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Summary

Functional data are defined as realizations of random functions (mostly smooth functions) varying 

over a continuum, which are usually collected on discretized grids with measurement errors. In 

order to accurately smooth noisy functional observations and deal with the issue of high-

dimensional observation grids, we propose a novel Bayesian method based on the Bayesian 

hierarchical model with a Gaussian-Wishart process prior and basis function representations. We 

first derive an induced model for the basis-function coefficients of the functional data, and then 

use this model to conduct posterior inference through Markov chain Monte Carlo methods. 

Compared to the standard Bayesian inference that suffers serious computational burden and 

instability in analyzing high-dimensional functional data, our method greatly improves the 

computational scalability and stability, while inheriting the advantage of simultaneously 

smoothing raw observations and estimating the mean-covariance functions in a nonparametric 

way. In addition, our method can naturally handle functional data observed on random or 

uncommon grids. Simulation and real studies demonstrate that our method produces similar results 

to those obtainable by the standard Bayesian inference with low-dimensional common grids, while 

efficiently smoothing and estimating functional data with random and high-dimensional 

observation grids when the standard Bayesian inference fails. In conclusion, our method can 

efficiently smooth and estimate high-dimensional functional data, providing one way to resolve 
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the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart 

processes.
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Bayesian hierarchical model; basis function; functional data analysis; Gaussian-Wishart process; 
smoothing

1. Introduction

Functional data — defined as realizations of random functions varying over a continuum 

(Ramsay and Silverman, 2005) — include a variety of data types such as longitudinal data, 

spatial-temporal data, and image data. Because functional data are generally collected on 

discretized grids with measurement errors, constructing functions from noisy discrete 

observations (referred to as smoothing) is an essential step for follow-up analysis (Ramsay 

and Dalzell, 1991; Ramsay and Silverman, 2005). However, the smoothing step has been 

neglected by most of the existing functional data analysis (FDA) methods, which integrate 

functional representations in the analysis models. For examples, functional data and effects 

are represented by basis functions in functional linear regression models (Cardot et al., 2003; 

Hall et al., 2007; Zhu et al., 2011), functional additive models (Scheipl et al., 2015; Fan et 

al., 2015), functional principle components analysis (Crainiceanu and Goldsmith, 2010; Zhu 

et al., 2014), and nonparametric functional regression models (Ferraty and Vieu, 2006; 

Gromenko and Kokoszka, 2013); as well as represented by Gaussian processes (GP) in 

Bayesian nonparametric models (Gibbs, 1998; Shi et al., 2007; Banerjee et al., 2008; 

Kaufman and Sain, 2010; Shi and Choi, 2011).

On the other hand, most of the existing smoothing methods process one functional sample at 

a time, such as cubic smoothing splines (CSS) and kernel smoothing (Green and Silverman, 

1993; Ramsay and Silverman, 2005). Consequently, when multiple functional observations 

are sampled from the same distribution, these methods of individual smoothing lead to less 

accurate results, by ignoring the shared mean-covariance functions. Alternatively, Yang et al. 

(2016) proposed a Bayesian hierarchical model (BHM) with Gaussian-Wishart processes for 

simultaneously and nonparametrically smoothing multiple functional observations and 

estimating mean-covariance functions, which is shown to be comparable with the frequentist 

method — Principle Analysis by Conditional Expectation (PACE) proposed by Yao et al. 

(2005b).

BHM assumes a general measurement error model for the observed functional data {Yi(t); t 
∈ , i = 1,⋯, n},
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(1)

where {Zi(t)} denotes the true functional data following the same GP distribution, IG 

denotes the Inverse-Gamma prior, IWP denotes the Inverse-Wishart process (IWP) prior 

(Dawid, 1981) for the covariance function, and (μ0(·), c, δ, A(·,·), aε, bε, as, bs) are hyper-

prior parameters to be determined. The IWP prior enables the BHM to analyze both 

stationary and nonstationary functional data with nonparametric covariance models. In 

addition,  provides the flexibility of estimating the scale of the covariance structure (A(·,·)) 

in the IWP prior from the data. Because of the hierarchical representation of Zi(t) in (1), the 

proposed hierarchical model (1) can also be viewed as a generalization of the spatial 

random-effect GP regression model considered in Quick et al. (2013).

