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Abstract

Congenital heart disease is a leading cause of death in the newborn period, and man-made grafts
currently used for reconstruction are associated with multiple complications. Tissue engineering
can provide an alternative source of vascular tissue in congenital cardiac surgery. Clinical trials
have been successful overall, but the most frequent complication is graft stenosis. Recent studies
in animal models have indicated the important role of the recipient’s immune response in
neotissue formation, and that modulating the immune response can reduce the incidence of
stenosis.
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1. Introduction

Congenital cardiac anomalies are the most common birth defect, affecting nearly 1% of all
live births. [1] Of these patients, one-quarter have severe disease and will ultimately require
major reconstructive surgery during their lifetimes. [2] Although significant improvements
have been made in the management of congenital heart defects in recent decades, they
remain a leading cause of death in the newborn period. [3] A substantial portion of the
morbidity and mortality of pediatric cardiac surgery arises from the synthetic conduits and
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patches frequently used to repair congenital defects. These man-made grafts, which are
constructed of materials such as polytetrafluoroethylene (PTFE, or Gore-Tex®), are
susceptible to thromboembolism, stenosis, ectopic calcification, and infection. [4,5] They
also lack growth potential, contributing to one of their greatest sources of morbidity in the
pediatric population: somatic overgrowth, or the process by which patients outgrow their
grafts. Allografts, xenografts, and autologous tissues such as pericardium and saphenous
vein have been used as alternatives, but all are associated with similar complications to
varying degrees, and none have growth potential. Graft failure rates have been reported to be
70 to 100% at 10 years. [5,6] Patients therefore require serial reoperations to replace their
failed grafts, each of which is associated with its own morbidity and mortality.

Vascular tissue engineering provides a potential solution to this problem. Rather than using a
synthetic material, a biodegradable scaffold is implanted and degrades over time, replaced
with autologous vascular tissue that can repair, remodel, and even grow with the patient. [7]
Because the neovessel is composed entirely of autologous tissue, it is theoretically not
plagued by the complications associated with synthetic materials. Classically, cells from the
recipient are seeded onto the graft prior to implantation. In addition to the scaffold itself,
these seeded cells play a crucial role in the process of neotissue formation. In this review, we
present the current status of tissue engineered vascular grafts (TEVGSs) for use in congenital
cardiac surgery and our experience implanting TEVGs seeded with bone marrow-derived
mononuclear cells.

2. Congenital heart disease and the demand for tissue

Approximately 25% of patients with congenital heart disease have critical defects, which are
a subset that require surgical or transcatheter intervention before one year of age. [2] The
traditional paradigm for these patients was early palliation followed by definitive correction
later in life. With advancements in surgical technique and perioperative critical care,
however, that strategy has shifted to one of early repair, even in small infants. [8] In several
critical congenital heart defects, transcatheter interventions are an emerging option,
providing an alternative to open surgery and its associated complications.

Critical congenital heart defects have traditionally been divided into cyanotic and non-
cyanotic lesions, but with the aforementioned advancements in surgical care, some have
advocated for a classification into (1) defects which should be repaired, (2) those which
must be palliated, and (3) a final group in which either option is acceptable. [8] A list of
critical congenital heart defects, their pathophysiology, and surgical options is summarized
in Table 1. The most common critical congenital heart defects are ventricular and atrial
septal defects, which are two of a limited number of defects which may be monitored in
certain patients. [1] Most other critical defects require repair or palliation irrespective of any
other criteria. [8]

As indicated in Table 1, critical congenital heart defects are characterized by an absence or
malformation of normal cardiac tissue during development. Many surgical reconstructions
therefore require a supplemental source of tissue. Ventricular septal defects and large atrial
septal defects are closed with patches. Long aortic coarctations require patch aortoplasties or
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interposition grafts. Aortic stenosis can be managed by the Ross procedure, which uses the
native pulmonary valve to replace the stenotic aortic valve, with the right ventricular outflow
tract then reconstructed with a valved conduit. [8] In contrast to coronary artery bypass and
arteriovenous grafts for dialysis access, which are common uses of tubular grafts in adult
cardiovascular surgery, most grafts in congenital heart disease are implanted entirely or
partially in the lower-pressure venous circulation. In addition, the target graft diameter is
larger than in the comparatively narrow coronary circulation.

