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Abstract

Previous experiments have shown that the lifetime of a gramicidin A dimer channel (which forms 

from two non-conducting monomers) in a lipid bilayer is modulated by mutations of the 

tryptophan (Trp) residues at the bilayer-water interface. We explore this further using extensive 

molecular dynamics simulations of various gA dimer and monomer mutants at the Trp positions in 

phosphatidylcholine bilayers with different tail lengths. gA interactions with the surrounding 

bilayer are strongly modulated by mutating these Trp residues. There are three principal effects: 

eliminating residue hydrogen bonding ability (i.e., reducing the channel-monolayer coupling 

strength) reduces the extent of the bilayer deformation caused by the assembled dimeric channel; a 

residue’s size and geometry affects its orientation, leading to different hydrogen bonding partners; 

and increasing a residue’s hydrophobicity increases the depth of gA monomer insertion relative to 

the bilayer center, thereby increasing the lipid bending frustration.
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INTRODUCTION

Membrane proteins often have “aromatic belts,” rich in Trp and Tyr residues, at the bilayer-

water interface (see Pogozheva et al.1 for a review). These regions are important in 

determining protein folding,2–4 interfacial anchoring,5–9 and function.10–15 Gramicidin A 

(gA) channels have been important tools in establishing these principles. Previous molecular 

dynamics (MD) studies on gA suggested that the bilayer deformation profiles at the two 

ends of a pore-forming, asymmetric monomer are quite different, i.e., the Trp-rich N-

terminus deforms the adjacent lipids more than the hydrophobic C-terminus (Figure S1 from 

Kim et al.16). To explore the effects of gA residues at the bilayer-water interface on the 

adjacent lipids and channel itself, we performed extensive all-atom MD simulations of gA 

dimers and monomers where the four Trp residues per monomer have been substituted with 

other residues.

gATrp channels (i.e., wild-type gA; monomer sequence of of formyl-
VGALAVVVW9LW11LW13LW15-ethanolamide, where D-amino acids are underlined) 

form by transmembrane dimerization of two anti-parallel β-helical monomers (Figure 1A),5 

which are anchored to the bilayer interface by the amphipathic Trp residues.2,3,5 The 

monomer↔dimer equilibrium is described by:3,11,17,18

(1)

where M and D denote the non-conducting monomers and conducting dimers, k1 and k−1 are 

the association and dissociation rate constants, respectively, kB is Boltzmann’s constant, and 
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T the temperature in Kelvin.  encompasses the energy associated with inter-

monomer hydrogen bonds formed by formyl-V1GALA5 at the dimer interface. Although the 

transition state is not well characterized, we assume that  is independent of the 

mutations studied here because N-terminal modifications have minimal effects on the 

energetics of subunit dimerization at the C-termini (where the monomers are linked).10 If 

 is assumed to be constant for all mutants, differences in mean channel lifetime 

must be attributed to changes in , the bilayer deformation energy associated with 

the formation of dimeric channels.

For uncorrelated events, such as channel monomerization/dimerization, that occur at an 

average rate, there is a distribution of channel lifetimes that can be described by a mean 

channel lifetime, τ (for a review, see Lundbæk et al.19). Table 1 summarizes published 

experimental mean channel lifetimes for gA channels where the four Trp residues of gATrp 

were mutated to: i) 1-methyltryptophan (gAmTrp); ii) tyrosine (gATyr); or iii) phenylalanine 

(gAPhe); see Figure 1 for more information on these mutations. Appendix I provides a 

detailed theoretical treatment relating experimental mean channel lifetimes with the bilayer 

deformation energetics ( ) assuming that  (gA monomer-monomer 

association energetics) is constant across all mutations. It is shown here that the variations in 

channel lifetime imply that residue-specific interactions at the bilayer-water interface alter 

. It is also apparent that lipid type affects channel lifetime.11,17,20 As within the rest 

of this manuscript, results should be compared between structurally related residues (e.g., 

Trp and mTrp; Tyr and Phe) because residue size/geometry affects the mean channel lifetime 

in nontrivial ways.21

MD simulations were performed on channels where experimental mean channel lifetimes 

are available (gATrp, gAmTrp, gATyr, gAPhe), as well as: i) an alchemical 1-methyltryptophan 

without side-chain charges (gAnc-mTrp); ii) glutamine (gAGln); and iii) leucine (gALeu). The 

set of gATrp, gAmTrp, and gAnc-mTrp were selected to study the roles of the indole hydrogen 

bond donor site (which is eliminated in mTrp) and the Trp/mTrp side chain dipole (which is 

nearly identical for mTrp and Trp,3 but absent in nc-mTrp). Similarly, the Tyr/Phe and 

Gln/Leu pairs are structurally related, but differ in their side chain dipoles and ability to 

form hydrogen bonds. The influence of Trp mutations is described in terms of i) the 

structure and dynamics of gA bilayer-spanning dimers (the root mean squared deviations 

(RMSD) and fluctuations (RMSF), gA tilt, hydrogen bonding and interaction patterns, and 

Trp and mutant residues’ side chain orientations); ii) bilayer hydrophobic thickness (and its 

decomposition) profiles as a function of radial distance from the channel; and iii) the 

relationships between lipid traces, the per area free energy of bending with respect to 

curvature, monomer z-positioning, and the channel-monolayer interfacial slope.