However, just like the other GP based models, the BHM suffers serious computational 

burden and instability when functional data are observed on high-dimensional or random 

grids. To address this computational issue of GP based models, existing reduce-rank 

methods focus on kriging with partial data (Cressie and Johannesson, 2008; Banerjee et al., 

2008), implementing direct low-rank approximations for the covariance matrix (Rasmussen 

and Williams, 2006; Quiñonero Candela et al., 2007; Banerjee et al., 2013), and using 

predictive processes (Sang and Huang, 2012; Finley et al., 2015). Although these reduce-

rank methods can be applied to the standard GP regression models (Shi et al., 2007; 

Banerjee et al., 2008; Kaufman and Sain, 2010) that only model group-level GPs with 

parametric covariance functions, they will greatly increase the complexity in BHM for 

handling signal-specific posterior GPs, mean GP, and the IWP prior. For example, the 

corrected predictive process methods (Sang and Huang, 2012; Finley et al., 2015) need to 

handle different residual processes for all functional observations, mean GP, and the IWP 

prior. Moreover, these low-rank methods require fairly large rank to perform well for high-

dimensional data, which results in high computational cost (Datta, Banerjee, Finley, and 

Gelfand, 2016). Stein (2014) further theoretically (using Kullback-Leibler divergence) 

proved that the low rank approximation performs poorly under particular settings.

Here, we propose a novel Bayesian framework with Approximations by Basis Functions for 

the original BHM method, referred to as BABF, which is computationally efficient and 

stable for analyzing high-dimensional functional data. Basically, we approximate the 

underlying true functional data {Zi(t)} with basis functions, and derive an induced Bayesian 

hierarchical model for the basis-function coefficients from the assumptions of BHM (1). 

Then we conduct posterior inference for functional signals {Zi(t)} and mean-covariance 

functions (μZ(·), ΣZ(·,·)), by Markov chain Monte Carlo (MCMC) under the induced model 

of basis-function coefficients, namely by MCMC in the basis-function space with a reduced 

rank. As a result, our BABF method not only improves the computational scalability over 
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the original BHM, but also inherits the advantage of modeling the functional data and mean-

covariance functions in a flexible nonparametric manner. In addition, because of basis 

function approximations, BABF can naturally handle functional data observed on random or 

uncommon grids.

Thus, our basis function approximation approach has two-fold advantages: (i) Compared to 

the alternative reduce-rank approaches, it is easier to apply to Bayesian hierarchical GP 

methods that model individual levels of GPs (e.g., BHM). (ii) It induces a nonparametric 

Bayesian model with a Gaussian-Wishart prior for the basis-function coefficients, which is 

different from modeling the basis-function coefficients as independent variables as in the 

standard functional linear regression models (Cardot et al., 2003; Hall et al., 2007; Zhu et 

al., 2011) and functional additive models (Scheipl et al., 2015; Fan et al., 2015), and also 

different from directly modeling the basis-function coefficients in semiparametric forms as 

in Baladandayuthapani et al. (2008).

By simulation studies with both stationary and nonstationary functional data, we 

demonstrate that BABF produces accurate smoothing results and mean-covariance estimates. 

Specifically, when functional data are observed on low-dimensional common grids, BABF 

generates similar results to those obtainable by BHM. When functional data are observed on 

high-dimensional or random grids, BHM fails because of computational issues, while BABF 

efficiently produces smoothed signal estimates with smaller root mean square errors 

(RMSEs) than the alternative methods (aforementioned CSS and PACE).

Furthermore, using a real application with the sleeping energy expenditure (SEE) 

measurements of 106 children and adolescents (44 obese cases, 62 controls) over 405 time 

points (Lee et al., 2016), we show that BABF captures better periodic patterns of the 

measurements, producing more reasonable estimates for the functional signals and mean-

covariance functions. Moreover, compared to the raw data and smoothed data by CSS and 

PACE, the smoothed data by BABF lead to better classification results for the SEE data.

This paper is organized as follows: We provide the details of the BABF method and the 

corresponding posterior inference procedure in Section 2. We present simulation and real 

studies in Sections 3 and 4, respectively. Then we conclude with a discussion in Section 5.

2. BABF method

Because BHM (Yang et al., 2016) conducts MCMC on the pooled observation grid for 

handling uncommon grids, it has computational complexity O(np3m) with n samples, p 
pooled-grid points, and m MCMC iterations. To resolve the computational bottleneck issue 

for smoothing functional data with large pooled-grid dimension p by BHM, we propose our 

BABF method by approximating functional data with basis functions under the same model 

assumptions in (1).

2.1 Approximation by basis functions

First, we approximate the GP evaluations {Zi(τ)} by a system of basis functions (e.g., cubic 

B-splines), with a working grid based on data density, , L ≪ p. Let 
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B(·) = [b1(·), b2(·),⋯, bK(·)] denote K selected basis functions with coefficients ζi = (ζi1, ζi2, 

⋯ ζiK)T, then

(2)

Assuming K = L, we can write ζi = B(τ)−1Zi(τ) as a linear transformation of Zi(τ). Note that 

even if B(τ) is singular or non-square, ζi can still be written as a linear transformation of 

Zi(τ) with the generalized inverse (James, 1978) of B(τ). Consequently, the true signals 

{Zi(ti)} can be approximated by {B(ti)ζi} with given {ζi}.