This contrast is apparent in the Fontan procedure, in which a 2-cm diameter graft is
implanted in a low-pressure system to palliate single-ventricle anomalies. It routes vena
caval blood directly to the pulmonary circulation, with the single functional ventricle then
pumping oxygenated blood systemically. [9] In the original description by Fontan in 1971,
the venous blood was directed to the pulmonary circulation via an anastomaosis between the
right atrium and the right pulmonary artery. [9] Over the following decades, the procedure
was altered in several ways. In the modified Fontan procedure, an interatrial lateral tunnel
directs the blood to the superior vena cava. The superior vena cava is ligated, with the
superior end sutured to the upper right pulmonary artery and the inferior portion to the
underside of the right pulmonary artery. [8] Venous blood then flows passively and laminarly
to the pulmonary circulation.

A further modification is the extracardiac Fontan, in which a prosthetic graft is used to
connect the inferior vena cava to the pulmonary artery (Figure 1). By utilizing an
extracardiac conduit, this procedure does not alter the native atrial geometry, and it
maximizes laminar flow. [8] Compared to other variations of the Fontan, the extracardiac
approach has a lower incidence of arrhythmias, cavopulmonary pathway obstructions, re-
interventions, and late deaths. [4] However, the implantation of prosthetic grafts without
growth potential means surgeons must wait for patients to grow to a size where graft
implantation is possible, at which time they frequently implant oversized grafts to account
for future additional patient growth.

Prosthetic grafts have thus been used in the Fontan procedure with acceptable outcomes, but
there remains room for improvement. The grafts are implanted in a high-flow system, which
theoretically reduce the risk of thrombosis, and are subjected to low pressures, which
decrease the chance of aneurysmal dilation. For these reasons, the Fontan procedure
represents an ideal starting point for the investigation of TEVGs. Nevertheless, single-
ventricle anomalies are rare relative to other types of critical congenital heart defects. [1] In
the long term, tissue engineering has the potential to be applied to all situations in which
prosthetic grafts are used in congenital cardiac surgery, including synthetic patches and heart
valves. However, patches are frequently exposed to high arterial pressures, and functional
heart valve leaflets are more complex to create than tubular blood vessels. As a result, the
TEVG field is closer to clinical application than tissue-engineered patches and valves. This
review will therefore focus primarily on the use of TEVGs for critical congenital heart
defects.
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3. Tissue engineered vascular graft scaffolds as structures for neotissue

formation

3.1. Principles of vascular tissue engineering

Vascular tissue engineering is governed by the tissue engineering triad, which consists of
three essential pillars: (1) the scaffold, which ultimately degrades and is replaced by
extracellular matrix, (2) cells (either seeded /n vitro or mobilized in vivo), and (3) signals
(humoral and mechanical). [10] The three factors are interdependent and are all required for
the formation of organized vascular tissue. Various combinations of the components have
been intermixed throughout the past two decades in an attempt to create the optimal
neovessel.

3.2. Scaffold types

The scaffold provides a three-dimensional structure onto which neotissue can grow. In
vascular tissue engineering, two general types of scaffold have been used: (1) decellularized
extracellular matrix (ECM) and (2) biodegradable synthetic materials. Decellularized tissue
sources include allogeneic, xenogenic, or /n vitro-engineered tubular tissues that contain an
intact ECM such as human skin or vein, bovine or porcine carotid vessels, and other tissue-
generated grafts. [11] Decellularization can be achieved by a combination of physical
agitation, chemical surfactant removal, and enzymatic digestion, which disrupt cells and
remove most of the cellular antigenic components. However, the decellularization process
can also degrade matrix components, which results in a loss of ECM integrity. The resultant
tissue deterioration can lead to degenerative structural graft failure. [12] Additional
drawbacks of decellularized scaffolds include an inability to modify the matrix content and
architecture, rapid degradation, and a risk of viral transmission upon implantation.

Alternatively, naturally-occurring or synthetic polymers can be used to form scaffolds for
TEVGs. The ideal scaffold allows for a microenvironment that promotes cell adhesion and
differentiation and permits deposition of ECM. Natural materials include collagen, gelatin,
hyaluronate, glycosaminoglycan, chitosan, alginate, silk, fibrin, dextran, and Matrigel. [13]
Synthetic polymers include polyglycolic acid (PGA), polylactic acid (PLA), polylactic-co-
glycolic acid (PLGA), poly-L-lactic acid (PLLA), poly-e-caprolactone (PCL), polyethylene
glycol (PEG), polyvinyl alcohol (PVA), polypropylene fumarate (PPF), and polyacrylic acid
(PAA). [13] Scaffold selection depends on biocompatibility, mechanical properties, and
biodegradability.

