, such texturing negatively impacts the electrical characteristics of the cell, as increased 
surface area is associated with increased surface recombination. It is also unsuited for thin solar cells as the feature 
size of the texturing is similar to the thickness of these cells2.

Plasmonic light trapping represents an alternative strategy to more effectively couple light into the cell while 
avoiding detrimental impacts of texturing, or can be used along with front texturing for thicker cells. Plasmonic 
light trapping can result from excitation of surface plasmons, leading to greatly enhanced electric fields and 
scattering of light into a cell’s active layer3. Numerous types of plasmonic light trapping structures have shown 
enhanced performance for solar cells4–9. Front-surface structures aim to minimize reflection from a cell’s front 
surface10, while rear-surface structures aim to maximize large-angle back-scattering of light into the cell from its 
rear surface11,12. Rear located structures that don’t increase the surface area of the semiconductor layer are this 
paper’s focus. Two such structures are shown in Fig. 1(c and d). The former is an array of metal nanoparticles 
(MNPs) on a cell’s rear surface, coated with magnesium fluoride (MgF2) and an additional rear mirror13, while the 
latter involves a continuous metal layer textured using an array of Silica nanospheres (NSs)14. These metal films 
incorporating NSs have previously shown the potential to significantly enhance photocurrent (Jph) in thin solar 
cells15. A key advantage of these NS-textured rear reflectors is that they offer both the light trapping enhance-
ments of the MNPs, with the continuity of a rear mirror. This metal continuity allows them to serve as the rear 
contact for a solar cell. Such reflectors can be fabricated using cheap spin-coating processes and no significant 
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added processing or material costs, making them viable and interesting. Nanostructured Ag rear electrodes on 
organic solar cells' active layer have demonstrated significantly improved device performance16.

Despite the potential enhancements offered to photocurrent, concerns remain about increased parasitic 
absorption losses in metal that could occur in these types of plasmonic light trapping structures17,18. Even standard 
metal rear reflectors in solar cells suffer parasitic losses. A thick dielectric layer such as aluminium oxide (Al2O3)19 
or SiO2 has been used for passivation and to offer an additional interface for reflection into Si, minimizing light 
interaction with the metal. Studies are focusing on replacing plasmonic structures with Mie scattering structures 
to overcome the parasitic absorption losses20. The aim in light trapping is to maximize absorption in the cell’s active 
layer, so parasitic absorption in metal would seem to be negative in these designs. Indeed, metal films with arrays 
of nanovoids resembling those shown in Fig. 1(d) have previously shown potential for uses maximizing coupling of 
light into the metal itself21. However, heightened absorption was localized over narrow-band peak wavelengths of 
light, determined by the resonances of the void22. Altering the void size and spacing alters the resonant wavelengths 
and their strength15,22. These structures can provide both strong absorption into the metal and effective light trap-
ping in the cell, warranting deeper analysis of the balance between these competing characteristics.

The impact of unwanted parasitic losses in the metal must be weighed against potential cell performance 
enhancements these structures can provide23. Some studies tended to consider absorption in the solar cell, while 
neglecting absorption in the metal. Several investigations concluded parasitic absorption is problematic for MNPs 
in some cases24–26, with low parasitic absorption highlighted as a key benefit of certain designs27–29. Some exper-
imental work also found that for MNPs, parasitic losses are insignificant in the visible part of the spectrum, but 
increase in NIR wavelengths30. These losses were attributed to multiple internal reflections of light inside the Si 
film, due to rapid reduction of the semiconductor’s absorption co-efficient, although useful absorption was also 
enhanced. Simulations reveal much more about the underlying mechanisms that lead to these results, allowing 
for deeper understanding to better guide structure optimization.

Results
Simulation Method.  3D finite-difference time-domain simulations using Lumerical31 explored the impact 
of parasitic absorption in rear metal light trapping structures for solar cells. These simulations reveal the spatial 
distribution of light absorption into each material, the idealized photocurrent (Jph) of thin Si cells implementing 
these designs, as well as the angles light is back-scattering into the cell from these rear reflectors. 2 µm thick Si cells 
were used for the photocurrent calculations to allow for broadband investigation of enhancement not possible in 
thick cells. Both absorption enhancement and scattering are key to understanding the impact of these structures 
on cell performance. The main structures simulated were rear mirrors with NSs as shown in Fig. 1(d), owing 
to their ability to serve as both rear contact and light trapping structure. However MNP arrays with mirrors as 
shown in Fig. 1(c) were also simulated to compare parasitic absorption in metal nanoparticles or nano-textured 
metal films. A unit cell with periodic boundary conditions is used to simulate a larger array.