Next, we derive the induced Bayesian hierarchical model for the basis-function coefficients 

{ζi}. Because ζi is a linear transformation of Zi(τ) that follows a multivariate normal 

distribution MN(μZ(τ), ΣZ(τ, τ)) under the assumptions in (1), the induced model for ζi is

(3)

Further, from the assumed priors of (μZ(·), ΣZ(·,·)) in (1), the following priors of (μζ, Σζ) are 

also induced:

(4)

(5)

Then, we can estimate ({Zi(·)}, μZ(·), ΣZ(·,·)) by a Gibbs-Sampler (Geman and Geman, 

1984) with computation complexity O(nK3m) under the above induced model of {ζi}. 

Details of the Gibbs-Sampler (MCMC) are provided in Section 2.3.3. We take the 

corresponding averages of the posterior MCMC samples as our Bayesian estimates, whose 

uncertainties can easily be quantified by the MCMC credible intervals.

2.2 Hyper-prior and basis-function selections

Before describing the MCMC sampling procedure, we first discuss the issues of selecting 

hyper-priors, basis functions, and the working grid for the BABF method.

To set hyper-priors, we use the same data-driven strategy as BHM (Yang et al., 2016). 

Specifically, we set μ0(·) as the smoothed sample mean, and c = 1, δ = 5 for uninformative 

priors of the mean-covariance functions. We set A(·,·) as a Matérn covariance function 

(Matérn, 1960) for stationary data, or as a smooth covariance estimate for nonstationary data 

(e.g., PACE estimate, smoothed empirical estimate). A heuristic Bayesian approach is used 
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for setting the values of (aε, bε, as, bs), by matching hyper-prior moments with the empirical 

estimates.

Although the induced model makes BABF robust with respect to the selected basis functions 

and working grid, appropriately selected basis functions and working grid will help improve 

the performance of BABF. The general strategies of selecting basis functions for 

interpolating over the working grid apply here, e.g., selecting Fourier series for periodic 

data, B-splines for GP data, and wavelets for signal data. Our choice of B-splines is widely 

used by GP regression methods (Rasmussen and Williams (2006); Shi et al. (2007)). For 

constructing the basis functions of B-splines, the optimal knot sequence for best 

interpolation at the working grid τ can be obtained using the method developed by Gaffney 

and Powell (1976); Micchelli et al. (1976); de Boor (1977), and implemented by the Matlab 

function optknt. The working grid τ can be chosen to represent data densities over the 

domain, such as given by the  percentiles of the pooled observation grid. 

As for the dimension L of the working grid, one may try a few values with a small testing 

data set, and then select the optimal one with the smallest RMSE of the signal estimates.

BABF inherits the advantage of nonparametrically smoothing without the necessity of 

tuning smoothing parameters, where the amount of smoothness in the posterior estimates is 

determined by the data and the IWP prior of the covariance function.

2.3 Posterior inference

For BHM (1), the joint posterior distribution of  is

(6)

Equivalently, because of ζi = B(τ)−1Zi(τ), the joint posterior distribution of 

 is

(7)

2.3.1 Full conditional distribution of ζi—From (7), we can see that
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Then the full conditional posterior distribution of ζi is derived as

(8)

2.3.2 Full conditional distribution for μζ, Σζ—Conditioning on {ζi}, the posterior 

distribution of (μζ, Σζ) is

where f(μζ|Σζ) and f(Σζ) are given by (4), (5). Therefore,

(9)

(10)

2.3.3 MCMC procedure—We design the following Gibbs-Sampler algorithm for MCMC, 

which ensures computational convenience and posterior convergence.

Step 0: Set hyper-priors (Section 2.2) and initial parameter values. Initial values for 

 can be set as empirical estimates, which will induce the initial 

values for (μζ, Σζ) by (3).

Step 1: Conditioning on observed data Y and , sample {ζi} from (8).

Step 2: Conditioning on ζ, update μζ and Σζ respectively from (9) and (10).

Step 3: Conditioning on ({ζi}, μζ, Σζ), approximate {Zi(ti), μZ(ti), ΣZ(ti, ti), ΣZ(τ, ti), ΣZ(ti, 
τ), ΣZ(τ, τ)} by
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Step 4: Conditioning on Z and Y, update  by

which is derived from

Step 5: Given Στ = ΣZ(τ, τ), update  by

which is derived from

Generally, the posterior samples will pass the convergence diagnosis by potential scale 

reduction factor (PSRF) (Gelman and Rubin, 1992), with a fairly large number of MCMC 

iterations (e.g., 12,000 in our numerical studies).