Different materials have been used as scaffolds in vascular tissue engineering. We began by
using a PGA scaffold and later added a 50:50 copolymer blend of polycaprolactone and
polylactic acid (PCLA). [14] The scaffold can be fabricated in a range of sizes, typically
measuring 13 cm in length, 1.5 mm in thickness and 10-24 mm in diameter. The matrix is
porous, with a pore diameter of 100-200 um. The scaffold loses its biomechanical integrity
within eight weeks, but complete degradation requires six months.
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4. Vascular cell types and the importance of cell seeding

Regardless of the type of scaffold, the goal remains the same: to permit cellular deposition
and then degrade, thereafter providing an autologous structure for ongoing TEVG growth.
The components of native blood vessels include ECM, smooth muscle cells, fibroblasts, and
endothelial cells. The ideal TEVG would approximate the composition of the native
vasculature.

4.1. Extracellular matrix

4.2. Smooth

Extracellular matrices are complex, three-dimensional networks of proteins and
proteoglycans. They have many functions: (1) they determine the biomechanical properties
of tissue, (2) they are the scaffold to which cells migrate and adhere, (3) they contribute to
cellular phenotype, and (4) they are an anchor for many proteins, including growth factors
and enzymes. [15] Collagen and elastin are the most abundant proteins in vascular ECM,
and they are both structurally and functionally important for determining the biomechanical
properties of the vascular wall. The amounts of collagen and elastin in the vascular wall
determine biomechanical properties such as compliance, stiffness, and burst strength. The
ideal TEVG would have biomechanical properties, and therefore collagen and elastin
deposition, that replicate native blood vessels.

muscle cells, fibroblasts, and endothelial cells

Native blood vessel walls consist of smooth muscle cells and fibroblasts, both of which are
important for ECM deposition, maintenance of functional and structural integrity,
vasodilation, and vasoconstriction. The innermost layer consists of endothelial cells, which
have a potent antithrombotic cell surface. They also attenuate long-term smooth muscle cell
migration and proliferation and ECM production, thus preventing intimal hyperplasia. As
such, the presence of endothelial cells in neotissue is one of the most important ways to
maintain long-term TEVG patency. Previous reports have demonstrated that after synthetic
graft implantation for peripheral arterial disease, the number of endothelial cells found on
the luminal surface in synthetic grafts was less than 10% of that seen in native vessels. [16]
Other studies have shown that endothelial cells have limited ability to migrate, so endothelial
cell ingrowth is unlikely to occur greater than 3 cm from the anastomoses. [17]

4.3. Cell seeding

Direct endothelial cell seeding represents a potential solution to this challenge. Endothelial
cell seeding onto prosthetic grafts was first proposed as a single-stage technique, but
significant cell loss occurred after the grafts were exposed to pulsatile flow. [18] A two-stage
strategy was subsequently developed in which autologous endothelial cells are first
harvested and cultured and then seeded onto a synthetic conduit. Patency of synthetic grafts
seeded in this manner was significantly greater than unseeded grafts at three years (84.7%
vs. 55.4%). [19]

While endothelial cell seeding improves patency of synthetic grafts, cell seeding is perhaps
even more important to the success of tissue-engineered grafts. [20] Several different

Trends Cardiovasc Med. Author manuscript; available in PMC 2018 November 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Drews et al.

Page 6

seeding methods have been described, including passive and dynamic (rotational or vacuum-
dependent) strategies. [21]

Similar to the aforementioned work on synthetic grafts, our initial technique consisted of
biopsying a peripheral blood vessel, explanting the tissue to isolate cells, and expanding the
cells in culture. Mixed culture cells consisting of endothelial cells, fibroblasts, and smooth
muscle cells were seeded onto a PGA scaffold and incubated /7 vitro prior to implantation in
an ovine model. [22] The implanted grafts remained patent at up to 24-week follow-up,
confirming the feasibility of using tissue engineering to create neovessels for use in cardiac
surgery. [22] Seeding a mixed cell population onto a biodegradable scaffold was similarly
successful in inferior vena cava replacement in dogs. [23] There were no complications such
as thrombosis, stenosis or dilation.