METHODS

System setup

All systems were built, minimized, and partially equilibrated using the Membrane Builder 
module23,24 of CHARMM-GUI (www.charmm-gui.org).25 The dimer gATrp structure (PDB:

Beaven et al. Page 3

J Chem Theory Comput. Author manuscript; available in PMC 2017 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1JNO) was used for the gATrp simulations as well as the scaffold for Trp mutations.22 The 

topology and parameter information for gAmTrp, not available in the standard CHARMM 

force field,26–29 was obtained from the GAAMP gateway (http://gaamp.lcrc.anl.gov).30 See 

Table 2 and Table S1 for system information.

The first set of simulations contained 90 dC18:1 lipids per leaflet and 0.15 M KCl. Three 

independent replicas for each mutation were simulated for 220 ns using NAMD31 in the 

isothermal-isobaric (NPT) ensemble. Constant temperature was maintained at 303.15 K 

using Langevin dynamics with a collision frequency of 1 ps−1. Constant pressure was 

maintained at 1 atm by a Nosé-Hoover Langevin piston32,33 with a piston period of 50 fs and 

a piston decay of 25 fs. The CHARMM all-atom protein force field26 including dCMAP27,28 

was used with the C36 lipid force field29 and TIP3P water model34. The SHAKE 

algorithm35 was used with a 2-fs time step. Electrostatic interactions were calculated using 

the particle-mesh Ewald method36 (mesh size ~1 Å, ϰ = 0.34 Å−1, and sixth-order B-spline 

interpolation), and van der Waals interactions were switched off between 10–12 Å by a 

force-switching function.37

The second set of simulations were performed with 90 dC20:1 or dC22:1 lipids per leaflet. 

The gATrp data were previously published,38 and gAmTrp, gAnc-mTrp, gATyr, and gAPhe 

simulations were performed with the following conditions: i) harmonic RMSD restraints on 

the dimer and monomers, ii) xy positional restraints to keep monomers at maximum 

separation, iii) 1 fs time step, and iv) constant temperature of 310.15 K. The other simulation 

parameters are the same as in the above simulations with dC18:1. Three replicas of 

monomer-containing and dimer-containing systems were run for 100–170 ns each.

Constructing lipid traces

To better understand the lipid conformational changes imposed by the channel, average lipid 

traces were calculated.38 The trace is a radial property, which assuming cylindrical 

symmetry, describes the average position of lipid as function of distance (r) from the center 

of the channel. Briefly, a histogram in r (bin width of 0.06 Å) is formed based on the 

coordinates of the head group through sn-2 tail atoms of all lipids. For each radial bin, there 

is a density, ρi(r), and an average height, zi, for each atom type i. A value r0 is calculated for 

the first trace (i.e., lipids closest to the channel), such that:

(2)

where n is a user-defined, targeted number of atom type i (e.g., n = 3.5, which is same value 

used in Sodt et al.38). The space between traces is based on n, so traces are spaced closer at 

large r compared to traces near the channel (i.e., the number of lipids per bin goes as 2π(rb − 

rb−1), where b is some arbitrary bin). Once r0 is known, the weighted average radial position, 

〈ri〉, and weighted average height, 〈zi〉, of atom type i between 0 and r0 are known:

(3)
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The first radial trace is constructed with these {〈ri〉, 〈zi〉} pairs by connecting them as they 

are chemically from the head group through the sn-2 lipid tail. For the next n lipids (i.e., the 

second trace), r0 is used as a lower limit and Equation 2 defines the next upper limit. This 

process is repeated until enough traces have been constructed to provide a clear view of the 

lipid bending and tilt as a function of r. These traces should not be confused with radial lipid 

shells, which have been previously defined by Voronoi tessellations.20 Although the spacing 

between traces (dependent on n) presented herein is arbitrary, the traces could be formed by 

shell. However, the radial extent of lipid shells is large enough to wash out some details 

associated with the finely binned traces.

Also note that traces do not reach z = 0 because each atom position in the trace is based on 

the average, and not the most likely position. Figure S2, produced from simulations of lipid-

only dC22:1 (data from Sodt et al.38), demonstrates why the traces do not reach z = 0. 

Although the lipid terminal carbon atoms are mostly positioned around z = 0 Å, there are 

shoulders on the probability distributions (where the terminal carbon atoms approach the 

head groups due to tail entropy). These shoulders raise the weighted average position of the 

terminal carbon atoms to z ≈ 3.5 Å. This matches well with the z-position where the traces 

end when the lipids are in the effective bulk (e.g., see Figure 6; it is assumed that lipids at 

large r behave similarly to how they would in a lipid-only system).

Lipid per-area free energy change with respect to curvature, F̄′(0)

Traces provide insight into the leaflet bending frustration, but the frustration can be 

quantified by the leaflet per-area free energy change with respect to curvature (at zero 

curvature), F̄′(0), which is calculated by:38–42

(5)

where F̄ is the per-area Helfrich bending energy,43 R−1 is leaflet curvature at the pivotal 

plane, and the integrand describes the pressure within the leaflet (where pL(z) and pN(z) are 

the lateral and normal components of the pressure tensor, respectively). Because the leaflets 

are constrained to be planar by hydrophobic interactions and periodic boundary conditions, 

F̄′(0) is evaluated at R−1 = 0. As defined, F̄′(0) = 0 means that there is no bending 

frustration, and the magnitude of F̄′(0) provides information about the bending frustration 

within a leaflet. By convention, a positive F̄′(0) indicates a leaflet would bend toward its 

head groups if it was unconstrained (i.e., a negative curvature).