Non-polarised light absorption into silicon (Si) was integrated across the AM1.5 G spectrum in order to cal-
culate the Jph for each simulated structure as in previous work15. For the MNP case, a rear array of hemispherical 
silver (Ag) MNPs was simulated, coated with a 500 nm thick MgF2 layer and rear Ag mirror similar to struc-
tures that have demonstrated enhancements13. For the NS case, a rear-located hexagonal array of silica (SiO2) 

Figure 1.  X-Z Cross sections of a cell with (a) a standard rear mirror, (b) a textured front surface scattering light 
entering the cell (c) rear metal nanoparticles and a rear mirror scattering light back into the cell, and (d) metal rear 
reflector with an array of hexagonally-symmetrical nanospheres. In all cases the rear reflector is separated from 
the Si by a SiO2 spacer layer. (e) shows a X-Y view of the nanosphere array at the rear of the cell shown in (d).
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nanospheres was simulated, coated with a continuous silver film. Line-of-sight application of the metal over these 
NSs gives their resulting texture of the metal film a ‘half-capsule’ shape8 providing a positive impact on the film’s 
scattering behavior15. For both structures, a 20 nm SiO2 spacer layer was included at the rear of the Si, selected 
based on optimization in our previous work13.

Optical constants for materials used were taken from existing literature32. Optical constant selection for silver 
required greater scrutiny. Previous simulations used either Palik’s data32 or Johnson & Christy’s33, but both have 
limitations when simulating nanostructures, either under or overestimating performance34. A new set of optical 
constants for Ag was published addressing these limitations, allowing more accurate simulation of Ag nanostruc-
tures35. As such, this was utilized for this paper.

For each structure considered, two types of simulations were conducted. The first isolated interactions with 
the rear interface of the cell. Each structure was modelled at the rear of semi-infinite non-absorbing Si by modi-
fying its optical constants, allowing analysis of the behavior of each wavelength of light with the rear interface of 
cell and light trapping structure to be examined. That is, the fraction of light that is absorbed in the metal vs. what 
is scattered back into the cell can be calculated, as well as the angular profile of this back scattering. This charac-
teristic is independent of cell thickness, and not affected by interference effects that can complicate the behavior 
of light within thinner cells. However, these simulations do not consider absorption in the Si, and thus a second 
set of simulations were necessary to examine the impact on Jph.

To observe Jph, simulations modelled the structures at the rear of 2 µm Si, selected as these structures had pre-
viously shown strong enhancement for thin cell types15. Using thinner Si also allows for exploration of parasitic 
losses over a wider bandwidth of light, down into the visible part of the spectrum. Absorption in both the Si and 
Ag was isolated for each structure and integrated across the AM1.5 G spectrum to obtain the Jph. These were com-
pared against the Jph for the same cell with a standard rear reflector; an Al or Ag mirror with a 100 nm thick spacer 
layer, providing a fairer assessment of the enhancement offered by these structures against standard reflectors.

Results of the rear interface simulations give the fraction of light reaching the rear interface which will be lost 
in metal, for each structure at each wavelength. This case is equivalent to no light being absorbed in the silicon 
prior to reaching the rear interface, allowing us to examine the resonant behavior of these plasmonic structures 
at shorter wavelengths well absorbed by even thin layers of Si, unlikely to ever reach the rear interface of a cell. A 
selection of results for the NS structures is shown in Fig. 2. In this case, an 800 nm NS array period was chosen. 
This was identified as a relatively high performing configuration in previous simulations15. The minimum diam-
eter of the NSs was ‘0 nm’, equivalent to the base case of a rear mirror and thin spacer layer. While the maximum 
diameter was 800 nm i.e. equal NS size and period, leaving the NSs densely packed and touching. The mirror-only 
case gives slightly shifted interference peaks in absorption depending on whether the SiO2 spacer layer is 20 nm 

Figure 2.  Absorption into an Ag reflector at the rear of semi-infinite non-absorbing Si, with embedded arrays 
of NSs of varying sizes and an 800 nm period. Absorption peaks emerge at resonant wavelengths. As the NS size 
increases, these resonances strengthen and red-shift. E-field profiles for each resonance are shown in the insets.
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thick (‘0 nm’ case) or 100 nm thick reference as in traditional cells. However, these result in the same simulated 
Jph. Thus these can be considered equivalent for comparing Jph, but the interference peak shifts must be taken into 
consideration when examining the absorption at a specific wavelength.

