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Abstract

Among the main actors of organism development there are morphogens, which are signaling 

molecules diffusing in the developing organism and acting on cells to produce local responses. 

Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the 

signal is itself affected by the changes in shape and size of the organism. In other words, there is a 

complete coupling between the diffusion of the signal and the change of the shapes.

In this paper, we introduce a mathematical model to investigate such coupling. The shape is given 

by a manifold, that varies in time as the result of a deformation given by a transport equation. The 

signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the 

non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie 

bracket between the diffusion and the transport operator. We also provide numerical simulations 

showing this phenomenon.

INTRODUCTION

Modeling growth of living organism attracted the interest of many investigators both in the 

field of Developmental Biology and the Applied Mathematics (see [4], [7], [11], [12], [16]). 

Developmental biologists have shown that development is primarily induced by 

morphogens, which act on the organism as signals by triggering signaling pathways and 

provoking a response resulting in cell growth or differentiation [21]. Several modeling 

approaches have been explored from the mathematical point of view. From a microscopic 

standpoint (see [11]), tissues are considered as a collection of cells, and discrete models such 

as cellular automata are used. We instead adopt a macroscopic standpoint, where the relevant 

quantity is the density of the signal on a manifold. As a specific example, in certain fruit 

flies species such as Drosophila melanogaster, a morphogen called Gurken is responsible for 

initiating the EGFR signalling pathway, resulting in the specification of cells that eventually 

form structures called dorsal appendages on the drosphila eggshell [9], [21]. Interestingly 

Gurken diffuses in a thin space, called perivitelline space, which can be modeled by an 

evolving surface. This leads naturally to model the growing organism by coupling a growing 

surface with a signal diffusing on it, see [15]. Because of the biological motivation, this 

framework was called Developmental Partial Differential Equations. In this paper we 
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consider a general model, where the boundary of the organism is described by a Riemannian 

manifold, that evolves with respect to time due to the growth induced by the signal on it. In 

turn the evolution (for instance, heat diffusion) of the signal on the manifold is affected by 

the shape of the manifold. Indeed, intrinsic heat diffusion is described by the heat equation 

with the Laplace-Beltrami operator. Our aim is to investigate the coupling between growth 

and diffusion. There is a wide literature of studies for PDEs on manifolds, see for instance 

[17], [19], or Turing Patterns on evolving manifolds, see for instance [2], [5]. However the 

coupling of PDE and time-evolving manifold was apparently newly introduced in [15].

As a first step to understand what shapes of the manifold can be attained from an initial 

configuration, we explore the non-commutativity of the growth (manifold change in time) 

and the diffusion operator (on the manifold itself). A newly defined concept of Lie bracket 

between the diffusion (2nd order operator) and growth (1st order operator) is able to capture 

such non-commutativity and thus provide new shapes towards which the manifold may 

evolve. As in classical geometric control theory [1], [3], [18], the concept of Lie bracket may 

indeed enclose all the needed information to capture the controlled dynamics. Moreover, 

such bracket can be understood as a new available direction for the growth of the organism.

The paper is structured as follows. We begin by introducing the general model, or 

Developmental Partial Differential Equation describing the coupling of growth and diffusion 

on a Riemannian manifold. We then prove existence and uniqueness of the solution to the 

DPDE by introducing a numerical scheme that discretizes time and solves diffusion and 

growth independently on each time interval. We prove that the limit of the scheme is the 

solution to the DPDE. We then use the scheme to define a new kind of Lie bracket between 

the diffusion and the growth operators. By computing the bracket explicitly, we show that it 

is not zero. Numerical simulations confirm the analytical computation of the bracket.

I. DESCRIPTION OF MORPHOGENESIS

In this section, we describe a simplified model for morphogenesis, i.e. for the development 

of the shape of a living body. The shape of an organism is described by its boundary, 

represented by a time-varying manifold ℳt embedded in an Euclidean space ℝd with the 

dimension d being fixed (naturally d = 3 in real examples). On such manifold, a growth 

signal is represented by a probability measure μt ∈ ℘(ℳt). Here ℘(ℳt) is the space of 

probability measures on ℳt, endowed with the Wasserstein distance Wp (see more details in 

Section I-A). Using the embedding of ℳt into the ambient space ℝd, we can consider μt as a 

probability measure on ℝd.

