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Spatial-temporal distribution of 
dengue and climate characteristics 
for two clusters in Sri Lanka from 
2012 to 2016
Wei Sun1, Ling Xue1,2 & Xiaoxue Xie1

Dengue is a vector-borne disease causing high morbidity and mortality in tropical and subtropical 
countries. Urbanization, globalization, and lack of effective mosquito control have lead to dramatically 
increased frequency and magnitude of dengue epidemic in the past 40 years. The virus and the mosquito 
vectors keep expanding geographically in the tropical regions of the world. Using the hot spot analysis and 
the spatial-temporal clustering method, we investigated the spatial-temporal distribution of dengue in 
Sri Lanka from 2012 to 2016 to identify spatial-temporal clusters and elucidate the association of climatic 
factors with dengue incidence. We detected two important spatial-temporal clusters in Sri Lanka. Dengue 
incidences were predicted by combining historical dengue incidence data with climate data, and hot and 
cold spots were forecasted using the predicted dengue incidences to identify areas at high risks. Targeting 
the hot spots during outbreaks instead of all the regions can save resources and time for public health 
authorities. Our study helps better understand how climatic factors impact spatial and temporal spread of 
dengue virus. Hot spot prediction helps public health authorities forecast future high risk areas and direct 
control measures to minimize cost on health, time, and economy.

Dengue (DEN) is a vector-borne disease in humans as a major public health concern in many tropical and sub-
tropical countries1. It is the most rapidly spreading mosquito-borne viral disease that has increased 30-fold over 
the last 50 years, and keeps expanding its geographic distribution globally2. The causative agent dengue virus 
(DENV) consisted of four serotypes is an arbovirus transmitted to humans via the bites of infected Aedes mosqui-
toes. A large proportion of DENV infections, especially in children, progresses from mild dengue fever (DF) to a 
more severe and life-threatening disease known as dengue hemorrhagic fever (DHF)3. The incidences of DF and 
DHF and the rate of dengue hospitalizations have increased dramatically with the increase of the size, duration, 
and frequency of dengue epidemics in the past few decades4,5, especially in Southeast Asia6. The number of den-
gue cases reported to World Health Organization (WHO) has increased from 0.4 million in 1996 to 3.2 million in 
20152,7. It is now estimated that 50% of the world’s population are at risk of being infected by DENV7. The disease 
is estimated to place a heavy socio-economic burden on households, health care systems, and governments dur-
ing outbreaks, particularly for countries with developing economies8. Only fluid management and detection of 
early warning signs of severe disease can be fulfilled by clinical management, while no specific antiviral treat-
ments are currently available. Although the first dengue vaccine, Dengvaxia (CYD-TDV), was registered in 
Mexico in December, 20159, it is not effective for all strains. Hence, the vaccine is only recommended in regions 
where there is a high burden of the disease.

Transmission of DENV is mainly through the bites of infected female mosquitoes: Aedes Aegypti (Ae. aegypti) 
and Aedes Albopictus (Ae. albopictus). Ae. aegypti is the primary dengue vector in most endemic countries and 
mainly in urban areas, while Ae. albopictus serves as a vector primarily in rural areas10. The vectors can be trans-
ported from regions to regions by wind, vehicles, and airplanes, thus the disease can be transmitted from one 
location to another. Urbanization, globalization, environment, human behavior, and lack of control of vectors 
have contributed to the global distribution of DENV11. The population dynamics of the vectors is sensitive to 
environmental conditions12, such as humidity, precipitation, and temperature13–15.
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Sri Lanka has a history of over 40 years of DENV infection with a number of large epidemics in the past dec-
ade primarily along the heavily urbanized western coast, and often caused childhood fever. For example, Sri 
Lanka reported an infection rate of 220 per 100,000 people, and approximately a quarter of notified cases occurred 
in children under 15 years old living in dengue transmission areas16. And since the early 2000s, progressively 
larger epidemics in Sri Lanka have occurred every regular period of time and increased in magnitude and fre-
quency17. In urban areas, the disease incidence is the highest, especially in the district of Colombo, the most 
densely populated part of the country18.