Several resonances (A-E) were identified for these structures, with A representing the lowest-order mode and 
each letter representing progressively higher order modes. These modes red-shift and strengthen with increasing 
NS diameter. Larger NS sizes > 1 µm with correspondingly larger periodicity cause higher-order modes to shift 
into the NIR wavelength range of interest as the red-shifting trend continues with NS size increase as shown in 
Fig. 2. However, the greatest advantage seems to occur when lower-order modes occur in the NIR wavelength 
range, associated with greater scattering back into the Si. A mirror alone evidently results in the lowest parasitic 
losses in Ag. Thus, this would be the preferred reflector if only parasitic absorption losses are considered. As NS 
size increases, so do parasitic losses in metal, becoming more broadband. If the aim is only to minimize parasitic 
absorption, then selection of NS size with no resonances in the wavelength range of interest for a given thickness 
cell – such as the 200 nm NS case in Fig. 2 - would be necessary.

Simulations on 2 µm thick Si determined the impact of these NSs on photocurrent. These compare the impact 
of the large parasitic losses in metal with the enhancement offered by these structures over the widest wavelength 
range possible. Selecting a thin cell allows the broadest wavelength range of light to reach the cell’s rear surface. 
These simulations used the same size variations shown in Fig. 2, giving the Jph for different NS sizes shown in 
Fig. 3. Once again, the ‘0 nm’ case has the same Jph as a rear mirror alone, providing a baseline for comparison.

Aluminium was also considered for the rear reflector. Previous work identified that this would provide signifi-
cantly poorer enhancements to Jph relative to an Ag based structure15, and understanding whether parasitic losses 
contribute to this difference is of interest. Figure 3 shows that trends in Jph enhancement for different NS sizes 
were similar with either metal. As expected Al offered lower enhancements. The patterns of highly absorbing res-
onances in the metal from Fig. 2 were comparable for Al case (not shown here). Al structures inherently suffered 
significantly greater absorption losses in the metal even for the mirror case. These underlying parasitic losses for 
Al structures seem likely accountable for large differences in enhancement offered by the two metals.

Selecting the best NS size from Fig. 3 - 675 nm NSs with an 800 nm period - we can then compare losses in the 
metal for the non-absorbing Si case with either Ag or Al as shown in Fig. 4. This reinforces that there is dramatically 
higher absorption in Al than the Ag, especially in the NIR range. These underlying absorption losses in Al limit their 
potential as rear reflectors. However, they may be suitable for thick cells, where only larger wavelengths are relevant.

Contrary to expectations, the simulations on 2 µm Si reveal that geometries with the lowest parasitic losses in the 
metal provide the poorest Jph enhancement. While all geometries of the NSs have a positive impact on cell perfor-
mance, the greatest enhancement in Si is caused by 675 nm NSs with an 800 nm period for Ag. These features also 
showed significantly increased parasitic losses in Ag relative to the smaller NS cases or mirror. Strong enhancements 
persist despite raised parasitic absorption, and only when the NS size becomes very close to the array period does 
increased parasitic absorption negate the potential enhancements offered by these structures. This is due to highly 
absorbing sharp features in the metal. An NS diameter of around 100–200 nm smaller than the array period offers 
the best results. A more thorough exploration of the impact of size and period variations was previously conducted15.

Figure 3.  Photocurrent for 2 µm thick Si with rear Al or Ag with embedded silica nanospheres of varying sizes 
with 800 nm array period. Despite higher absorption losses in the metal, Jph is maximized with larger NSs. Al 
reflectors give significantly reduced enhancements to Jph.
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A potential explanation for this relationship could be that despite suppressed scattering back into Si at reso-
nance, this is outweighed by strong scattering enhancement at wavelengths between resonances. To investigate 
whether this is the case, we quantified the absorption into Si for each wavelength. If this hypothesis were true, 
then there would be suppressed absorption in Si at resonances A-E, but heightened absorption at wavelengths 
between them. Though we did find significantly heightened absorption into Si at wavelengths between reso-
nances, strong absorption enhancement in Si was also found at the resonant wavelengths themselves. A selection 
of these results is shown in Table 1, where absorption into Si for selected wavelengths is shown for the mirror 
case, with 200 nm NSs or 675 nm NSs. The wavelengths selected were at resonances B, C, D, or E for 675 nm NSs. 
Additionally, a wavelength midway between resonance A and B was included, as resonance A lies beyond the 
wavelength range of interest for this NS size. These were compared against 200 nm NSs as these wavelengths were 
not near resonances for that size, and against the Ag mirror which provides the baseline. Since specific wave-
lengths are considered, using the mirror with 100 nm thick spacer layer would provide distorted results due to the 
shifted interference bands, so the 20 nm case was used to give a direct comparison.