The organism development is determined by a growth vector field v[μt] given by the current 

shape of the organism and by the signal, with v[·] : ℘c(ℝd) → Lip(ℝd) ∪ ℒ∞(ℝd). The 

signal μt on ℳt diffuses following the heat equation intrinsically defined on ℳt. Indeed, since 

ℳt inherits the Riemannian structure of the ambient space ℝd, we can define an intrinsic 

Laplacian, called the Laplace-Beltrami operator. We denote with Δt the Laplace-Beltrami 

operator on ℳt. These two phenomena (growth and diffusion) can be summarized by 

describing the evolution of the signal μt via the following transport-diffusion Partial 

Differential Equation :
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(1)

where the manifold ℳt is the support of μt at each time. Since μt are measures in ℝd, such 

equation needs to be interpreted in the weak sense, i.e. for all f ∈ C∞(ℝd) it holds

(2)

We will provide in Section I-B existence and uniqueness results for such equation.

Remark 1—Notice that the developed theory can be adapted to include reaction terms of 

the type h[μt] on the right-hand side of (1) by using the generalized Wasserstein distance, see 

[14].

A. Transport equation and Wasserstein distance

In this section, we recall the definition of the Wasserstein distance and its connection with 

nonlinear transport equation, i.e. equation (1) with no diffusion. Let us first recall the 

definition of the Wasserstein distance (see [20]). Recall that, for every probability measure μ 
and measurable map ϕ, the push-forward ϕ#μ is defined by ϕ#μ(A) = μ(ϕ−1(A)).

Definition 2—Fix p ≥ 1. Given two probability measures μ and ν in ℝd, the p-Wasserstein 

distance between μ and ν is given by:

where Π(μ, ν) is the set of transference plans from μ to ν, i.e. of the probability measures on 

ℝd × ℝd with marginals μ, ν, respectively. In other words Px#π = μ and Py#π = ν (where Px, 

respectively Py denote the projection on the first, respectively second, component of (x, y).)

The transference plans in Π(μ, ν) can be seen as methods to transport μ to ν and the term 

∫ℝd×ℝd|x − y|pdπ(x, y) can be interpreted as a cost (as p-power of the distance) to move the 

mass of μ onto the mass of ν via the plan π. Hence, the Wasserstein distance is the minimal 

cost to move one mass over the other. For a complete introduction to the topic of 

Wasserstein distances we refer the reader to [20].

Let us now consider the Cauchy problem

(3)
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We assume that v is a uniformly Lipschitz operator with respect to the Wasserstein distance 

on ℘(ℝd) and the Euclidean distance in ℝd, i.e. that there exists a constant L such that

(4)

for all t ∈ ℝ, μ, ν ∈ ℘(ℝd) and x, y ∈ ℝd × ℝd. We have the following key result ([13]):

Theorem 3—Let v satisfy (4), then there exists a unique solution to (3).

B. Existence of a solution to (1)

In this section, we prove existence of a solution for (1), by providing a numerical scheme 

approximating such solution. Fix a final time T ∈ ℝ and an initial measure μ0. For a given 

discretization parameter n ∈ ℕ, we define a sequence of curves ( ) via the following 

scheme:

SCHEME 𝕊. 

In the definition of , we distinguish tn and τn for better description and approximation of 

the two phenomena of deformation and heat diffusion. We now prove existence of a solution 

to (1) with the following lemma.
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Lemma 4—There exists a subsequence of (μn) converging to a measure μ*, providing a 

solution of (1).