Besides Sri Lanka, dengue remains a major and growing public health problem in many other tropical and sub-
tropical regions or countries, including Brail, and several regions in China etc. Comprehensive understanding of the 
temporal and spatial patterns of dengue can help develop mitigation strategies to prevent diseases, and save lives and 
economic costs for countries at risk of dengue transmission. The weekly dengue incidence data for Sri Lanka was 
made legally reportable since 199619, while the data for many other countries are still not publicly available, too 
aggregated, or missing. The analysis of the relationships between climatic factors and dengue epidemics in Sri Lanka 
may help understand the impact of climatic factors on the emergence and reemergence of dengue, and help design 
effective mitigation and control strategies for dengue in other tropical or subtropical regions.

Climate plays a major role in global and local spared of dengue as an environmental factor due to the impacts 
on dengue vector life cycle and the vectors’ ability to spread the disease among humans20. The climate of the island 
could be characterized as tropical due to its geographic location with two monsoons, the northeast monsoon 
(December to March) and the southwest monsoon (May-September). The two monsoons and the convectional 
activity during the intervening periods are the main origins of rainfall in Sri Lanka21. The average annual temper-
atures for the country range from 28 to 30 °C, and humidity ranges from 60 to 90% during different seasons in 
different regions of the country22. The mean annual temperatures are largely homogeneous in the low lands and 
rapidly decreasing in the highlands23. Elevated rainfall affects vector abundance by increasing immature mosquito 
habitats and stimulating egg hatching24. Even though heavy rainfalls may transiently reduce the risk of transmis-
sion by flushing larvae and pupae away from breeding sites or killing them, elevated humidity can increase mos-
quito survival25. Hence, the risk of dengue transmission may increase with elevated temperature, rainfall, and 
humidity by increasing the reproductive rate.

Since the distribution of DENV is spatially heterogeneous, identifying the spatial distribution and spatial clus-
ters of dengue and recognizing the association of dengue incidences with climatic factors may be an efficacious 
strategy to target surveillance and control efforts in a cost-effective manner, particularly in Sri Lanka where dengue 
is hyper-endemic and public health resources are scarce. The reported monthly dengue incidence data and daily 
meteorological data for various districts in Sri Lanka allowed exploring correlation between variation of dengue inci-
dences and meteorological factors. The analysis helps us deduce spatial evolution of dengue epidemic and determine 
high dengue incidences and clusters of regions with similar climatic characteristics of dengue epidemic.

Spatial-temporal analysis was widely used in detecting distribution patterns of infectious diseases26. Hot spot 
analysis is an important spatial analysis tool to identify unusual aggregations of epidemiological events and pre-
dict high risk areas of disease transmission. It is commonly used in detecting distribution patterns of diseases, 
identifying a locality with active disease transmission, and evaluating the association between disease incidence 
and climatic factors, ecological, socio-economic, and demographic factors27,28. Spatial-temporal clustering analy-
sis is a method for grouping objects based on their similarities in space and time. As a subfield of data mining, this 
method has gained high popularity in many fields, especially in geographic information science. Hence, spatial 
hot spot analysis and spatial-temporal clustering analysis are useful for disease surveillance, spatial and temporal 
epidemiology, population genetics, landscape ecology, crime analysis, and many other fields, and they play an 
important role in quantifying geographic variation patterns.

Several previous studies also focused on the distribution of dengue incidences by detecting its association 
with climatic factors for specific study areas. Bostan et al. analyzed the impact of temperature and precipitation 
on dengue epidemic, and found that increased sustenance of dengue infection can be explained by average tem-
perature and precipitation29. Sirisena et al. showed that dengue incidences have positive correlation with rainfall 
prior to two to five months, and positive correlation with a rise in temperature prior to nine months, while no 
positive correlation with temperature or humidity30. Sumi et al. analyzed climatic data and dengue incidence data 
for Manila of Philippines using time-series analysis, spectral analysis and the least squared method, and showed 
that dengue incidences are correlated not only with precipitation, but also relative humidity and temperature31. 
Johansson et al. demonstrated that short-term and seasonal autocorrelation were keys to improving short-term 
and long-term forecasts by analyzing dengue epidemic in Mexico32. Ehelepola et al. showed that dengue inci-
dences have negative correlation with large diurnal temperature ranges by analyzing the relationship between 
dengue incidences and temperature33. Choi et al. analyzed three provinces in Cambodia, and demonstrated that 
mean temperature and rainfall have significant association with dengue incidences34. They also showed that the 
association between dengue incidences and climatic factors apparently varies by locality, and dengue warning 
system should be implemented at a local or regional scale34. These analysis are helpful to implement effective 
measures for local governments.