The results in the table reveal that for each case, there was significantly increased enhancement to the percent-
age of light absorbed in Si at resonance. This is especially true for those resonances falling in the NIR wavelength 
range. Where the resonance falls below 600 nm, the difference in absorption is much less marked, as more light is 
absorbed prior to reaching the cell’s rear surface. In addition to higher absorption in Si, as expected, the 675 nm 
NSs have significantly increased parasitic losses in Ag at these resonances. As such, both higher absorption into 
the metal and enhanced absorption into the Si result at these resonances. Similar trends were observed when alu-
minum was simulated instead of silver. This suggests these trends are common to nanotextured metals with these 
geometries, rather than specific to Ag. It is evident that the increased absorption in Ag comes not at the expense 
of absorption in Si, but rather from the portion of light that would otherwise have been lost out the front of the 
cell due to specular reflection from the planar metal surface.

With these results, we can discount the previous hypothesis, and investigate what allows these structures to 
provide simultaneous enhanced coupling of light into Si, and increased losses in the metal. Returning to the first 
set of simulations on non-absorbing Si, it is possible to determine the scattering angles of light from the cell’s rear 
interface. Far field projections of the light scattered can be plotted for each wavelength and for each structure 
type. Figure 5 shows far field plots of the light scattered from the rear interface, for several of the wavelengths 

Figure 4.  Absorption into Ag or Al reflector at the rear of semi-infinite non-absorbing Si, with embedded 
arrays of 675 nm NSs and an 800 nm period. Al has a significantly increased base absorption into the metal.

Wavelength 
[nm]

Absorption in Si (%) Absorption in Ag (%)

Mirror 
only

With 200 nm 
Nanospheres

With 675 nm 
Nanospheres

Mirror 
only

With 200 nm 
Nanospheres

With 600 nm 
Nanospheres

565 52.3 52.6 52.7 (E) 0.1 0.1 1.5

700 24.1 25.6 44 (D) 0.2 0.3 4.5

780 41.1 50.1 56.5 (C) 0.9 1.2 3.1

875 5.9 7.7 9.2 (B) 0.3 0.6 7.8

1050 1.3 1.7 20.2 (B→A) 0.5 0.7 4.6

Table 1.  Absorption in Si and Ag at various wavelengths, for 2 µm thick Si with either a rear 20 nm spacer 
layer and Ag mirror, or including 200 nm or 675 nm diameter nanospheres (800 nm period) in the Ag. Despite 
increased absorption losses in the Ag, the 675 nm NSs provide a much greater enhancement to absorption in 
Si. These wavelengths were selected as they correspond to peaks in absorption for the 675 nm case, but not for 
the 200 nm case as well as the midpoint between resonances B → A. Each absorption in Si is labelled with the 
resonance it corresponds to.
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previously selected for Table 1. The wavelengths for resonances D, B, and the midpoint between resonances A 
and B are shown for an array of 675 nm NSs. Once again, these are both compared to the 200 nm NS case, for 
which these wavelengths are off-resonance. It is unnecessary to include the plots for the mirror case, as all light is 
returned normally in that case and none scattered at larger angles.

These results reveal that at resonance, despite a reduced fraction of light back-scattered into Si, the fraction 
back-scattered at large angles is greatly increased. This large-angle scattering persists broadly surrounding these 
resonances and between them, acting as a counterbalance to increased parasitic losses, allowing the enhanced 
absorption in Si to be maintained across a wide range of wavelengths. This large-angle scattering increases the 
chance of light achieving multiple bounces and being absorbed in Si rather than escaping out of the front of the 
cell. The 200 nm NS case results in a greater fraction of light being scattered at smaller angles, and thus cannot 
benefit from the same degree of pathlength enhancement offered by the larger NSs. For the case where NS size 
equals the array period, the large-angle scattering is no longer enough to counterbalance parasitic absorption 
losses; hence the absorption in Ag becomes too dominant.

This trend is maintained across varying array periods. Similarly, in addition to understanding the influence 
of NS size on scattering behavior, it is prudent to investigate the impact of varying array period while keeping 
NS diameter fixed. Figure 6(a) shows the absorption in Ag at each wavelength for 500 nm NSs with array periods 
between 500–1500 nm, but similar trends are seen for any size of NS considered. As the array period increases, the 
resonant wavelengths do not shift. However, as the period increases, the strength of these resonances decreases 
gradually. As can be seen in Fig. 6(b), there is a relatively broad peak in Jph for periods between 600–850 nm. 
Above this, Jph decreases more slowly, giving an enhancement of ~1 mA/cm2 relative to a rear mirror. So, despite 
significant absorption losses in Ag for periods 100–200 nm larger than the NS diameter, they significantly out-
perform larger periods. Figure 6(b) shows Jph for the cases where array size and period are equal – the poorest 
performing case – is >16.5 mA/cm2. This is similar to the Jph of a cell with a rear mirror alone (~16.5 mA/cm2), 
showing that even the worst performing NS case does not lead to reduced photocurrent.