In bilayers that are thicker than the dimeric channel, the bending frustration includes three 

contributions. First, the lipids considered in this study have negative intrinsic curvature, so 

forcing these lipids to be in a planar bilayer creates leaflet frustration. Second, inserting a gA 

monomer into a leaflet could alleviate or exacerbate the leaflet frustration (being a physical 

contribution to the leaflet frustration, F̄′m(0)). Last, inserting a dimer introduces a physical 

contribution from the two monomers and a contribution from the dimerization event itself, F̄

′d(0). By simulating independent monomers (one per leaflet) and independent dimers (one 
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per bilayer) at the same channel/lipid ratio, we can calculate leaflet F̄′m(0) and F̄′d(0), 

respectively. The difference between these values, ΔF̄′(0) = F̄′d(0) − F̄′m(0), is the leaflet 

bending frustration due to dimerization. ΔF̄′(0) can be used to understand differences in 

mean channel lifetime (i.e., the more bending frustration as a result of dimerization, the 

shorter the lifetime).

RESULTS AND DISCUSSION

In this section, gATrp and mutant channels are first considered in dC18:1 lipid bilayers (Table 

2). The results in the following subsection demonstrate channel stability on our simulation 

timescale and describe residue orientation (χ1-χ2 distributions) as a function of size and 

geometry. The remaining subsections provide insight into the bilayer compression and 

bending contributions to  and how these results relate to experimental mean 

channel lifetimes. Bilayer hydrophobic thickness profiles are presented and decomposed to 

describe how bilayer deformations primarily depend on a residue’s ability to form hydrogen 

bonds to adjacent lipids and secondarily on the residue’s hydrophobicity. These hydrophobic 

thickness profiles provide information on the compression contribution to . Finally, 

using simulations of a subset of channel mutants in dC20:1 and dC22:1 bilayers, lipid traces 

and the per area free energy of bending with respect to curvature are discussed and related to 

the channel-monolayer interfacial slope.

gA channel dynamics are affected by mutation

Before considering the channel-induced bilayer deformations, we describe the mutant 

channel characteristics. In dC18:1 bilayers, all channels were stable for the duration of the 

simulations, as evident from the per-residue root-mean-square fluctuations (RMSF: Figure 

S3) and root-mean-square deviations (RMSD) with respect to the minimized initial structure 

(Figure S4). As expected (e.g., Ingólfsson et al.27), there are variations in the RMSF at the 

N-termini of all channels (particularly in gAGln and gALeu) as well as some transient 

structural variations (evident from the increases in RMSD) in the mutants. Channel tilt is 

also affected by the mutations (see Figure S5 and Table S2 for the tilt distributions and 

average tilt angles, respectively). Channels with residues that can form hydrogen bonds with 

the bilayer have smaller tilt angles than their counterpart residues that cannot form hydrogen 

bonds, implying that these interactions are important for positioning/anchoring of the 

channels in the bilayer. Comparing gAmTrp and gAnc-mTrp further suggests that the side 

chain dipole helps orient/stabilize the channel.

Although channel tilt is affected by the mutations, related residues (Trp, mTrp, and nc-mTrp; 

Tyr and Phe; Gln and Leu) have nearly identical major χ1-χ2 populations (some minor 

populations differ among related residues). For example, although Trp, mTrp, and nc-mTrp 

have different hydrophobicity and ability to form hydrogen bonds, their χ1-χ2 population 

distributions are nearly identical (Figure 2, in agreement with Sun et al.3). Tyr and Phe also 

have very similar χ1–χ2 distributions, as do Gln and Leu (Figure S6 and S7, respectively). 

These distributions suggest that residue size and geometry affect preferred rotamer states 

more than hydrophobicity or hydrogen bond formation. These preferred states determine 
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how the residue will interact with its environment, thereby partially determining the 

residue’s hydrogen bonding partners.

dC18:1 lipid slippage is affected by channel mutation

Previous MD simulations have shown that lipids tend to slip over the top of the channel, 

which releases some of the bilayer’s frustration caused by hydrophobic adaptation to the 

channel.16,20,38,44,45 The number of lipids that slip over the top of the channel is linked to 

the strength of the interactions between the channel and the adjacent lipids. This channel-

bilayer coupling was explored using two complementary methods: radial distribution 

functions (Figure S8) and lipid contacts with the channel (Figure S9).

The radial distribution functions show that lipid acyl chains remain outside of r ≈ 8–10 Å 

(the approximate channel radius). Channels with residues capable of forming hydrogen 

bonds (Trp, Tyr, Gln) have low choline densities near r = 0 Å. Residues that cannot form 

hydrogen bonds (mTrp, nc-mTrp, Phe, and Leu) have higher densities near r = 0 Å, 

demonstrating that the extent of lipid slippage depends on polar interactions between the 

channel and the adjacent lipids (Table S3). Next, we quantified the lipid components (acyl 

chain, carbonyl, phosphate, or choline) and water that were within 4 Å of any channel side 

chain heavy atom (Figure S9). All residues that can form hydrogen bonds (Trp, Tyr, and 

Gln) have more contact with the carbonyl and phosphate groups, as well as the choline 

(because the lipids are more restricted in z due to hydrogen bonding), as compared to 

residues that cannot form hydrogen bonds. Residues that cannot form hydrogen bonds have 

higher contact incidence with the lipid tails because of lipid slippage (causing these more 

hydrophobic residues to be buried in lipid tails).