Understanding spatial distribution and climatic characteristics of dengue can be helpful for Sri Lanka to 
implement controlling measures for different regions. Since the dynamics of mosquitoes and dengue epidemic 
vary in different regions of Sri Lanka, applying the same control measures for all 25 districts may not be effective. 
As practical experience showed that controlling dengue should be a regional effort, applying mitigation strategies 
only in one district may fail if its neighboring districts do nothing in controlling the spread of dengue virus35. 
Therefore, identifying important epidemic areas with similar incidences of dengue and revealing the common cli-
matic characteristics of dengue epidemic for these areas are prerequisites of implementing cooperative measures 
on controlling the spread of dengue virus effectively.
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The aims of this study are to analyze the spatial distribution of dengue, identify important dengue epidemic areas of 
Sri Lanka, and investigate the association of dengue cases with climatic factors, so as to strengthen the basis of dengue 
mitigation strategies in this high-burden country. We have evaluated the spatial and temporal distribution of dengue in 
all the 25 districts, forecasted dengue incidences and hot and cold spots, given real-time meteorological data and his-
torical dengue incidences, and derived the association of geographic and climatic risk factors with dengue incidences.

Results
Descriptive analysis.  Table 1 lists the number of dengue cases in all the 25 districts of Sri Lanka from 2012 
to 2016. The total number of cases over these years is high in areas with large population. Colombo reported the 
largest total number of dengue cases, accounting for nearly a third of the total number of cases in the whole coun-
try from 2012 to 2016. Besides, Colombo district reported the highest dengue caseload for any given year. The 
population in Colombo is around .2 3 million, approximately 12% of the national population, .20 4 million. 
Gampaha had the second largest total number of dengue cases over the years, which is nearly .15 42% of the total 
for the whole nation. Ratnapura had the third largest total number of dengue cases from 2012 to 2016. The popu-
lation densities in Colombo, Gampaha, and Ratnapura were the largest, second, and third, and the numbers of 
dengue cases for these three districts were in the same order. The smallest total number of dengue cases occurred 
in Kilinochchi located in the north of Sri Lanka with low population density. The total number of dengue cases in 
the whole nation reached the peak in 2016. Large numbers of dengue cases mostly occurred in Colombo and its 
surrounding areas, while small numbers of cases mostly occurred in the north of Sri Lanka. The number of den-
gue cases in Jaffna kept increasing from 2012 to 2016.

Spatial-temporal analysis has been conducted to identify transmission dynamics of dengue from 2012 to 2016 
in Sri Lanka. Table 2 showed dengue incidence, defined as the number of cases per 10,000 population, for all dis-
tricts from 2012 to 2016. Dengue incidences for Colombo from 2012 to 2016 were all above 40, which were the 
highest among all the other districts. The dengue incidence in Jaffna, located in the north of Sri Lanka, increased 
rapidly from .15 28 to .41 00, and was much more than the incidence of Gampaha in 2015 and 2016. Most districts 
in the north had small numbers of dengue cases and low incidences.

Prediction with historical dengue incidence data.  Association of dengue incidences with local climatic 
factors was evaluated by the Spearman’s correlation test at .0 05 significance for all 25 districts. The results showed 
that there were certain correlations between dengue incidences and local climates, and the correlations are differ-
ent for different districts.