As the NS array period increases, the angles at which light is scattered are narrowed, but the overall amount of 
light scattered back into the cell is increased. Once again this leads to a trade-off, whereby the aim is to balance the 
amount of scattering against the desire for greater large angle scattering. The interplay between these two factors 
varies depending on the NS size selected, and so some NS diameters will have broader or sharper ranges of opti-
mal periodicities15. In this case, the larger periods still provide reasonable scattering above the critical angle for Si, 
and this is why they are still able to provide significant enhancement to Jph relative to the mirror case.

Another aspect to consider is how these structures will respond to light incident from angles other than 
standard normally-incident light. This would be especially relevant for thicker cells with front-texturing. 
Previous work suggested a low sensitivity to the incoming angle of light for these structures15, showing they 
could provide Jph enhancement for thin cells regardless of the light’s incoming angle. However, looking at the rear 

Figure 5.  Far-field scattering plots showing the angles at which light is scattered back into the Si from the rear 
interface of the cell. The rear reflector used included 200 nm or 675 nm diameter NSs embedded in a silver film at 
the rear of semi-infinite Si. The array period of the NSs was 800 nm. The wavelengths selected were at resonance 
for the 675 nm NS case, and off resonance for the 200 nm NS case. 700 nm resonance C, 875 nm resonance B, 
1050 nm light - between resonance A and B - shows the large boost in large angle scattering between resonances.
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surface only allows greater insights into how the resonances are impacted by this variation in incoming angle, 
and to study the impacts independent of cell thickness. Figure 7 compares absorption into Ag for different angles 
of incoming light, taken from these rear-surface-only simulations. Changing the incoming angle of light does not 
greatly impact the wavelengths at which resonances occur. However, the magnitude of the resonances diminishes 
as the incoming angle of light deviates further from normal. This is particularly true of those resonances occur-
ring at shorter wavelengths, with a smaller change evident in resonance A, which occurs in the NIR wavelength 
range. Figure 8 shows the far-field profiles at resonance A and B for three incoming angles of light. The behavior 
of the scattering changes as the incoming angle of light shifts, but that the desired large angle scattering remains 
significant, regardless of the incoming angle of the light. This supports the hypothesis that these resonances are a 
set characteristic of the geometry, and are not very sensitive to the incoming angle of light. This further supports 
existing evidence that these structures should offer enhancement to Jph regardless of incoming angle of light.

Although these simulations elucidate the behavior of metal films with nanocavities, there are many other types 
of plasmonic light trapping structure, the more popular being metal nanoparticles. Simulations were also under-
taken to understand the balance between parasitic absorption and scattering for rear arrays of hemispherical MNPs 
coated with MgF2 along with a rear mirror. Some experimental work looking at parasitic absorption in MNPs had 
previously been conducted30, finding substantially increased parasitic losses in the metal for the NIR range, but also 
strong absorption enhancement in the Si giving a strong overall performance enhancement. It is well known that 
scattering and absorption co-exist in metal nanoparticles, however one may dominate the other which is deter-
mined by the feature size36. In smaller nanoparticles (~50 nm and less) absorption dominates whereas for larger 

Figure 6.  Absorption into Ag with 500 nm nanospheres and varying array period sizes at the rear of semi-infinite 
non-absorbing Si. As the period increases, the wavelengths at which the absorption peaks occur are maintained, but 
their magnitude is reduced. (b) Jph for 2 µm thick Si for the case of 500 nm nanospheres with varying array period.

Figure 7.  Absorption into Ag for 600 nm NSs with a 700 nm period located at the rear of semi-infinite non-
absorbing Si, for varying angles of incoming light. Though the location of resonances does not change, their 
magnitude decreases as the incoming angle of light deviates further from normal.
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nanoparticles (>~50 nm) scattering dominates. As size increases the scattering process increases significantly due 
to its dependence on r6 (where r is the radius of the nanoparticle. In this study A period of 500 nm was selected for 
the square arrays of MNPs, and MNP diameters from 50 nm to 500 nm were simulated, relatively similar to previ-
ously identified high performing MNP arrays37. The patterns of resonances were more complicated in this case, as 
shown in Fig. 9. Showing the absorption into the Ag MNPs and mirror at the rear of semi-infinite non-absorbing 
Si. For most sizes there was a strongly absorbing resonance at around 700 nm light. 50 nm MNPs had a negative 
impact as compared to a rear mirror, which is to be expected due to the absorption dominating for MNPs of this 
size. For larger MNPs the 300 nm NPs offered the best performance with a Jph of 19.48 mA/cm2. The results for 
500 nm and 400 nm MNPs was also fairly close to this at 19.26 mA/cm2 and 19.04 mA/cm2 respectively.