Proof: We will prove that each μn is Hölder as function of time with values in the space of 

probability measures (endowed with the Wasserstein distance), in order to use the Arzelà–

Ascoli theorem. The proof will be performed for p = 2 thus we drop the subscript p and 

simply write . Let ι ∈ {0, …, 2n−1}, t ∈ (0, tn) and define . Then by the 

triangular inequality,

(5)

For the first term, we use the evolution variational inequality given in [8]:

where H(ρ) denotes the relative entropy of ρ and K the lower bound of the Ricci curvature of 

ℳ. By recalling that the heat equation is the gradient flow for the relative entropy H, it holds 

H(eΔιtn+ttσ) ≤ H(σ). Also observe that the relative entropy is bounded on a compact 

manifold, see e.g. [8, Lemma 4.1]. Finally, observe that the Ricci curvature K is bounded 

from below on a compact manifold too. Hence we obtain:

(6)

where C is independent of n and, by Gronwall’s inequality:

for t small enough. Finally, for some C > 0 it holds:

The second term of (5) was estimated in [13]:  where L is 

the Lipschitz constant of V [μs]. Notice that L does not depend on μn nor on t. Summing the 

two terms we obtain:
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Iteratively and by the triangular inequality, we get: 

for any s, t ∈ [0, T]. Hence the sequence (μn) satisfies a uniform Hölder condition of order . 

The sequence is also equibounded, since μ0 is fixed. Then, according to the Arzelà–Ascoli 

theorem, there exists a subsequence of (μn) that converges uniformly to a curve μ*. Using the 

same methods as [13][Sec 3.3], one can prove that μ* is a solution to (1).

II. DEFINITION OF LIE BRACKET

Here onward, for simplicity we assume that the growth vector field v does not depend on μt. 

This is a suitable approximation since the Lie bracket we are going to define is a local object 

(as the original Lie bracket).

A. Reduction to a time-varying Riemannian structure onℳ0

In this section, we transform the problem (1) on a time-varying manifold ℳt into a problem 

defined on the fixed manifold ℳ0 with a time-varying Riemannian structure. We use this 

transformation to prove uniqueness of the solution to (1) with v not depending on μt.

Given v not depending on μt, the definition of ℳt is given by ℳt = ϕt(ℳ0), where ϕt is the 

flow of v. Endow ℳt with the Riemannian structure given by its embedding in ℝd. For each 

time t, the flow ϕt is a diffeomorphism between ℳ0 and ℳt, hence we can endow M0 with a 

Riemannian structure induced by the one on ℳt. Applying this technique at each time, we 

have defined a time-varying Riemannian structure < ., . >t on the fixed manifold ℳ0. We 

denote with  the corresponding Laplace-Beltrami operator onℳ0. We are now ready to 

prove uniqueness of solution to (1).

Theorem 5—Let v be a Lipschitz vector field on ℝd, independent of μ. Then, there exists a 

unique solution to (1).

Proof: Let μt any solution to (1), define the measure νt := ϕ−t#μt, i.e. the pull-back of μt via 

the flow ϕt generated by v. The transformation defined above permits to prove that νt is a 

measure on ℳ0 and it satisfies the following heat equation on ℳ0:

Observe now that such equation admits a unique solution, see e.g. [10]. Moreover, 

uniqueness of νt implies uniqueness of μt.

B. First-order Taylor expansion of the Laplace-Beltrami operator

In this section, we describe the evolution of the Laplace-Beltrami operator Δt by computing 

its first-order Taylor expansion at time t = 0. By applying the transformation described in 

Section II-A, we consider the Laplace-Beltrami operator as being defined on the fixed 

manifold ℳ0, with time-varying Riemannian structure < .,. >t on it. For simplicity of 

notation, we denote ℳ:=ℳ0.
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We now compute the Riemannian structure < ., . >t on ℳ. The definition of the push-forward 

implies

(7)

where < .,. >E is the standard Riemannian metric in ℝd (i.e. the standard scalar product.) It 

holds

where J is the Jacobian with respect to the Euclidean structure of ℝd and · represents the 

linear action of the linear operator Jv on w. This implies

Since vectors w1, w2 belong to Txℳ, we will denote with Jℳv the restriction of Jv to Txℳ by 

projection, i.e.

where zℳ is the component of the vector z ∈ Txℝd on the subspace Txℳ. Observe that we 

are using here the Riemannian structure of ℝd to define projections.