In 1999, we used this technique to perform the first implantation of a TEVG in a human.
Cells were isolated from a saphenous vein biopsy and seeded onto a scaffold composed of a
polycaprolactone-polylactic acid copolymer reinforced with woven PGA. The graft was
implanted 10 days later to reconstruct an occluded pulmonary artery in a child with
congenital cardiac disease. There were no complications, and the TEVG was patent on
angiography seven months postoperatively. [14]

This method was repeated on two additional patients. Although it was successful, the culture
and seeding process had several drawbacks. The biopsy forced patients to undergo an
additional procedure on a date prior to their planned surgery. In addition, the cell culture
process was labor-intensive and time-consuming, requiring 6-10 weeks to generate an
adequate number of cells. As a result, there was an associated infectious risk and even the
potential for malignant dedifferentiation of the cells during 7 vitro culture. [24] Perhaps
most significant was the unreliability of this method, as we were unable to culture a
sufficient number of cells in some patients.

As a result, we began investigating other potential sources of cells. Noishiki ef a/. had
reported that bone marrow cells (BMCs) implanted onto the surface of an expanded
polytetrafluoroethylene (ePTFE) graft led to endothelialization in a dog model. [25] In
addition, bone marrow is known to contain multi-potential cells which have the ability to
differentiate into several different cell types, and endothelial progenitor cells are derived
from bone marrow. [26] Consequently, we investigated the utility of seeding biodegradable
scaffolds with BMCs rather than cultured cells from a peripheral vein biopsy. BMCs were
aspirated from the iliac bone of dogs and seeded onto a copolymer of lactic acid and e-
caprolactone. A neovessel composed of endothelial cells and smooth muscle cells formed,
and the grafts remained patent, suggesting BMCs are a viable cell source. [27] The
histologic composition of the neovessel was similar to grafts seeded with cultured venous
cells, without the aforementioned shortcomings. [28,29] Unseeded grafts, in contrast, lacked
a regular endothelial cell lining. [28] As we proceeded to use BMCs to seed synthetic grafts,
we found that the mononuclear cell fraction of the harvested bone marrow is sufficient to
generate a functional endothelium. [29] Moreover, enough cells could be harvested from a
single procedure to enable adequate seeding without the need for ex vivo expansion,
rendering bone marrow-derived mononuclear cells (BM-MNCs) ideal for seeding. The
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resultant neovessel demonstrated growth capacity, underlining its great potential in
congenital cardiac surgery. [7]

Other groups have investigated the utility of genetic engineering of seeded cells to optimize
tissue ingrowth and graft patency. Bone marrow mesenchymal stem cells have been
genetically modified with endothelial nitric oxide synthase to increase the patency of small-
diameter TEVGs. [30] Endothelial cells have also been genetically modified. Preis et al.
recently induced expression of vascular endothelial growth factorgs (VEGF145) and
fibulin-5 in endothelial cells and seeded them onto small-caliber ePTFE grafts. [31]
Fibulin-5 is an extracellular matrix protein which participates in elastin fiber formation, and
VEGF 45 is an endothelial cell mitogen. Co-expression of VEGFg5 and fibulin-5 in seeded
endothelial cells significantly increased final histologic endothelial cell coverage and graft
patency compared to seeding with naive endothelial cells. [31] However, fibulin-5 inhibits
smooth muscle cell migration, and it is unknown what effect this would have on neotissue
formation in a tissue-engineered graft.

results of tissue-engineered vascular grafts

Given the success of TEVGs in animal models, we proceeded with the first clinical trial of
TEVG implantation in children with congenital heart disease in Japan in 2001. [32,33] Our
selected clinical target was the extracardiac Fontan procedure. As discussed above, other
congenital cardiac operations have the potential to be impacted more significantly by the
successful use of TEVGs, but the Fontan represented an optimal balance between utility and
safety, with the conduits implanted in a high-flow, low-pressure circulatory system.

Hybrid tubular scaffolds composed of woven PGA and e-caprolactone (50:50 ratio) and L-
lactide were seeded with BM-MNCs. BM-MNCs were collected by density centrifugation
with Histopaque-1077 (Sigma Chemical Co., St. Louis, MO, USA) after aspiration of 5
mL/kg of bone marrow from the anterior superior iliac spine. [32] The diameter and length
of the scaffold were determined by each patient’s anatomy.

Patients younger than 30 years with minimal extracardiac disease burden presenting for
elective surgery were included. Between 2001 and 2004, 25 patients underwent an
extracardiac total cavopulmonary connection with a TEVG used as a conduit (Table 2). The
median patient age at implantation was 4 years with a mean weight of 19.5 kg.
Anticoagulation with warfarin and aspirin was started two days postoperatively and
continued for 3—6 months. Patients were followed postoperatively in a multidisciplinary
clinic and monitored radiographically with transthoracic echocardiography, computed
tomography, angiography, or MRI angiography. Serial imaging demonstrated long-term
growth capacity of the grafts (Figure 2). Upon autopsy, their gross and histologic appearance
was similar to native vasculature (Figure 3).