3. Simulation studies

In the following simulation studies, we compared the BABF method with CSS (Green and 

Silverman, 1993), PACE (Yao et al., 2005a), Bayesian functional principle component 

analysis (BFPCA) (Crainiceanu and Goldsmith, 2010), standard Bayesian GP regression 

(BGP) (Gibbs, 1998), and BHM (Yang et al., 2016). We considered scenarios with stationary 

and nonstationary functional data, common and random observation grids, Gaussian and 

non-Gaussian data. Because both BFPCA and BGP are developed for common-grid 

scenarios, BHM has computational issues with a high-dimensional pooled-grid (the case 

with random grids), and BHM is known to be comparable with PACE (Yang et al., 2016); 

we compared all methods in the common-grid scenarios, but only compared BABF with 

CSS and PACE in the random-grid scenarios.

Because simulation data were evenly distributed over the domain, we selected an equally 

spaced working grid with size L = 20 for BABF. CSS was applied to each functional 

observation independently with the smoothing parameter selected by general cross-
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validation (GCV). For BFPCA, we used the covariance estimate by PACE, and selected the 

number of principle functions subject to capture 99.99% data variance. For BGP, we 

assumed the Matérn model for the covariance function with stationary data, while fixing the 

covariance at the PACE estimate with nonstationary data. All MCMC samples consisted of 

2, 000 burn-ins and 10, 000 posterior samples, and passed the convergence diagnoses by 

PSRF (Gelman and Rubin, 1992).

3.1 Studies with common grids

We generated 30 stationary functional curves (true signals) on the common equally-spaced-

grid with 40 points over , denoted by Z, from

(11)

Here, Materncor denotes the Matérn covariance function given by

where ρ is the scale parameter, ν is the order of smoothness, Γ(·) is the gamma function, and 

Kν(·) is the modified Bessel function of the second kind. The noise terms {εij} were 

generated from , such that the signal to noise ratio (SNR) was 2 (resulting 

in a relatively high volume of noise in the simulated data). The observed noisy functional 

data curves were given by Y = Z + ε.

Similarly, we generated 30 nonstationary functional curves on the same equally-spaced-grid 

with size L = 40, from a nonstationary  (i.e., a nonlinear 

transformation of a stationary GP), where X(·) denotes the GP in (11) and h(t) = t + 1/2, s(t) 

= t2/3. Noisy observation data were obtained by adding noises from  to the 

generated nonstationary GP data (true signals).

We repeated the simulations 100 times, and calculated the RMSEs of the estimates of signals 

{Zi(t)}, mean function μZ(t), covariance surface ΣZ(t, t), and residual variance  (t denotes 

the common observation grid). The average RMSEs (with standard deviations among these 

100 simulations) for stationary and nonstationary data are shown in Table 1, where the CSS 

estimates of (μZ, ΣZ) are sample estimates with pre-smoothed signals by CSS, and average 

RMSEs are omitted if the parameters are not directly estimated by the corresponding 

methods, such as  for BFPCA,  for CSS.

Table 1 shows that BGP produces the best estimates for the signals and residual variance 

(with the lowest RMSEs), while BHM and BABF give the second best estimates for the 

signals and residual variance, as well as the best estimates for the mean-covariance 

functions. With nonstationary data of common grids, BGP and PACE produce the best 
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covariance estimates, while BABF produces closely accurate covariance estimates, as well 

as the best estimates for the signals, mean function, and residual variance. Because of stable 

computations with nonstationary data, our BABF method produces better estimates than 

BHM. In addition, the CSS and BFPCA methods produce the least accurate estimates (with 

the highest RMSEs) for both stationary and nonstationary data, which demonstrates the 

advantage of simultaneously smoothing and estimating functional data as in BGP, BHM, and 

BABF.

Figure 1 (a, b, c, d) shows that all three Bayesian methods produce similarly accurate 

estimates for the functional signals and mean function of common grids. With nonstationary 

data, our BABF method produces the best signal estimates (Figure 1(b)). As for the 

functional covariance estimates (Web Figure 1), the parametric estimate by BGP is a Matérn 

function because of the assumed true Matérn model, but with underestimated diagonal 

variances. Practically, a wrong covariance model is usually assumed in BGP, which is likely 

to produce estimates with large errors and wrong structures. In contrast, the nonparametric 

methods such as BHM and BABF are more flexible and applicable for estimating the 

covariance function of real data.

In addition, we examined the coverage probabilities of the 95% pointwise credible intervals 

(CI) generated by BGP, BHM, and BABF, for the functional signals and mean-covariance 

functions (Web Table 1). For functional signals, BGP results in the highest coverage 

probability with stationary data (0.9483 vs. 0.9217, 0.9208), but the lowest coverage 

probability with nonstationary data (0.8350 vs. 0.9450, 0.8742). All methods have similar 

coverage probabilities for the functional mean (~ 0.7), where the relatively low coverage 

probabilities are due to the narrow 95% confidence intervals. As for the covariance, the 

coverage probability by BGP is significantly lower than the ones by BHM and BABF for 

both stationary (0.000 vs. 0.7869, 0.7869) and nonstationary data (0.3819 vs. 0.9913, 

0.9938), because BGP underestimates the diagonal variances.