District 2012 2013 2014 2015 2016 Total

Ampara 155 253 158 67 260 893

Anuradhapura 493 524 632 401 731 2781

Badulla 430 534 1113 566 1185 3828

Batticaloa 717 518 970 1474 612 4291

Colombo 10017 10489 14711 9881 16767 61865

Galle 1513 915 1224 1030 3086 7768

Gampaha 8006 3525 8811 4142 7173 31657

Hambantota 604 361 665 398 900 2928

Jaffna 894 709 1839 2016 2468 7926

Kalutara 2791 1962 2631 1559 3502 12445

Kandy 2517 1618 2336 1325 4063 11859

Kegalle 2705 1103 1724 711 1513 7756

Kilinochchi 93 85 90 92 86 446

Kurunegala 3537 2227 2464 1253 2556 12037

Mannar 186 58 359 105 232 940

Matale 596 462 649 401 1148 3258

Matara 1835 538 748 459 1384 4964

Moneragala 287 368 313 223 475 1666

Mulativu 42 167 134 142 182 667

Nuwara Eliya 342 312 314 180 421 1569

Polonnaruwa 289 515 558 250 479 2091

Puttalam 1800 829 916 739 1046 5330

Ratnapura 398 1732 2823 1041 3130 12664

Trincomalee 168 902 661 587 503 2821

Vavuniya 104 94 142 197 268 805

Total 44059 30802 46985 29239 54170 205255

Table 1.  The number of dengue cases for each district of Sri Lanka for 2012 to 2016 collected from Epidemiology 
Unit of Sri Lanka36.
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Next, ARIMAX models were generated for each district to predict future trends of dengue incidences. For 
each ARIMAX model, the dependent variable was dengue incidence, and the explanatory variable was chosen 
from local correlated climatic factors for each district. Dengue incidence data for 2012 to 2016 were collected 
from Epidemiology Unit of Sri Lanka36. Using data up to 2015, dengue incidences for 2016 were predicted. As 
shown in Fig. 1, most of the dengue incidences of 2016 fell into the forecasted regions.

Spatial distribution with hot and cold spots analysis.  A hot spot is defined as an area with great trans-
mission within its neighborhoods. On the contrary, a cold spot is an area with low transmission among nearby 
locations. Getis-Ord Gi* statistic was used to detect hot spots of dengue epidemic in Sri Lanka for each year from 
2012 to 2016. High GiZScores are associated with hot spots, and low GiZScores are associated with cold spots. 
Table 3 showed that hot spots, in 2012–2016, were mainly located in the west coast of Sri Lanka near Colombo. 
The hot spots tended to shift eastward to the east coast of Sri Lanka, and northward to Jaffna. Table 3 showed that 
cold spots of dengue incidences were mainly located in two areas: the southern area surrounding the Moneragala 
district and the mid-northern area adjacent to the Anuradhapura district. Thus, the districts in the south and 
mid-north of Sri Lanka were at low risk.

Hot and cold spots predicted using the predicted dengue incidences for 2016 shown in Fig. 1 were listed in 
the last column of Table 3. Colombo, Gampaha, and Jaffna districts were predicted as hot spots. Puttalam and 
Moneragala were predicted as cold spots. Most of the hot and cold spots of 2016 in Sri Lanka identified by analysis 
were included in our prediction.

Spatial-temporal clustering analysis.  During the study period, two spatial-temporal clusters were 
formed according to the similarity of dengue incidences in space and time. Table 4 indicated that dengue inci-
dences showed significant spatial-temporal associations, and p-value < .0 001, and two Log likelihood ratios were 
all greater than the critical value,  .12 36, for the standard Monte Carlo at 5% significance. The two clusters were all 
statistically significant. The first cluster only included Colombo in the hot spot, and the clustering period was 
from May 2014 to September 2016. The second cluster included 14 districts in the cold spots with clustering 
period from June 2013 to November 2015, and the clustering center was located in (7.94 N, 81.00E) and the radius 
was 129.69 km.

Climate characteristics of the spatial-temporal clusters.  For the two special-temporal clusters, Figs 2 
and 3 showed the trends of dengue incidences varying with climatic factors. For each cluster, the incidences dur-
ing clustering period were different from those during non-clustering period.