Once again, we can examine the absorption at resonant wavelengths to examine whether the same relation-
ship between large angle scattering and absorption in metal occurs with these structures as compared to the NSs. 
Figure 10 shows the far field scattering plots for 700 nm light for several different MNP sizes. The 300 nm and 

Figure 8.  Far-field scattering plots showing the angles at which light is scattered back into the Si from the 
rear interface of the cell, for different incoming angles of light. The rear reflector used included 600 nm NSs 
embedded in an Ag film at the rear of semi-infinite Si. The array period of the NSs was 700 nm. The wavelengths 
selected were at resonances (A) and (B). Although the scattering patterns vary as the incoming angle of light 
does, significant large angle scattering is maintained across all cases.

Figure 9.  Absorption into Ag MNPs and rear mirror for varying MNP sizes with an array period of 500 nm, 
located at the rear of semi-infinite non-absorbing Si.



www.nature.com/scientificreports/

9Scientific REPOrTS | 7: 12826  | DOI:10.1038/s41598-017-12896-1

400 nm MNPs have a resonant peak in absorption in Ag at this wavelength, while the 50 nm and 500 nm MNPs 
are not. The interpretation must account for the interplay between the NP size and the interference effects from 
the rear mirror. The 300 nm, 400 nm, and 500 nm MNPs all still seem to have significant large angle scattering. 
The absorption into 2 µm Si for this wavelength can be extracted to give further insight. 400 nm MNPs have the 
highest absorption into Si for 700 nm light, at 34.1%. 300 nm MNPs have a slightly lower value of 31.3%, while 
500 nm MNPs have 28.1%. 50 nm NPs which are off-resonance give only 23.1%. The increase in absorption in 
Si with MNP arrays and mirrors is still clearly evident and well supported by numerous experimental results in 
literature. These structures seem to be slightly more vulnerable to the negative impact of increased absorption 
losses outweighing the enhanced scattering offered due to having smaller features which act as absorption hot-
spots. Random MNP arrays, where size variation leads to small or sharp features, can similarly become sights of 
extremely elevated absorption. This is like the sharp features seen in the metal rear reflectors with NS size equal 
to array period. This was found to also be the case for cylindrical SiO2 tubes in metal films, where closely packed 
tubes with sharp defined features caused high levels of absorption in the metal film38 Similarly the excitation 
of surface plasmon polaritons at a roughened Ag surface with sharp features was found to lead to significant 
increases in absorption in the metal39. Thus careful consideration would be needed to ensure that the features are 
so chosen that resulting light trapping structure would offer a benefit rather than being detrimental.

Conclusion
3D Simulations investigated the impact of parasitic losses in the metal of several plasmonic light trapping structures 
for solar cells following concerns that the heightened parasitic absorption losses could render them unsuitable for 
light trapping in solar cells. Simulations examined both the fraction of light absorbed into Ag or scattered back into 
the cell, and the angle of scattering. These results suggest that for nano-textured metal layers, resonances that cause 
increased losses in the metal are also associated with significantly increased large-angle back-scattering, maximizing 
the pathlength of light and thus enhancing photocurrent in the cell. Resonant peaks for these types of structures 
were identified, and their scattering behavior was examined. It was found that for these type of structures, this 
large angle scattering dominates in most cases, leaving a net positive impact relative to a rear mirror. However this 
balance between parasitic absorption and large angle scattering should be factored into selecting the correct geome-
tries for nanotextured rear reflectors. For metal nanoparticle arrays coupled with rear mirrors, the balance between 
these characteristics needs to be considered more carefully. Overall, it can be concluded that higher absorption in 
the metal need not always be problematic for plasmonic light trapping structures, and may not need to be avoided. 
Rather, it can potentially be associated with strong enhancements to absorption in the active layer of the cell.