In summary, with common grids, GP based Bayesian regression methods (BGP, BHM, and 

BABF) produce better smoothing and estimation results, compared to estimating mean-

covariance functions using the pre-smoothed functional data by CSS. Moreover, the results 

by BABF are at least similar to the ones by BHM, and better with nonstationary data.

3.2 Studies with random grids

For this set of simulations, we generated 30 true functional curves from the stationary and 

non-stationary GPs as in Section 3.1, with observational grids (L = 40) that were randomly 

(uniformly) generated over . Raw functional data were then obtained by adding 

noises from  to the true signals. We compared our BABF method (using an 

equally spaced working grid ) with CSS and PACE, by 100 simulations.

Table 2 presents the average RMSEs of the signals, residual variance, and mean-covariance 

functions (evaluated on the equally-spaced grid over  with length 40), along with the 

standard deviations from 100 simulations in the parentheses. It is shown that our BABF 
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method (with lowest RMSEs) performs consistently better than CSS and PACE for signal 

and mean estimates, with both stationary and nonstationary data of random grids.

Figure 1 (e, f) shows that BABF produces the best signal estimates in the random-grid 

scenarios. This is because CSS smooths functional samples independently; PACE only uses 

limited information per pooled-grid point; while BABF borrows strength across all 

observations through basis function approximations. For both stationary and nonstationary 

functional data, PACE and BABF give closely accurate mean estimates, while CSS gives the 

least accurate mean estimate (Figure 1 (g, h)). In addition, PACE produces the roughest 

covariance estimate (Web Figure 2), for only using limited information on the pooled-grid 

points. The BABF coverage probability of the covariance is 0.9506 for stationary data and 

0.8550 for nonstationary data, showing the good performance of our BABF method.

In summary, with random grids, our BABF method produces the best signal and mean 

estimates, compared to CSS and PACE. Although the sample covariance estimate using the 

pre-smoothed data generated by CSS has the lowest RMSE for nonstationary data, the 

analogous estimate using the more accurately smoothed data generated by BABF will have 

at least similar RMSE.

3.3 Studies about robustness

To test the robustness of our BABF method for handling non-Gaussian data, we further 

simulated stationary functional data from a non-Gaussian process, 0.2(X(t)2−1)+X(t), which 

is a modified Hermite polynomial transformation of the GP X(t) in (11). We simulated 

functional data with n = 30, random grids (p = 40) over , and noises from 

. Compared to CSS, our BABF method has RMSE 0.4278 vs. 0.7092 for the 

signal estimates, 0.1271 vs. 0.4992 for the functional mean estimate, and 0.4417 vs. 0.8886 

for the functional covariance estimate. These results demonstrate that our BABF method is 

robust for analyzing non-Gaussian functional data. In addition, we note that it is crucial to 

select a correct prior structure, A(·,·) in (1), of the covariance function. In general, we 

suggest using the Matérn model for stationary data and a smoothed covariance estimate by 

PACE for nonstationary data.

3.4 Goodness-of-fit diagnostics

In addition to model fitting, we considered goodness-of-fit diagnosis of the proposed BABF 

method. Specifically, we applied the goodness-of-fit diagnosis method using pivotal 

discrepancy measures (PDMs) (Yuan and Johnson, 2012) on the residuals, εi(t) = Yi(t)−Zi(t), 
in the Bayesian hierarchical model (1) on which BABF is based. Following the method 

proposed by Yuan and Johnson (2012), we constructed PDMs using standardized residuals 

from the posterior samples in MCMC. The PDM follows a chi-squared distribution under 

the null hypothesis that the residuals follow the  distribution (i.e., global goodness-

of-fit for the Bayesian hierarchical model). In all simulation studies, the p-values of testing 

the null hypothesis of global goodness-of-fit for the Bayesian hierarchical model are greater 

than 0.25, providing no evidence of lack-of-fit.
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4. Application on real data

We analyzed a functional dataset from an obesity study with children and adolescents (Lee 

et al., 2016), by the Children’s Nutrition Research Center (CNRC) at Baylor College of 

Medicine. This study estimated the energy expenditure (EE in unit kcal) of 106 children and 

adolescents (44 obese cases, 62 nonobese controls) during 24 hours with a series of 

scheduled physical activities and a sleeping period (12:00am–7:00am), by using the CNRC 

room respiration calorimeters (Moon et al., 1995). We only analyzed the sleeping energy 

expenditure (SEE) data measured at 405 time points during the sleeping period. This real 

SEE data set provides a good example of high-dimensional common grids. The goal of this 

study was to discover different data patterns between obese cases and controls, providing 

insights about obesity diagnosis.