District 2012 2013 2014 2015 2016

Ampara 2.38 3.84 2.37 0.10 3.84

Anuradhapura 5.71 6.00 7.16 4.49 8.08

Badulla 5.26 6.46 13.33 6.71 13.88

Batticaloa 13.58 9.76 18.13 27.25 11.20

Colombo 42.99 44.84 62.41 41.60 70.01

Galle 14.19 8.52 11.31 9.44 28.00

Gampaha 34.66 15.17 37.69 17.47 30.24

Hambantota 10.0.03 5.73 10.74 6.34 14.13

Jaffna 15.28 12.04 31.01 33.77 41.00

Kalutara 22.78 15.91 21.20 12.47 27.77

Kandy 18.23 11.63 16.66 9.36 28.33

Kegalle 32.09 12.99 20.16 8.26 17.41

Kilinochchi 8.16 7.33 7.63 7.67 6.99

Kurunegala 21.78 13.63 14.98 7.56 15.25

Mannar 18.60 5.74 34.85 10.10 21.89

Matale 12.26 9.41 13.08 7.99 22.60

Matara 22.46 6.53 9.00 5.48 16.38

Moneragala 6.34 8 6.72 4.72 9.92

Mulativu 4.52 17.96 14.26 15.11 19.16

Nuwara Eliya 4.78 4.31 4.28 2.43 5.63

Polonnaruwa 7.08 12.44 13.45 5.97 11.27

Puttalam 23.53 10.75 11.74 9.35 13.06

Ratnapura 3.64 15.72 25.32 9.24 27.46

Trincomalee 4.41 23.43 16.91 14.79 12.45

Vavuniya 6.01 5.37 8.02 11.01 14.73

Table 2.  The dengue incidences for each district of Sri Lanka from 2012 to 2016. Dengue incidence is the 
number of cases per 10000 population. The population data for each district of Sri Lanka were collected from 
Department of Census and Statistics37.
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For the first cluster, Fig. 2 indicated that dengue incidences mainly peaked around July and December annu-
ally, and the lowest dengue incidences mainly occurred around April and September annually. The dengue 
incidences occurred during the clustering period were much higher than the incidences occurred during the 
non-clustering period. Further, Table 5 showed that during the clustering period, sample means and variances for 
temperature, humidity, and precipitation were larger than those during non-clustering period, while the sample 
means and variances for wind speed were smaller than those during non-clustering period.

For the second cluster, Fig. 3 showed that dengue incidences mainly peaked around April and June annually. 
We found that the dengue incidences occurred in the clustering period were much lower than those occurred dur-
ing the non-clustering period. Hence, the clustering period, from June 2013 to November 2015, can be considered 

Figure 1.  Annual dengue incidences for 25 districts of Sri Lanka from 2012 to 2016. We predicted dengue 
incidences for 2016 with dengue incidence data from 2012 to 2015 and meteorological data for 2016. The ∙ 
represents incidence data, the red lines represent the predicted data, and the dotted lines represent the 
confidence interval.
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as a low-incidence period. The sample means and variances of climatic factors for clustering and non-clustering 
periods were different. During the clustering period, the sample mean of the humidity was smaller, while the 
sample means of the maximum and mean wind speed were much larger, and the sample means for precipitation 

GiZScores 2012 2013 2014 2015 2016 Prediction for 2016

>1.50 Standard 
Deviation Colombo Gampaha Ratnapura Colombo Colombo Colombo Jaffna Colombo Colombo Jaffna