We now compute the Laplace-Beltrami operator  intrinsically defined on the manifold ℳ 
with the Riemannian structure < .,. >t. We are interested in describing such operator as a 

function of t. Recalling that the Laplace-Beltrami operator is the divergence of the gradient, 

we aim at describing divt and gradt as a function of time. In particular, we aim at computing 

first-order development of such operators with respect to time. We first study the gradient 

gradt f for a function f ∈ C∞(ℳ), via its intrinsic definition. For all w ∈ Txℳ it holds

In particular this identity holds at time t = 0 holds for grad0. Writing gradt f = grad0 f + tB1, 

for a vector field B1 to be found, we get
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We then have B1 = −(Jv · grad0(f))ℳ − B where (Jv · grad0(f))ℳ is the component of Jv · 

grad0(f) on the tangent space of ℳ, and B(f, v) is intrinsically defined by the following rule: 

for all w ∈ Txℳ it holds

(8)

Summing up, we have

with B(f, v) defined by (8).

We now study the divergence divt(X) for a vector field X ∈ Vec (ℳ). Denoting by volt the 

volume form of the Riemannian manifold, it holds

(9)

Observe that  for any base X1, …, Xm of the 

Riemannian manifold (M,< ., . >t ). We choose an orthonormal basis for (M,< ., . >0) and 

study the evolution of volt. Since g0 = Id and |Id + tA| = 1 + tTr (A) + o(t), we have

where the operator Jv is restricted to the tangent space of ℳ. Then . 

Writing divt(X) = div0X + tf + o(t) for a function f to be found, we get

From (9) applied for t = 0 we have ℒXvol0 = div0(X)vol0, thus

(10)

Observe that this formula is intrinsic, since the trace of the linear operator Jv does not 

depend on the chosen orthonormal frame.
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We now compute the Laplace-Beltrami operator . Since  by 

definition, and observing that it holds Lgrad0(f)Tr (Jv)ℳ =< grad0(f), grad0(Tr (Jv)ℳ) >E, we 

have

(11)

C. Non commutativity of the heat and growth evolutions

In this section, we show non-commutativity of the growth and diffusion terms in the 

dynamics (1), which describes morphogenesis. For sake of clarity, let us recall how non-

commutativity works in the finite dimensional case, and, more specifically for switching 

systems. Consider two vector fields X0,X1 and the system

where u ∈ {0, 1}. For every measurable switching function u : [0, T] → {0, 1} the solution 

at time T, denoted by x(T, u), is unique. The set of points reachable with these trajectories is 

not limited to the directions given by X0 and X1. A classical result in control theory, the 

Orbit theorem, (roughly) states that the set of attainable configurations is related to the Lie 

bracket [X0,X1] (and to other higher order brackets), and in particular that one can choose 

good switching functions to drive the system along a direction arbitrarily close to the vector 

field [X0,X1]. See e.g. [3], [18], [1]. Lie brackets are a powerful tool for finite-dimensional 

control systems. In infinite dimension, they are less easy to define. However, in some cases, 

they can still be used to study the controllability of PDEs, as shown in [6].

For this reason, we study in this article the bracket between the “heat vector field” and the 

“transport vector field”. Indeed, one can consider the solution of an heat equation as a 

continuous (and even differentiable) curve in P2(X) endowed with the Wasserstein distance. 

The, the time derivative of this curve in a point μt (that is clearly the Laplacian Δtμt) can be 

considered as a vector field, that we call the heat vector field. Similarly, we define the 

transport vector field as the derivative of the solution of the transport equation in a point.

By borrowing the notation from Lie brackets of vector fields, we define

(12)
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where ϕt is flow generated by the vector field v, and eτΔ t is the semigroup generated by Δt at 

time τ. Then, for any test function , one can write (12) as follows:

(13)

where we used ∫ f dΔμ = ∫ Δf dμ, which is the definition of the Laplace-Beltrami operator 

as an operator on the space of measures. Then, (13) is the intrinsic formula for the bracket 

(12), indeed the operator B is intrinsically defined by (8).

III. SIMULATIONS

We now compute the bracket [Δ, v] for two examples on a time-varying manifold ℳt with v 
independent on μ. We will also compare the analytic computation using formula (13) and the 

numerical simulations with the scheme  defined in Section I-B.