We applied CSS, PACE, and BABF on this SEE functional data. Specifically, CSS was 

applied independently per sample with a smoothing parameter selected by GCV; PACE was 

applied with common grid [1 : 405]; and BABF was applied with the equally spaced 

working grid over [1 : 405] with size L = 30. Both PACE and BABF were applied separately 

for the functional data of obese and nonobese groups. Figure 2 (a, b) shows that CSS 

produces the roughest signal estimates, leading to the roughest mean-covariance estimates 

(Figures 2 (c, d); Web Figures 3 and 4). Both PACE and BABF produce smoothed signal 

estimates and mean-covariance estimates. The mean estimate by BABF has better periodic 

patterns than the one by PACE (Figures 5 (c, d)), and the BABF estimates of the correlations 

between two apart time points are less than the PACE estimates (Web Figure 4).

Further, we applied the goodness-of-fit test (Yuan and Johnson, 2012) to the residuals from 

the BABF method (one test per functional sample). Although the residual means are 

consistently close to 0, the p-values for 52% functional curves are less than 0.05/n, 

suggesting evidences of lack-of-fit with Bonferroni correction (Bonferroni, 1936) for 

multiple testing. This is because the residual variances of this real data are no longer the 

same across all observations. To address the issue of lack-of-fit for this SEE data, we need to 

assume sample-specific residual variances in the Bayesian hierarchical model (1), which is 

beyond the scope of this paper but will be part of our future research.

Despite the lack-of-fit issue for this real data application by BABF, the smoothed data are 

still improved over the raw data and the smoothed data by alternative methods for follow-up 

analyses. Using the classification analysis as an example, we next illustrate the advantage of 

using the smoothed data by BABF for follow-up analyses. Considering the SEE data of 

obese and nonobese children as two classes, we used the leave-one-out cross-validation 

(LOOCV) approach to evaluate the classification results for using the raw data, and the 

smoothed data by CSS, PACE, and BABF. Basically, for each sample curve, we trained a 

SVM model (Cortes and Vapnik, 1995) using the other sample curves, and then predicted if 

the test sample was an obese case. The error rate (the proportion of misclassification out of 

106 samples) is 48.11% for using the raw data, 40.57% for using the smoothed data by CSS, 

and 36.79% for using the smoothed data by PACE, and 33.02% for using the smoothed data 

by BABF. The smoothed data by our BABF method lead to the smallest error rate. Thus, we 

believe using the smoothed data by BABF will be useful for follow-up analyses.
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5. Discussion

In this paper, we propose a computationally efficient Bayesian method (BABF) for 

smoothing and estimating mean-covariance functions of high-dimensional functional data, 

improving upon the previous BHM method by Yang et al. (2016). Our BABF method 

projects the original functional data onto the space of selected basis functions with reduced 

rank, and then conducts posterior inference through MCMC of the basis-function 

coefficients. As a result, BABF method not only retains the same advantages as BHM, such 

as simultaneously and nonparametrically smoothing and estimating mean-covariance 

functions, but also provides additional computational advantages of scalability, efficiency, 

and stability.

With n functional observations, a pooled observation grid of length p, and m MCMC 

iterations, BABF reduces the computational complexity from O(np3m) to O(nK3m), and the 

memory usage from O(p2m) to O(K2m), by MCMC in the basis-function space with reduced 

rank K ≪ p. For examples, using a 3.2 GHz Intel Core i5 processor, BABF only costs about 

3 minutes for n = 30, K = 20, and m = 12, 000, and about 9 minutes for n = 44, K = 30, and 

m = 12, 000. Although BABF (with 12, 000 MCMC iterations) takes about 4× longer time 

than PACE, BABF provides complementary credible intervals to quantify the uncertainties 

of the posterior estimates, as well as basis function representations for the nonparametric 

estimates of functional signals and mean-covariance functions. Moreover, BABF produces 

more accurate results than PACE for functional data observed on random grids.

Both simulation and real studies demonstrate that BABF performs similarly to BHM and 

other Bayesian GP regression methods with functional data observed on low-dimensional 

common grids, and that BABF outperforms the alternative methods (e.g., CSS and PACE) 

with functional data observed on random grids or high-dimensional common grids. In 

addition, the real application shows that the classification analysis using the smoothed data 

by BABF produces the most accurate results.

For now, BABF assumes the same mean-covariance functions and residual variance for 

functional data, both of which are not true for most of the real data. Despite the model 

inadequacy, the smoothed data by BABF are still useful for follow-up analyses as shown in 

the real application of SEE data. To make the method more flexible for real data analysis, 

one might assume group-specific mean-covariance functions and sample-specific residual 

variances. This is beyond the scope of this paper and will be part of our future research.