0.50~1.50 Standard 
Deviation

Kalutara Badulla Badulla Ampara Badulla Ampara

Kegalle Kalutara Gampaha Badulla Galle Batticaloa

Kurunegala Kurunegala Jaffna Batticaloa Gampaha Gampaha

Matara Mannar Ratnapura Jaffna

Puttalam Ratnapura Kalutara

Kandy

Kegalle

−0.50 ∼ 0.50 
Standard Deviation

Ampara Ampara Ampara Galle Ampara Anuradhapura

Batticaloa Batticaloa Batticaloa Gampaha Kurunegala Badulla

Galle Galle Kalutara Kalutara Mannar Galle

Jaffna Gampaha Kandy Kandy Matale Kalutara

Kandy Jaffna Kegalle Kegalle Matara Kandy

Mannar Kandy Kurunegala Mannar Mullaitivu Kegalle

Kegalle Mullaitivu Mullaitivu Ratnapura Kurunegala

Matale Nuwara Eliya Puttalam Trincomalee Mannar

Mullaitivu Polonnaruwa Trincomalee Vavuniya Mullaitivu

Polonnaruwa Trincomalee Vavuniya Polonnaruwa

Puttalam Ratnapura

Ratnapura Trincomalee

Trincomalee

 <−0.50 Standard 
Deviation

Anuradhapura Anuradhapura Anuradhapura Anuradhapura Anuradhapura Kilinochchi

Badulla Hambantota Galle Hambantota Batticaloa Hambantota

Hambantota Kilinochchi Hambantota Kilinochchi Hambantota Matale

Kilinochch Mannar Kilinochchi Kurunegala Kilinochchi Matara

Matale Matara Matale Matale Moneragala Moneragala

Moneragala Moneragala Matara Matara Nuwara Eliya Nuwara Eliya

Mullaitivu Nuwara Eliya Moneragala Moneragala Polonnaruwa Puttalam

Nuwara Eliya Vavuniya Puttalam Nuwara Eliya Puttalam Vavuniya

Polonnaruwa Vavuniya Polonnaruwa

Trincomalee

Vavuniya

Table 3.  Results of hot spots analysis on dengue incidences, Sri Lanka in 2012–2016. Hot and cold spots were 
identified according to dengue incidences and climatic factors in Sri Lanka from 2012 to 2016. Getis–OrdGi

* 
statistic was used to detect hot spots of dengue epidemic in Sri Lanka from 2012 to 2016. High GiZscores are 
associated with hot spots, and low GiZscores are associated with cold spots. Hot spots were mainly located in 
west coast of Sri Lanka near Colombo. The hot spots tended to shift eastward to the east coast of Sri Lanka, 
and northward to Jaffna. Cold spots were mainly distributed in the southern area surrounding the Moneragala 
district, and the mid-northern area adjacent to the Anuradhapura district. The last column is prediction for hot 
spots and cold spots of 2016 with the predicted dengue incidences in Fig. 1 for 2016.

Variables The first cluster The second cluster

Coordinates/radius (6.93 N, 79.85 E)/0 km (7.94 N, 81.00E)/129.69 km

Time frame from May 2014 to September 2016 from June 2013 to November 2015

Observed/expected 3.10 0.56

Relative risk 3.07 0.50

Log likelihood ratio 17196.38 9887.81

p-value <10−17 <10−17

Table 4.  The characteristics of each cluster. The first cluster includes Colombo, and the second cluster includes 
Ampara, Anuradhapura, Badulla, Batticaloa, Kurunegala, Kandy, Kegalle, Matale, Moneragala, Nuwara Eliya, 
Polonnarwa, Puttalam, Trincomalee, and Vavuniya.
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and temperature (minimum, average and maximum) were slightly larger than the corresponding sample means 
during non-clustering period. The sample variances for the minimum and maximum temperature were smaller, 
and the sample variances for the average wind speed was much larger than the corresponding sample variances 
during non-clustering period (Table 5).

Discussion and Conclusion
Dengue is a major public health problem affecting more than half of the world’s population living in tropical 
and subtropical regions of the world and has become a high priority disease for public health authorities in Sri 
Lanka since 1960s. Dengue is an all-year-around disease in Sri Lanka with peak number of reported dengue cases 
usually occurring during the two monsoons. The disease is estimated to place a heavy socio-economic burden 
on health care systems and governments due to the involvement of large numbers of public health staff in dengue 
control activities and the provision of free medical care to dengue patients at secondary care hospitals. This study 
is designed to identify the climatic factors, geographic locations, and population density that are associated with 
dengue risks to facilitate public health authorities to promptly target the high risk areas.

Figure 2.  Dengue incidences and monthly climatic factors between 2012 and 2016 for the first cluster. The 
clustering period is highlighted in blue from May 2014 to September 2016..
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Spatial analysis with hot spots is suitable to focalize health control measures and epidemiological surveillance 
in a cost effective manner particularly in regions where resources are limited, like Sri Lanka and many other coun-
tries. Moreover, spatial-temporal clustering analysis for detecting important dengue epidemic areas is also of great 
importance for the prevention and control of dengue and many other vector-borne diseases. We detected the dis-
tribution of dengue incidences in Sri Lanka in space and time, important areas of dengue epidemic, and further 
investigated the climate characters of dengue incidences for these important epidemic areas. One spatial-temporal 
cluster is the Colombo district and the other cluster includes the southern and mid-northern districts.