At 30 days post-implantation, all patients were alive and symptom-free, and all grafts were
patent without stenosis, thrombosis, or aneurysmal dilation. By one year post-implantation,
partial mural thrombosis was identified in one patient, which was successfully treated with
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warfarin. One patient with hypoplastic left heart syndrome died of congestive heart failure
secondary to severe tricuspid regurgitation six months after TEVG implantation. [32]

With longer-term follow up, the most prevalent complication was graft stenosis. At a mean
follow up of 5.8 years, four patients (16%) had stenosis on routine surveillance imaging.
[33] The prevalence increased to seven patients (28%) at the most recent follow up (mean of
10.3 years, unpublished data). In all cases, stenosis has been treated successfully with
balloon angioplasty, with one patient requiring stent placement in the stenotic segment of the
TEVG. A total of eight mortalities (32%) have occurred since implantation, none of which
have been related to the TEVG. There have been no instances of aneurysm formation, graft
rupture, or ectopic calcification. [32,33]

In 2011, we began the first US Food and Drug Administration-approved clinical trial in the
United States investigating TEVG use in children with congenital heart defects. The study is
ongoing, but similarly to the Japanese cohort, the most common complication to date has
been graft stenosis (unpublished data).

6. Cellular signaling and the important role of seeded cells

After the initial clinical study in Japan, TEVGs were taken back to animal models to develop
strategies to reduce the incidence of postoperative stenosis. A murine model of TEVG
implantation has enabled us to take advantage of the power of mouse genetic models.
Because there are no animal models of single ventricle cardiac anomalies, we developed an
inferior vena cava (IVC) interposition graft model as a surrogate, in which a segment of
mouse IVVC is replaced with a biodegradable scaffold 0.8 mm in diameter by 3 mm in length.
[34] Although there are hemodynamic differences between the 1\VVC interposition model and
the postoperative circulation in patients with single ventricle anomalies, the model
accurately replicates many aspects of the process of neovessel formation in large animals
and humans, but over a shorter time course. [34-36]

We have performed several mechanistic studies that have helped elucidate the molecular
mechanisms underlying neotissue formation. Cell seeding is not essential for neovessel
formation, but it reduces the incidence of stenosis in TEVGs. [20,36,37] It does so in a dose-
dependent manner, with greater numbers of seeded BM-MNC:s significantly reducing the
rate of stenosis. [20] The initial hypothesis was that BM-MNCs act as stem cells,
differentiating into functional neotissue. Interestingly, the seeded cells disappear from the
TEVG within a few days of implantation, suggesting that they are not the ultimate source of
vascular neotissue and rather act via a paracrine mechanism. [37] Instead, the final neovessel
cells are derived from the neighboring blood vessel. [35] BM-MNCs decline to 0.02% at 14
days, while the adjacent vessel wall forms 93% of the proximal neotissue. [35] Thus, seeded
BM-MNCs appear to induce the host immune system to regenerate neotissue from pre-
existing committed cells.

This discovery challenged the classical tissue engineering paradigm that stem cells
differentiate into the final neotissue and shifted our focus toward investigating the host
immune response to the TEVG. We subsequently found that macrophages play a critical role
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in neovessel formation. Host-derived monocytes infiltrate the scaffold as soon as three days
after implantation. [36] Monocyte infiltration is crucial to the formation of the neovessel:
blocking it prevents neotissue formation, while excessive infiltration results in stenosis. [36]
Macrophage phenotype (M1 or M2) may also influence long-term TEVG function. [36] In
short, achieving the correct balance of monocyte infiltration promotes successful neovessel
formation. We have recently found that this process is mediated by the cytokine
transforming growth factor beta (TGF-B). TGF-p signaling increases during neovessel
formation, with stenotic grafts expressing higher levels of TGF-p than patent grafts. [38] A
14-day postoperative course of intraperitoneal TGF-p receptor 1 (TGF-BR1) inhibitor
significantly reduces TEVG stenosis compared to unseeded controls, with patency rates in
the unseeded TGF-BR1 inhibitor group similar to seeded grafts. [38] TGF-BR1 inhibitor
significantly reduces activation of monocytes and macrophages, suggesting that it improves
patency—without blocking neotissue formation—by reducing host monocyte activation.
[38] There is still much to learn regarding the role played by seeded cells, but it is clear that
the BM-MNCs themselves are not the source of neotissue, instead acting in a paracrine
fashion to modulate the recipient’s immune response.