The observation that different residues prefer to be close to different lipid chemical features 

is corroborated by the frequency of hydrogen bond formation for gATrp, gATyr, and gAGln 

channels in dC18:1 (Figure 3). The average fraction of time that a given residue formed 

hydrogen bonds was decomposed into the contributions from the lipid carbonyl, lipid 

phosphate, water, and channel backbone. Trp interacts preferentially with lipid and Tyr with 

water. Gln stands out by its interactions with the channel backbone, as all Gln residues form 

occasional hydrogen bonds to backbone oxygen of adjacent residues (its flexibility is also 

reflected in its preferred rotamer plots; Figure S7). The Gln9 and Gln15 side chains 

furthermore form two relatively strong reciprocal hydrogen bonds with each other (N–

H···O=C and vice versa). These hydrogen bond frequency distributions demonstrate that 

residues do indeed prefer different chemical features in the environment. Intuitively, these 

interactions influence the channel and surrounding bilayer conformations.

Adjacent lipid compression is a function of interfacial residues

Radial bilayer hydrophobic thickness profiles, dH(r), determined from the average z 
locations of the C22 and C32 lipid tail carbon atoms (i.e., the carbon atoms bonded to the 

lipid carbonyl group), provide insight into the bilayer deformation (i.e., the compression 

contribution to ) caused by the channel. The profiles for gATrp, gATyr, and gAGln 

are similar to each other and distinct from the profiles around channels that cannot form 

hydrogen bonds with lipids, demonstrating that lipids are constrained to match residues that 
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can form hydrogen bonds, as compared to residues that cannot form hydrogen bonds. This is 

evident by deeper minima at the edge of the channel (r ≈ 10–12 Å) for gATrp, gATyr, and 

gAGln compared to gAmTrp, gAnc-mTrp, gAPhe, and gALeu (i.e., the steep increase in dH(r) at 

r < 10 Å arises because lipids slip over the top of the channel; Figure 4).

The difference in the depths of minima for related residues (Trp, mTrp, and nc-mTrp; Tyr 

and Phe; Gln and Leu) reflects the different leaflet frustration due to these residues. As 

discussed previously,20,38 the main energetic contribution of the deformation energy 

adjacent to the channel is lipid compression (curvature frustration to be discussed later in 

this article). Hydrogen bond formation appears to be the major factor in determining 

channel-lipid coupling (e.g., compare the Trp and mTrp profiles and minima), but 

hydrophobicity also plays a role in the deformation (e.g., compare mTrp and nc-mTrp 

profiles and minima). Trp causes a larger deformation compared to mTrp, and 

correspondingly the gATrp channel’s mean channel lifetime is substantially shorter than the 

gAmTrp channels. The same is true for gATyr and gAPhe, where gATyr channels produce a 

larger deformation and have a comparatively shorter lifetime than gAPhe channels.

Because the ability to form hydrogen bonds appears to be the key factor in deforming the 

bilayer adjacent to the channel, we decomposed dH(r) into contributions from lipids whether 

they form hydrogen bonds with Trp, Tyr, or Gln. A lipid forming hydrogen bonds with a 

target residue is placed in the appropriate radial bin for the “H-bond” group; otherwise, it is 

placed in the “Free” group (Figure 5).

The profiles for the H-bond lipids (blue curves) are similar in that d(r) ≈ 23 Å at r ≈ 10–12 

Å, close to the canonical hydrophobic length of gATrp channels46–48. Because the channel 

and lipids are able to tilt, channel-lipid hydrogen bonds can be formed at large radial 

distances, as shown in the frequency distribution for hydrogen bond formation (in grey). If 

the channel or lipids do tilt to form hydrogen bonds, the bilayers appear to be thinner, which 

is the case at larger r (blue curves). The “Free” lipids have a biphasic thickness profile, with 

a minimum at the edge of the channel, which most likely due to the hydrophobic matching 

requirement (to the channel, to the H-bond lipids, or to both).

With access to atomistic details, the differences in the hydrophobic thickness profile minima 

can be attributed to hydrogen bonding between gA channels and surrounding bilayers. As 

shown explicitly in Appendix I, effective channel hydrophobic lengths can be used to 

explain differences in mean channel lifetimes. That is, an effectively “longer” channel would 

have a longer lifetime in thick bilayers. Ideally, the differences in hydrophobic thickness 

minima near the channel could be directly related to the channel’s effective hydrophobic 

length, and therefore, the channel lifetime. Based on the lifetimes of gATyr and gAPhe in 

dC18:1 (Table 1), one would predict ~3 Å difference in effective channel length. Figure 4, 

however, shows a smaller difference in apparent hydrophobic length between gATyr and 

gAPhe (~1.25 Å), suggesting energetic contributions other than simple compression may be 

involved. One such contribution could be the bilayer curvature frustration (i.e., the second 

major contributor to  along with compression frustration).
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dC20:1 and dC22:1 bilayers are affected by channel mutation