In conclusion, BABF greatly improves computational scalability and decreases the memory 

usage required by the standard MCMC procedure used in BHM, while efficiently smoothing 

functional data and estimating mean-covariance functions in a nonparametric way. By 

implementing MCMC with the induced model of basis-function coefficients, BABF 

provides one solution for the computational bottleneck of general Bayesian GP regression 

methods, especially for analyzing high-dimensional functional data (e.g., spatial-temporal 

data) with Gaussian-Wishart processes. It is noteworthy to see that BABF coincides with the 

idea of using least squares with basis functions as linear regressors, as mentioned by Stein 

(2014), which provides an alternative approach from the scalable (dynamic) nearest 
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neighbor GP models by constructing a sparsity-inducing prior for the covariance function 

(Datta, Banerjee, Finley, and Gelfand, 2016; Datta, Banerjee, Finley, Hamm, and Schaap, 

2016).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank the Children’s Nutrition Research Center at the Baylor College of Medicine for 
providing the metabolic SEE data (funded by National Institute of Diabetes and Digestive and Kidney Diseases 
Grant DK-74387 and the USDA/ARS under Cooperative Agreement 6250-51000-037). In addition, the authors 
would like to thank the writing lab of the School of Public Health at University of Michigan for helping proofread 
this manuscript. Jingjing Yang and Dennis D. Cox were supported by the NIH grant PO1-CA-082710. Research of 
Taeryon Choi was supported by Basic Science Research Program through the National Research Foundation (NRF) 
of Korea funded by the Ministry of Education (2016R1D1A1B03932178).

References

Baladandayuthapani V, Mallick BK, Young Hong M, Lupton JR, Turner ND, Carroll RJ. Bayesian 
hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. 
Biometrics. 2008; 64:64–73. [PubMed: 17608780] 

Banerjee A, Dunson DB, Tokdar ST. Efficient Gaussian process regression for large datasets. 
Biometrika. 2013; 100:75–89. [PubMed: 23869109] 

Banerjee S, Gelfand AE, Finley AO, Sang H. Gaussian predictive process models for large spatial data 
sets. Journal of the Royal Statistical Society: Series B. 2008; 70:825–848.

Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto 
Superiore di Scienze Economiche e Commerciali di Firenze. 1936; 8:3–62.

Cardot H, Ferraty F, Sarda P. Spline estimators for the functional linear model. Statistica Sinica. 2003; 
13:571–592.

Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995; 20:273–297.

Crainiceanu CM, Goldsmith AJ. Bayesian functional data analysis using winbugs. Journal of 
Statistical Software. 2010; 32:11.

Cressie N, Johannesson G. Fixed rank kriging for very large spatial data sets. Journal of the Royal 
Statistical Society: Series B. 2008; 70:209–226.

Datta A, Banerjee S, Finley AO, Gelfand AE. Hierarchical nearest-neighbor gaussian process models 
for large geostatistical datasets. Journal of the American Statistical Association. 2016; 111:800–812.

Datta A, Banerjee S, Finley AO, Hamm NAS, Schaap M. Nonseparable dynamic nearest neighbor 
gaussian process models for large spatio-temporal data with an application to particulate matter 
analysis. The Annals of Applied Statistics. 2016; 10:1286–1316.

Dawid AP. Some matrix-variate distribution theory: notational considerations and a bayesian 
application. Biometrika. 1981; 68:265–274.

de Boor, C. Computational aspects of optimal recovery. In: Micchelli, CA., Rivlin, TJ., editors. 
Optimal Estimation in Approximation Theory. Springer US; Boston, MA: 1977. p. 69-91.

Fan Y, James GM, Radchenko P. Functional additive regression. The Annals of Statistics. 2015; 
43:2296–2325.

Ferraty, F., Vieu, P. Nonparametric functional data analysis: theory and practice. Springer-Verlag; New 
York: 2006. 

Finley A, Banerjee S, Gelfand A. spBayes for large univariate and multivariate point-referenced spatio-
temporal data models. Journal of Statistical Software. 2015; 63:1–28.

Gaffney, PW., Powell, MJD. Optimal interpolation. Springer; Berlin Heidelberg: 1976. 

Yang et al. Page 14

Biometrics. Author manuscript; available in PMC 2017 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Statistical 
Science. 1992; 7:457–472.

Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. 
Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1984; 6:721–741.

Gibbs, MN. PhD thesis. University of Cambridge; UK: 1998. Bayesian Gaussian processes for 
regression and classification. 

Green, PJ., Silverman, BW. Nonparametric regression and generalized linear models: a roughness 
penalty approach. CRC Press; 1993. 