The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

References
	 1.	 Green, M. A. Silicon Solar Cells: Advanced Principles & Practice. (Centre for Photovoltaic Devices and Systems, University of New 

South Wales, 1995).
	 2.	 Akimov, Y., Koh, W. & Ostrikov, K. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order 

nanoparticle plasmon modes. Opt. Express 17, 10195–10205 (2009).
	 3.	 Pillai, S. & Green, M. Plasmonics for Photovoltaic Applications. Sol. Energy Mater. Sol. Cells 94, 1481–1486 (2010).
	 4.	 Atwater, H. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).
	 5.	 Ferry, V. et al. Light Trapping in Ultrathin Plasmonic Solar Cells. Opt. Express 18, 237–245 (2010).
	 6.	 An, C. J. et al. Highly efficient top-illuminated flexible polymer solar cells with a nanopatterned 3D microresonant cavity. Small 10, 

1278–1283 (2014).
	 7.	 Keevers, M. J., Young, T. L., Schubert, U. & Green, M. A. 10% efficient CSG minimodules. In. 22nd European Photovoltaic Solar 

Energy Conference 3–7(September), 1783–1790 (2007).
	 8.	 Eisenlohr, J. et al. Hexagonal sphere gratings for enhanced light trapping in crystalline silicon solar cells. Opt. Express 22, A111–A119 

(2014).
	 9.	 Le, K. Q., Abass, A., Maes, B., Bienstman, P. & Alù, A. Comparing plasmonic and dielectric gratings for absorption enhancement in 

thin-film organic solar cells. Opt. Express 20, A39 (2012).
	10.	 Pala, R. A., White, J., Barnard, E., Liu, J. & Brongersma, M. L. Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption 

Enhancements. Adv. Mater. 21, 3504–3509 (2009).

Figure 10.  Far-field scattering plots showing the angles at which 700 nm light is scattered back into the Si from 
the rear interface of the cell for varying sized hemispherical Ag MNPs coated with 500 nm of MgF2 as well as a rear 
mirror. The 300 nm and 400 nm MNPs have an absorption peak in Ag at this wavelength while the other sizes do not.



www.nature.com/scientificreports/

1 0Scientific REPOrTS | 7: 12826  | DOI:10.1038/s41598-017-12896-1

	11.	 Beck, F., Polman, A. & Catchpole, K. Tunable light trapping for solar cells using localized surface plasmons. J. Appl. Phys. 105, 
114310 (2009).

	12.	 Pillai, S., Catchpole, K. R., Trupke, T. & Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101, 93105 (2007).
	13.	 Yang, Y. et al. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plasmons. Sol. 

Energy Mater. Sol. Cells 101, 217–226 (2012).
	14.	 Chang, Y., Pollard, M. E., Payne, D. N. R., Pillai, S. & Bagnall, D. M. Nanosphere Lithography for Fast and Controlled Fabrication of 

Large Area Plasmonic Nanostructures in Thin Film Photovoltaics. in Proc. of the Asia-Pacific Solar Research Conference (2016).
	15.	 Disney, C. E. R., Pillai, S., Johnson, C. M. & Green, M. A. Self-Assembled Nanostructured Rear Reflector Designs for Thin-Film 

Solar Cells. ACS Photonics 2, 1108–1116 (2015).
	16.	 Niesen, B. et al. Plasmonic efficiency enhancement of high performance organic solar cells with a nanostructured rear electrode. 

Adv. Energy Mater. 3, 145–150 (2013).
	17.	 Matheu, P., Lim, S., Derkacs, D., McPheeters, C. & Yu, E. Metal and dielectric nanoparticle scattering for improved optical 

absorption in photovoltaic devices. Appl. Phys. Lett. 93, 113108 (2008).
	18.	 Akimov, Y., Koh, W., Sian, S. & Ren, S. Nanoparticle-enhanced thin film solar cells: Metallic or dielectric nanoparticles? Appl. Phys. 

Lett. 96, (2010).
	19.	 Schmidt, J. et al. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Prog. Photovoltaics Res. 

Appl. 16, 461–466 (2008).
	20.	 van Lare, C., Lenzmann, F., Verschuuren, M. & Polman, A. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film 

Solar Cells. Nano Lett. 15, 4846–4852 (2015).
	21.	 Cole, R. M. et al. Understanding Plasmons in Nanoscale Voids. Nano Lett. 7, 2094–2100 (2007).
	22.	 Teperik, T., Popov, V. & García de Abajo, F. Void plasmons and total absorption of light in nanoporous metallic films. Phys. Rev. B 

71, 85408 (2005).
	23.	 Mokkapati, S. & Catchpole, K. R. Nanophotonic light trapping in solar cells. J. Appl. Phys. 112 (2012).
	24.	 Holman, Z. C. et al. Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap 

reflectance for common dielectric/metal reflectors. Sol. Energy Mater. Sol. Cells 120, 426–430 (2014).
	25.	 Boccard, M., Battaglia, C., Haug, F. J., Despeisse, M. & Ballif, C. Light trapping in solar cells: Analytical modeling. Appl. Phys. Lett. 