To gain energetic insight into the curvature frustration due to hydrophobic mismatch and 

interfacial residue influence, we calculated the per area free energy change with respect to 

curvature, F̄′(0) (see Methods for more details). To increase the signal-to-noise ratio 

associated with these calculations, the simulations for F̄′ 0 calculations were carried out in 

dC20:1 and dC22:1. As noted in the Methods, an RMSD restraint was placed on all channel 

backbones to eliminate structural changes that are possible at large channel-bilayer 

hydrophobic mismatch,2,17,49 but the RMSD restraint applied in this study has little effect on 

the Trp χ1-χ2 dynamics (Figure S10).

Lipid traces were calculated for both gA dimers and monomers (see Methods), and the 

results in dC22:1 are shown in Figure 6; the traces were similar in dC20:1 (results not shown). 

All traces near the dimers have a similar shape, but there appears to be some lipid tilt at large 

r (i.e., the traces around the gATrp dimers are tilted relative to those around the gAmTrp 

dimers). There are also changes in the traces adjacent to the monomers, but these differences 

are not propagated as far in r. Some lipid tails curl underneath the monomers to form basket-

like assemblies as has been reported for other interfacial peptides.41

While the lipid traces provide a useful representation of lipid distortion caused by the 

peptide, more quantitative information regarding the curvature frustration is obtained by 

calculating F̄′(0) (Table 3). In particular, ΔF̄′(0) describes the leaflet curvature frustration 

due to the dimerization event, and is therefore directly related to . Table 3 lists F̄

′m(0), F̄′d(0), and ΔF̄′(0) for gATrp, gAmTrp and gAnc-mTrp in dC20:1 and dC22:1; estimates 

for gATrp are from previous work,38 and results for gATyr and gAPhe in dC22:1 are included.

ΔF̄′(0) varies for structurally related residues as: gATrp > gAmTrp > gAnc-mTrp and gATyr > 

gAPhe in dC22:1 (and gATrp > gAmTrp ≈ gAnc-mTrp in dC20:1). As expected, ΔF̄′(0) is larger 

in dC22:1 than in dC20:1 for all channels due to hydrophobic matching considerations.38 In 

either membrane environment, removing an interfacial residue’s ability to form hydrogen 

bonds reduces the leaflet curvature frustration. In dC22:1, the curvature frustration gATrp > 

gAmTrp > gAnc-mTrp indicates that hydrogen bond formation and hydrophobic interactions 

are important. Within a residue family (Trp, mTrp, and nc-mTrp; Tyr and Phe), we observe 

that monolayer curvature frustration is linked to channel lifetime. It is energetically more 

costly for gATrp channels to remain dimers than gAmTrp dimers; the same is true for gATyr 

and gAPhe channels, which agrees with the experimental mean channel lifetimes (Table 1).

A few possibly interfering effects are represented by F̄′(0). These effects are: the change in 

real surface curvature by dimerization indicated by the contact slope; the introduction of 

lipid-channel interactions that contribute to lateral stress; and the “wedge effect” where 

space is created to relieve the entropic strain of lipid tails, also altering the lateral stress. The 

wedge effect and contact slope are discussed herein, relating how system properties correlate 

to the expected change in F̄′(0). However, we recognize the possibility that mutations 

themselves affect the value of F̄′(0) by influencing the lateral stress profile. Since the effect 

is present in both monomer and dimer values, this is approximately canceled when taking 

the difference between the two, ΔF̄′(0). Nevertheless, these considerations complicate 
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assigning the change in frustration completely to a particular mechanism. Therefore, when 

we interpret the monomer values directly in the “wedge effect” section below, there are 

unknown contributions to the lateral forces due to the mutations.

The “wedge effect” on ΔF̄′(0)

The wedge effect is expected to impact ΔF̄′(0) through the monomer F̄′(0) value because for 

monomers lipids can extend their tails under the sub-unit so that it acts as a wedge. It has 

previously shown that the location of rod-like amphipathic peptides along the z-axis 

influences F̄′(0),40,41,50,51 and this study extends the treatment to gA monomers. To study 

this, we constructed symmetrized z-density plots to correlate gA’s preferred positioning in 

the bilayer with F̄′(0) (Figure 7 for dC22:1 and Figure S11 for dC20:1). Here, a gA monomer 

can be thought of as a wedge, whose position relative to the lipid pivotal plane 

(approximately the lipid C22 atom) affects the preferred bending of the lipid leaflet (see 

Figure 8). The monomers studied here have high density below the pivotal plane, and 

thereby induce negative curvature frustration (i.e., a more positive F̄′m(0) compared to the 

lipid-only value); the insertion depth correlates to the value of F̄′m(0). For example, gATrp 

monomers frustrate the leaflets less than gAmTrp monomers (Table 3 and Figures 7 & 8).

The monomer z-positions vary with side chain preference for the interface relative to the 

bilayer core, which can be evaluated using a suitable free energy scale.53 For example, Tyr 

prefers the interface over the bilayer core,54 as evident by the large amount of hydrogen 

bonding to water (Figure 3). Trp similarly prefers to be at the interface, whereas mTrp and 

nc-mTrp prefer to be deeper in the core. Therefore, gAmTrp, gAnc-mTrp, and gAPhe 

monomers are shifted closer to z = 0, as compared to gATrp and gATyr monomers. 