We consider the unit circle ℳ0 = S1 in ℝ2 parametrized by an angle θ as the initial manifold, 

and the vector field v = (x−1, 2y). It is easy to verify that at time t the unit circle is 

transported to an ellipse of equation:  where xc = 1− et (see Fig. 1). We 

consider the Euclidean metric on ℝ2, i.e. Riemannian structure given by the orthonormal 

frame ∂x, ∂y at each point. The corresponding Riemannian structure on Mt is given by ∂θ = 

−y∂x + x∂y. This implies

thus Tr (JMv) = 1 + cos2. Since the initial data is the Riemannian volume form, the 

divergence theorem implies

As a first exmple, we consider an initial constant signal . We then have [Δ, v]μ0 = 

2cos(2θ)μ0. As a second exemple, for a more complicated initial data μ0 = (1+cos(θ))dθ, the 

second term in (13) is no longer 0. First, notice that:
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(14)

Secondly, we calculate the term B(f, v) knowing that 〈B(f, v), w)〉E = 〈grad0(f), Jv · w〉E. 

Taking a vector w = (wx, wy)T, we write:

(15)

Hence we have :

Similarly,

So

Then, a direct computation shows

In order to study the bracket [v, Δ], we use two schemes  and 𝕊̃ that discretize the 

diffusion-growth problem described above. We define 𝕊̃ similarly to  (defined in Section I-

B), but inverting steps 1 and 2. Hence  does a series of growth and diffusion operations on 

the function μ0 starting with growth, while 𝕊̃ does the same starting with diffusion. Figure 2 

shows the first two iterations of each scheme, starting from the same function μ0 (renamed 

x0 and y0 for notation convenience), and denoting respectively by xn and yn the solutions 

after each iteration of  and 𝕊̃. We first apply this scheme to the initial signal given by the 

constant function μ0(θ) = 0.1. To numerically compute the lie bracket, we apply the schemes 

 and 𝕊̃ to μ0 and compute the numerical expression of the bracket given by [Δ, v]num = 
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limε→0(y1 −x1)/ε2 (where x1 and y1 respectively correspond to the first iterations of  and 

𝕊̃).

Figure 3 shows the convergence of the bracket when the time step T = t+τ tends to 0: The 

bracket converges to the theoretical value [Δ, v]theo(μ0) = 0.2 cos(θ).

Figure 4 shows the convergence of the bracket for the initial signal μ0(θ) = 0.1(cos(θ) 

+ 1)dθ. The bracket converges to the theoretical value [Δ, v]theo(μ0) = 12 cos3 θ + 4cos2 θ 
− 6 cos θ − 2.

CONCLUSION

In this paper, we described morphogenesis of organisms by evolution of a manifold, 

representing their boundary. The presence of morphogens, that are signals stimulating 

deformations, is modeled by the presence of a growth signal evolving on the manifold.

We showed that the resulting dynamics can be described by the reaction-diffusion Partial 

Differential Equation (1), whose solution in the sense of measures is supported on the 

evolving manifold. The existence of solutions is achieved using the framework of 

Wasserstein distances. In such equation, the interplay between the growth and diffusion can 

be described by a new concept of Lie bracket between the transport term and the Laplace-

Beltrami diffusion operator. The two operators are of different nature, but they can be both 

applied to measures on the ambient space. This allows a precise definition of such Lie 

bracket and its explicit expression is given (13). Then via numerical simulations we verified 

the effect of the non-commutativity of the diffusion and growth and the found expression for 

the bracket.

Future work will be devoted to develop a complete theory for PDEs on time-evolving 

manifolds and numerically study the shapes achievable by appropriate control mechanisms.
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Fig. 1. 
Transport of the unit sphere (black dots) by the vector field v(x, y) := (x−1, 2y). At t = 0.25, 

the resulting ellipse (white dots) is centered at (1 − e0.25, 0).
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Fig. 2. 
One iteration of the schemes  and 𝕊̃ starting from the same point x0 = y0.
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Fig. 3. 
Convergence of the bracket to the theoretical one for the initial signal μ0(θ) = 0.1dθ.
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Fig. 4. 
Convergence of the bracket for the initial signal μ0(θ) = 0.1(cos(θ) + 1)dθ.
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