7. The future of vascular tissue engineering

Future directions will include the application of these mechanistic discoveries to design an
improved TEVG. The immune response may be targeted directly with TGF-p inhibitors or,
in the more immediate future, losartan, which also acts on the TGF-p pathway. Given the
direct correlation between number of seeded cells and graft patency, we are investigating
methods to increase the number of cells seeded onto the scaffold. One such method is the
aspiration of a greater volume of bone marrow. We are investigating the feasibility of a
larger bone marrow aspiration hours prior to major cardiac surgery, and at what cell dose the
scaffold becomes saturated. As a corollary to this aim, a more efficient method of separating
the mononuclear cell fraction would be useful. Layer separation by Histopaque is time-
consuming, and the time during which the patient is under general anesthesia would be
increased further by a large bone marrow aspiration. To that end, we developed a closed
disposable system which is significantly faster than layer separation by Histopaque and also
reduces the risk of contamination. [39]

Scaffold design will also continue to be refined, both to optimize tissue ingrowth and to
customize the shape and length for each patient’s anatomy. Scaffold materials, fiber size and
porosity will be adjusted to refine the mechanical properties and tissue ingrowth and
potentially reduce the need for cell seeding. Three-dimensional printing is an emerging
technology which offers exciting possibilities in scaffold construction. We have 3D printed
TEVG scaffolds for implantation in mice and sheep. In the ovine model, electrospinning
mandrels were 3D printed based on preoperative imaging, and TEVG scaffolds were then
electrospun around the mandrels. [40] These TEVGs demonstrated satisfactory remodeling
at six months postoperatively, with histology and mechanical properties similar to the native
IVC. There is still work to be done before this technology is ready for translation to the
clinic, but we anticipate a future in which a patient’s preoperative imaging will be used to
design and print a unique scaffold for his or her surgical reconstruction.
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8. Conclusion

Tissue-engineered vascular grafts can be implanted successfully in small and large animals,
as well as humans, without significant dilation, thromboembolism, or infectious
complications. The most common morbidity is graft stenosis, which can be successfully
treated with balloon angioplasty. Results from murine studies indicate the critical role played
by the seeded bone marrow-derived mononuclear cells. They reduce graft stenosis in a dose-
dependent manner, suggesting that increasing the number of seeded cells in human TEVGs
may reduce the incidence of stenosis. Additional investigation into the cellular signaling
pathways mediating neotissue formation would further inform the development of an
improved, second-generation TEVG.

In conclusion, TEVGs have found a successful clinical application in the field of congenital
cardiac surgery. TEVG implantation in patients is promising, but there remains room for
improvement. Research in small and large animal models has informed the mechanisms
underlying neotissue formation and demonstrated the important role played by seeded cells,
which act to modulate the recipient immune response. Further study in this exciting field
will allow for optimization of neotissue formation and will broaden the clinical opportunities
for TEVG use.
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Figure 1.
The Fontan circulation. In a lateral tunnel Fontan (left), a baffle within the right atrium

directs blood from the inferior vena cava to the pulmonary artery. In an extracardiac Fontan
(right), a prosthetic graft is used to route blood directly from the inferior vena cava to the
pulmonary artery. Many outcomes are better after the extracardiac variant, but it currently
requires the use of a synthetic graft without growth potential. Tissue-engineered vascular
grafts are an alternative source of tissue.

Reused with permission from: Kogon B. Is the extracardiac conduit the preferred Fontan
approach for patients with univentricular hearts? The extracardiac conduit is the preferred
Fontan approach for patients with univentricular hearts. Circulation. 2012;126(21):2511—
2515. http://circ.ahajournals.org/
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Figure 2.
Postoperative growth of a TEVG. A TEVG was implanted in a five-year-old patient

undergoing a Fontan procedure. Angiography two years (A) and eleven years (B) after
implantation demonstrate growth, with length of the graft increased from 43.4 cm to 60.4
cm.
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Figure 3.
Gross image of a TEVG 13 years after implantation. The appearance is similar to native

vein. LPA, left pulmonary artery; RPA, right pulmonary artery; SVC, superior vena cava;
TEV, tissue-engineered vessel.
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