Hydrophobicity affects monomer position in the bilayer, which affects the leaflet bending 

frustration.

Contact slope effect on ΔF̄′(0)

As shown previously, the slope at the gATrp-lipid interface is correlated with the bending 

frustration of the lipid monolayer.38 In this section, the interfacial slope is tied to the 

coupling between a channel and the surrounding lipids. We assume that the residues at the 

bilayer-water interface determine the channel-monolayer coupling. Changes in coupling 

strength affect the lipid monolayer contact slope, which can be observed directly from 

simulation, or through a surface model, inferred from F̄′(0).

As a validation of this assumption, consider the curvature frustration of the Helfrich 

Hamiltonian (F̄′(0)) due to a monolayer meeting a cylindrically symmetric inclusion with 

slope h′(r0):

(4)

where 2D indicates this is the curvature-only two-dimensional surface model (see Sodt et 

al.38 and Ring55 for more information and the derivation of the connection between slope 
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and total curvature). The monolayer bending modulus is kc,m, A is the modeled area, and r0 

is the radius of the channel.

As shown in Sodt et al.,38 an estimate for h′(r0) can be obtained from the C22 lipid atom 

(the first carbon below the carbonyl of the sn-2 chain) locations in the lipid traces, which 

eliminates the artifact in h′(r0) from lipids slipping over the top of gA.56 Lipid C22 atom 

positions are shown in Figure 9, which is developed from the traces in Figure 6A. For this 

discussion, h′(r0) is defined as the change in lipid thickness as a function of radius, and is 

calculated from the beginning of the trace (r ≈ 8 Å) to r ≈ 15 Å, which is considered to be 

the radial extent of the first lipid shell.

The value of h′(r0) near the channel appears to relax slowly, particularly for gAnc-mTrp, 

presumably due to the complex environment of the channel-monolayer interface. Vales of h′
(r0) are 0.39 ± 0.03 (gATrp), 0.32 ± 0.01 (gAmTrp), and 0.23 ± 0.05 (gAnc-mTrp). The h′(r0) 

near the monomer are much closer to zero, which further validates the assumption that gA 

monomers do not strongly deform their monolayer, which is necessary for the theory 

discussed in this study.

Using Equation 4, F̄′(0)2D was calculated and compared to ΔF̄′(0) from Table 3 

(comparison shown in Table 4). These values are comparable because the method of 

calculating ΔF̄′(0) from the all-atom simulations cancels out extraneous interactions 

between gA and the bilayer that might affect curvature stress. With this consideration, they 

both theoretically are models of the deformation energy due to dimerization. The value of 

kc,m is defined as a linear interpolation between bilayer (kc,b = 2kc,m) values for dC18:1 (kc,b 

= 17.0 kcal/mol) and dC24:1 (kc,b = 31.7 kcal/mol) taken from Venable et al.57 This results in 

kc,m ≈ 13.5 kcal/mol for dC22:1. The value of r0 is empirically defined to be 10 Å.

Plotting F̄′(0)2D against ΔF̄′(0) provides a slope of 1.14 ± 0.52. That is, there is good 

correlation between the two theories. Although there is high statistical uncertainty in 

obtaining F̄′(0)2D and ΔF̄′(0), the statistics allow some statements to be made. First, it 

reiterates that mutations of residues at the bilayer-water interface have profound effects on 

lipid bending energetics (i.e., these interfacial residues play a role in curvature generation). 

Moreover, it puts the effect into quantitative terms that models of complex bilayers, 

employing the Helfrich Hamiltonian, can use to model how the membrane affects channel 

function. In other words, if the coupling strength increases, h′(r0) increases and thus the 

lipid bending frustration in a particular functional state (here, the dimer) increases. 

Therefore, the value of F̄′(0) not only describes the lipid bending frustration, but it also 

gives insight into the deformation itself and how it couples to the state of the inclusion.

CONCLUSIONS

This manuscript describes the effects of mutating the Trp residues of gA dimers and 

monomers in chemically similar lipid types (dC18:1, dC20:1, and dC22:1) and relates these 

results to , the energy associated with deforming the bilayer when dimeric 

gramicidin channels form, which in turn is related to experimental mean channel lifetimes. 

Before describing the bilayer energetics, we first demonstrated that the dimer backbone 

Beaven et al. Page 11

J Chem Theory Comput. Author manuscript; available in PMC 2017 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structure (RMSD) and dynamics (RMSF) are mostly unchanged by mutation in dC18:1 

bilayers on a typical MD timescale (~200 ns). Additionally, on a dimer, a residue at a 

particular location (9, 11, 13, 15) has its orientation determined by its size and geometry, as 

evidenced in χ1-χ2 plots.

While a residue’s size/geometry determines its orientation in the bilayer, a residue’s ability 

to form hydrogen bonds has direct correlation to the bilayer deformation caused by the 

channel. Trp, Tyr, and Gln perturb dC18:1 bilayers similarly, while mTrp, Phe, and Leu 

perturb the bilayer less than their counterparts that can form hydrogen bonds with lipids. 