Gromenko O, Kokoszka P. Nonparametric inference in small data sets of spatially indexed curves with 
application to ionospheric trend determination. Computational Statistics & Data Analysis. 2013; 
59:82–94.

Hall P, Horowitz JL, et al. Methodology and convergence rates for functional linear regression. The 
Annals of Statistics. 2007; 35:70–91.

James M. The generalized inverse. The Mathematical Gazette. 1978; 62:109–114.

Kaufman CG, Sain SR. Bayesian functional ANOVA modeling using gaussian process prior 
distributions. Bayesian Analysis. 2010; 5:123–149.

Lee JS, Zakeri IF, Butte NF. Functional principal component analysis and classification methods 
applied to dynamic energy expenditure measurements in children. Technical Report. 2016

Matérn, B. PhD thesis. Meddelanden fran Statens Skogsforskningsinstitut; 1960. Spatial variation. 
Stochastic models and their application to some problems in forest surveys and other sampling 
investigations. 

Micchelli CA, Rivlin TJ, Winograd S. The optimal recovery of smooth functions. Numerische 
Mathematik. 1976; 26:191–200.

Moon JK, Vohra FA, Valerio Jimenez OS, Puyau MR, Butte NF. Closed-loop control of carbon dioxide 
concentration and pressure improves response of room respiration calorimeters. Journal of 
Nutrition-Baltimore and Springfield then Bethesda. 1995; 125:220–220.

Quinonero Candela, J., E, RC., Williams, CKI. Technical report. Applied Games, Microsoft Research 
Ltd.; 2007. Approximation methods for gaussian process regression. 

Quick H, Banerjee S, Carlin BP. Modeling temporal gradients in regionally aggregated california 
asthma hospitalization data. The Annals of Applied Statistics. 2013; 7:154–176.

Ramsay JO, Dalzell C. Some tools for functional data analysis. Journal of the Royal Statistical Society: 
Series B. 1991; 53:539–572.

Ramsay, JO., Silverman, BW. Functional data analysis Springer Series in Statistics. second. Springer-
Verlag; New York: 2005. 

Rasmussen, CE., Williams, CKI. Gaussian Processes for Machine Learning. MIT Press; Cambridge, 
MA: 2006. Adaptive Computation and Machine Learning

Sang H, Huang JZ. A full scale approximation of covariance functions for large spatial data sets. 
Journal of the Royal Statistical Society: Series B. 2012; 74:111–132.

Scheipl F, Staicu AM, Greven S. Functional additive mixed models. Journal of Computational and 
Graphical Statistics. 2015; 24:477–501. [PubMed: 26347592] 

Shi J, Wang B, Murray-Smith R, Titterington D. Gaussian process functional regression modeling for 
batch data. Biometrics. 2007; 63:714–723. [PubMed: 17825005] 

Shi, JQ., Choi, T. Gaussian process regression analysis for functional data. Chapman and Hall/CRC; 
2011. 

Stein ML. Limitations on low rank approximations for covariance matrices of spatial data. Spatial 
Statistics. 2014; 8:1–19. Spatial Statistics Miami. 

Yang J, Ren P. BFDA: A matlab toolbox for bayesian functional data analysis. arXiv preprint arXiv:
1604.05224. 2016

Yang J, Zhu H, Choi T, Cox DD. Smoothing and meancovariance estimation of functional data with a 
bayesian hierarchical model. Bayesian Analysis. 2016; 11:649–670.

Yao F, Müller HG, Wang JL. Functional data analysis for sparse longitudinal data. Journal of the 
American Statistical Association. 2005a; 100:577–590.

Yang et al. Page 15

Biometrics. Author manuscript; available in PMC 2017 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yao F, Müller HG, Wang JL. Functional linear regression analysis for longitudinal data. The Annals of 
Statistics. 2005b; 33:2873–2903.

Yuan Y, Johnson VE. Goodness-of-fit diagnostics for bayesian hierarchical models. Biometrics. 2012; 
68:156–164. [PubMed: 22050079] 

Zhu H, Brown PJ, Morris JS. Robust, adaptive functional regression in functional mixed model 
framework. Journal of the American Statistical Association. 2011; 106:1167–1179. [PubMed: 
22308015] 

Zhu H, Yao F, Zhang HH. Structured functional additive regression in reproducing kernel hilbert 
spaces. Journal of the Royal Statistical Society: Series B. 2014; 76:581–603.

Yang et al. Page 16

Biometrics. Author manuscript; available in PMC 2017 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Example smoothed functional data of common grids in (a, b), mean estimates of common 

grids in (c, d), example smoothed functional data of random grids in (e, f), and mean 

estimates of random grids in (g, h), along with 95% pointwise CIs by BABF.
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Figure 2. 
Example smoothed functional data in (a, b) and mean estimates in (c, d), along with 95% 

pointwise CIs by BABF, for the real SEE data.
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