101, 151105 (2012).
	26.	 Santbergen, R. et al. Application of plasmonic silver island films in thin-film silicon solar cells. J. Opt. 14, 24010 (2012).
	27.	 Tan, H., Santbergan, R., Smets, A. & Zeman, M. Plasmonic Light Trapping in Thin-film Silicon Solar Cells with Improved Self-

Assembled Silver Nanoparticles. Nano Lett. 12, 4070–4076 (2012).
	28.	 Akimov, Y., Koh, W., Sian, S. & Ren, S. Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar 

cells. Appl. Phys. Lett. 96, 73111 (2010).
	29.	 Hylton, N. P. et al. Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in 

GaAs photodiodes. Sci. Rep. 3, 2874 (2013).
	30.	 Morawiec, S. et al. Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for 

solar cells application. Sci. Rep. 6, 22481 (2016).
	31.	 Lumerical FDTD Solutions. Available at: http://www.lumerical.com.
	32.	 Palik, E. Handbook of Optical Constants of Solids. (Elsevier, 1998).
	33.	 Johnson, P. & Christy, R. Optical Constants of the Noble Metals. Phys. Rev. B 6, 4370 (1972).
	34.	 Jiang, Y., Pillai, S. & Green, M. A. Re-evaluation of literature values of silver optical constants. Opt. Express 23, 2133–2144 (2015).
	35.	 Jiang, Y., Pillai, S. & Green, M. A. Realistic Silver Optical Constants for Plasmonics. Sci. Rep. 6 (2016).
	36.	 Bohren, C. F. & Huffman, D. R. Absorption and scattering of light by small particles. (Wiley-Interscience, 1983).
	37.	 Mokkapati, S., Beck, F. J., Polman, A. & Catchpole, K. R. Designing periodic arrays of metal nanoparticles for light-trapping 

applications in solar cells. Appl. Phys. Lett. 95, 53115 (2009).
	38.	 Bonod, N. & Popov, E. Total light absorption in a wide range of incidence by nanostructured metals without plasmons. Opt. Lett. 33, 

2398–2400 (2008).
	39.	 Kim, S. K. et al. Surface-plasmon-induced light absorption on a rough silver surface. Appl. Phys. Lett. 98, 2–4 (2011).

Acknowledgements
This Program has been supported by the Australian Government through the Australian Renewable Energy 
Agency (ARENA). The Australian Government, through ARENA, is supporting Australian research and 
development in solar photovoltaic and solar thermal technologies to help solar power become cost competitive 
with other energy sources. The views expressed herein are not necessarily the views of the Australian Government, 
and the Australian Government does not accept responsibility for any information or advice contained herein.

Author Contributions
C. Disney performed the simulations and wrote the main manuscript text. All Authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://www.lumerical.com
http://creativecommons.org/licenses/by/4.0/

	The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors

	Results

	Simulation Method. 

	Conclusion

	Acknowledgements

	Figure 1 X-Z Cross sections of a cell with (a) a standard rear mirror, (b) a textured front surface scattering light entering the cell (c) rear metal nanoparticles and a rear mirror scattering light back into the cell, and (d) metal rear reflector with an
	Figure 2 Absorption into an Ag reflector at the rear of semi-infinite non-absorbing Si, with embedded arrays of NSs of varying sizes and an 800 nm period.
	Figure 3 Photocurrent for 2 µm thick Si with rear Al or Ag with embedded silica nanospheres of varying sizes with 800 nm array period.
	Figure 4 Absorption into Ag or Al reflector at the rear of semi-infinite non-absorbing Si, with embedded arrays of 675 nm NSs and an 800 nm period.
	﻿Figure 5 Far-field scattering plots showing the angles at which light is scattered back into the Si from the rear interface of the cell.
	Figure 6 Absorption into Ag with 500 nm nanospheres and varying array period sizes at the rear of semi-infinite non-absorbing Si.
	Figure 7 Absorption into Ag for 600 nm NSs with a 700 nm period located at the rear of semi-infinite non-absorbing Si, for varying angles of incoming light.
	Figure 8 Far-field scattering plots showing the angles at which light is scattered back into the Si from the rear interface of the cell, for different incoming angles of light.
	Figure 9 Absorption into Ag MNPs and rear mirror for varying MNP sizes with an array period of 500 nm, located at the rear of semi-infinite non-absorbing Si.
	Figure 10 Far-field scattering plots showing the angles at which 700 nm light is scattered back into the Si from the rear interface of the cell for varying sized hemispherical Ag MNPs coated with 500 nm of MgF2 as well as a rear mirror.
	Table 1 Absorption in Si and Ag at various wavelengths, for 2 µm thick Si with either a rear 20 nm spacer layer and Ag mirror, or including 200 nm or 675 nm diameter nanospheres (800 nm period) in the Ag.