Hydrophobicity impacts bilayer deformations as well, but does not seem to have as large of 

effects as the ability to hydrogen bonds. The hydrophobic nc-mTrp, for example, perturbs 

the bilayer less than mTrp (Figure 4), but the difference between the radial thickness profiles 

for nc-mTrp and mTrp is less than the difference between mTrp and Trp. Indeed, 

decomposition of the radial thickness profiles (Figure 5) demonstrates that residue-lipid 

hydrogen bonds play a key role in the overall deformation. Because a channel’s lifetime is 

determined by the transition energy for channel dissociation, which is related to , 

we attribute residue-lipid hydrogen bond formation to the differences between gATrp/gAmTrp 

and gATyr/gAPhe lifetimes.

Overall, there was a distinct trend in the leaflet curvature frustration due to dimerization, ΔF̄

′(0). gA analogues with residues that can form hydrogen bonds produced more bilayer 

leaflet frustration more than those that cannot; residue hydrophobicity also is important for 

determining curvature frustration (gAmTrp compared with gAnc-mTrp). As was the case with 

compression contributions, curvature frustration also contributes to . Indeed, within 

a residue family (Trp and mTrp; Tyr and Phe), the ΔF̄′(0) correlate well with experimental 

channel lifetimes. The value of ΔF̄′(0) is innately tied to the interfacial monolayer slope at 

the channel-monolayer interface, with the slope itself dependent on the channel-monolayer 

coupling strength.

Although F̄′d(0) was similar, within error, for all mutant dimers, F̄′m(0) differs among the 

mutant monomers due to lipid conformational differences near the channel (including 

basket-formations), which can be understood by considering residue hydrophobicity. gA 

monomers with hydrophobic residues (nc-mTrp > Phe ≈ mTrp) embed deeper in their leaflet 

compared to Trp and Tyr. The more monomer density there was below the lipid pivotal 

plane, the more curvature frustration was induced (supported by z-density plots; Figures 7 & 

8).

The results here were obtained on a simple channel, but the overall effects of mutations at 

the bilayer-water interface should apply generally to other membrane proteins. A mutation 

involving a change in residue size/geometry, ability to form hydrogen bonds with lipids, 

and/or hydrophobicity could change the protein’s orientation, adjacent bilayer deformation, 

and/or preferred positioning relative to the bilayer core.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX I

Experimental Discussion

The bilayer free energy change due to a channel-caused deformation can be approximated 

as:20,58

(A1)

where u0 is the bilayer deformation equal to the difference in thickness between the 

unperturbed (d0) lipid bulk and effective channel length (l). H is the phenomenological 

spring coefficient that describes the bilayer “stiffness.”

Though  denotes the free energy of the gramicidin monomer↔dimer equilibrium, 

we focus here only on the channel lifetimes, not the rates of appearance because side chain 

mutations that remove the ability of Trp and Tyr to form hydrogen bonds also promote other, 

non-channel conformers,2,3 which complicates any analysis of the rates of appearance. 

Therefore, we focus on the sequence-dependent contributions to  to describe 

differences in mean channel lifetimes.

Working from transition state theory, the dissociation rate (and therefore, the channel 

lifetime, τ) is related to the transition free energy ΔG‡ (specifically, the activation energy 

due to a dimer reaching the dissociation transition state):

(A2)

where 1/τ0 the frequency factor for the reaction. ΔG‡ contains contributions from 

and , which is discussed in the Introduction. Lundbæk et al.59 provide an analysis 

of the relation between changes in  and changes in ΔG‡.

When the channel reaches the transition state during dissociation, the inter-monomer 

separation has increased by δ (generally accepted to be ~1.6 Å), which is associated with the 

initial steps of breaking the inter-monomer hydrogen bonds:

(A3)
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where  describes the bilayer energy difference when the channel is fully 

associated and when it is at δ separation. Combining Equations A2 and A3, and taking the 

derivative with respect to u0:58

(A4)

Equation A4 relates the channel lifetime to the bilayer deformation, bilayer stiffness and 

inter-monomer separation at the transition state. From Equation A4 we can equate the 

effective channel lengths of two channel types to their mean lifetimes:

(A5)

which can be rearranged to:

(A6)

Equation A6 states how the difference between the effectives lengths of two channels is 

related to the difference in lifetimes of the two channels. Therefore, using the previously 

published lifetimes in Table 1, the difference in effective channel lengths can be estimated. 

In dC18:1:

(A7)

where Hδ is defined to be 784 J/(mol·Å).20 That is, gAPhe has a longer effective 

hydrophobic length than gATyr.
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Figure 1. 
Positions of the Trp residues in gramicidin A channels and the side chain structures 

examined here. (A1) Side and (A2) top views of equilibrated gATrp (initial PDB: 1JNO).22 

The Trp locations are shown in yellow with the indole nitrogen in blue. Experimental data 

are available for (B1) tryptophan, (B2) 1-methyltryptophan, (B3) tyrosine, and (B4) 

phenylalanine. The simulations in this article also use (B5) glutamine, (B6) leucine, and the 

alchemical 1-methyltryptophan without charges.
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Figure 2. 
Trp, mTrp, and nc-mTrp χ1-χ2 dihedral angles in dC18:1. χ1 is the dihedral of the backbone 

N, Cα, Cβ, and Cγ atoms. χ2 is the dihedral of the Cα, Cβ, Cγ, and Cδ atoms (Cδ is 

double bonded to Cγ and bonded to indole N). The color scheme for the heat plots is shown 

on the right with log{count/bin} and 1° bin widths in both dimensions.
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Figure 3. 
Fraction of time that gATrp, gATyr, and gAGln form hydrogen bonds to dC18:1. A hydrogen 

bond is defined as a donor and acceptor pair within 2.4 Å of each other (with no angular 

cutoff). The fractions do not sum to unity because the residues do not form hydrogen bonds 

at all times.
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Figure 4. 
Radial hydrophobic thickness profiles of dC18:1 bilayers with different embedded gA 

analogues.
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Figure 5. 
Decomposition of the radial hydrophobic thickness profiles for gATrp, gATyr, and gAGln 

channels in dC18:1. The total hydrophobic thickness profiles from Figure 4 are decomposed 

into profiles from lipids that form hydrogen bonds to the channel (H-bond) and lipids that do 

not form hydrogen bonds with the channel (Free). Grey lines show the radial distributions of 

lipids that form hydrogen bonds to the channel (plots are normalized to the peak of the 

gATrp distribution).
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Figure 6. 
dC22:1 lipid traces around dimers and monomers: (A) gATrp (black), gAmTrp (red), and 

gAnc-mTrp (blue); (B) gATyr (black) and gAPhe (red). The x-axis is extended relative to the y-

axis to make the differences between the traces clearer.
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Figure 7. 
Heavy-atom z-density plots for the lipid C22 atom (black), entire channel (green), and the 

channel’s interfacial residues (blue) in dC22:1. Dotted red lines are shown to accentuate the 

entire channel peak shifts relative to gATrp. Data is plotted in 0.5 Å bins. Systems were 

centered by shifting the bilayer’s center of mass to z = 0 Å.
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Figure 8. 
Illustration of (A) gATrp and (B) gAmTrp monomers in a leaflet in which there is a large 

channel-bilayer hydrophobic mismatch (e.g., dC22:1). The monolayer pivotal plane is 

represented by the black dotted line, the approximate average interfacial residue z-position is 

the red dotted line, the bilayer center (i.e., z = 0) is the solid line, and the lipid head groups 

are circles. gATrp resides closer to the lipid head groups and has more density above the 

pivotal plane, whereas gAmTrp has more density below the plane. When there is more gA 

density below the pivotal plane, the lipids will more strongly prefer to bend toward the head 

groups. The extent of the bending will be constrained by the opposing leaflet because the 

two leaflets are coupled by hydrophobic constraints, but a curvature frustration will be 

produced. The magnitude of frustration will depend on the position of the monomer in its 

leaflet. Note that this, too, is an approximation because if the intrinsic curvature in the upper 

leaflet were sufficiently high it would also affect the lower leaflet; also see Phillips et al.52
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Figure 9. 
The C22 atom surface constructed from the dC22:1 lipid traces in Figure 6A around gATrp 

(black), gAmTrp (red), and gAnc-mTrp (blue): (A) dimers and (B) monomers.
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Table 1

Mean lifetimes (τ) of channels (in ms) formed by gATrp and analogues in dC18:1 (1,2-di-oleoyl-

phosphatidylcholine, DOPC), 4ME dC16:0 (1,2-di-phytanoyl-phosphatidylcholine, DPhPC), dC18:2 (1,2-di-

linoleoyl-phosphatidylcholine, DLoPC).†

Mutant
dC18:1

# 4ME dC16:0 # dC18:2
&

Lipid

gATrp 600 ± 140 570 ± 57 3100 ± 150

gAmTrp – 2200 ± 220 –

gATyr 110 ± 15 80 ± 8 520 ± 140

gAPhe 670 ± 100 330 ± 30 3400 ± 760

†
Experimental conditions: 1.0 M CsCl, ±200 mV, and 25 ± 1 °C.

#
From Table 2 of Girshman et al.17

&
From Table 2 of Fonseca et al.,11 (gAmTrp data from Table 3 of Sun et al.3)
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Table 2

Lipid type and channel combinations used in this study.†

Mutant
dC18:1 dC20:1 dC22:1

Lipid

gATrp Y Y Y

gAmTrp Y Y Y

gAnc-mTrp Y Y Y

gATyr Y – Y

gAPhe Y – Y

gAGln Y – –

gALeu Y – –

†
Phosphatidylcholine (PC) lipids were used and are denoted by their tail type, e.g., dC18:1 (1,2-di-oleoyl-PC, DOPC), dC20:1 (1,2-di-eicosenoyl-

PC), and dC22:1 (1,2-di-erucoyl-PC). “Y” denotes simulations were performed for this combination; “–” denotes that no simulations were 

performed.
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Table 4

Comparison between F̄′(0)2D calculated from simulation values of h′(r0) and ΔF̄′(0) from simulation.

F̄′(0)2D ΔF̄′(0)

gAnc-mTrp 0.030 ± 0.007 0.0269 ± 0.0033

gAmTrp 0.042 ± 0.002 0.0340 ± 0.0032

gATrp 0.052 ± 0.005 0.0484 ± 0.0049
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