The major outbreaks keep appearing in the Colombo district and its surrounding districts. Colombo district 
is located in the most urbanized Western Province and in the wet zone of the Ceylon island. The weather is wet 
and tropical, which is favorable for breeding and survival of mosquitoes. Colombo has reported the largest num-
ber of cases among all the districts with peaks appearing in July and December, during the two monsoons each 
year. Colombo has a population of 2.3 million, accounting for .11 5% of the total population of the country37. 
Moreover, Colombo is the commercial and administrative hub of the country with around one million people 

Figure 3.  Dengue incidences and monthly climatic factors between 2012 and 2016 for the second cluster. The 
clustering period is highlighted in blue from June 2013 to November 2015.
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commuting in and out of the city daily21. High temperature, high humidity, heavy rainfall, low wind speed, high 
population density, and large mobility contribute to high dengue incidences in Colombo.The public sector costs 
of dengue control activities and the direct costs of hospitalizations in Colombo district were estimated to be high 
in this most heavily populated and urbanized district in Sri Lanka during the epidemic year of 2012 from the 
Ministry of Healths perspective8.

The 14 districts in the second spatial-temporal cluster, which are mainly located in the areas of cold spots from 
2012 to 2016, had consistently low dengue incidences between June 2013 and November 2015. These 14 districts 
are mainly located in the mid-north and south of Sri Lanka. The humidity and wind speed were found to have 
association with humidity and wind speed. During the clustering period, the sample mean of humidity was lower 
and the sample mean of wind speed was higher than corresponding ones during non-clustering period.

The analysis showed that climatic characteristics of dengue incidences for these two spatial-temporal clusters 
are different, then intervention measures on dengue for these regions should focus on different aspects. Firstly, 
the climate characteristics of dengue incidences in Colombo was obvious, that is, a strong association between 
the dengue incidences and climatic factors existed. Therefore, prevention and control measures should focus on 
the higher incidences caused by climate change. Secondly, for the 14-districts in the south and mid-north of Sri 
Lanka, the association of dengue incidences with climatic factors is weak, then the important driving factors of 
dengue transmission may be some non-climate factors. Therefore, prevention and control measures on dengue 
in this region should focus on other non-climate factors, such as environmental health, social media, human 
behavior change, and immigration of infectious agents etc.

Since daily or weekly dengue incidence data are not publicly available, we only considered relationships 
between dengue incidences and climatic factors for two important areas, while other areas of Sri Lanka are not 
discussed specifically. When the daily or weekly dengue incidence data are available, we could explore more on 
the distribution and climatic characteristics of dengue for non-clustering regions in Sri Lanka.

In this study, the prediction models (ARIMAX) were used to forecast dengue incidences with past incidence 
data and current meteorological data. The given incidence data points aligned within the forecasted area showed 
the reliability of these models in predicting future outbreaks. Prediction models can play an important role in 
controlling and predicting dengue outbreak effectively in Sri Lanka. Further, our findings contribute to a better 
comprehension of the spatial evolution of dengue by assessing the relationship between disease clusters and cli-
matic factors. These results can assist public health authorities with planning surveillance and control activities 
according to the weather. Focalizing dengue control measures for disease clusters may significantly reduce virus 
transmission in comparison with random interventions. Further studies are needed to define whether these hot 
spots can sustain over time and whether other hot spots arise. Similar studies can be applied to other vector-borne 
infections, such as Rift valley fever, Chagas, Chikungunya, and Zika virus affecting not only Sri Lanka but also 
other tropical and subtropical countries.

Methods
Study area.  Sri Lanka is an island in India Ocean located in the tropic area, spanning approximately .65 61 
thousand square kilometers. This country is classified into nine provinces and 25 administrative districts. 
According to the latest census in 2012, Sir Lanka has a population of approximately 20 million, and the density is 
309 per square kilometer. The density of population varies across the country38.

Climate variable

The clustering period Non-clustering period

Mean Median Variance Mean Median Variance

Incidence[a] 4.89 4.24 7.38 3.84 3.23 2.91

Minimum temperature[a] 25.61 26.00 1.11 25.03 25.00 1.11

Mean temperature[a] 30.19 30.00 1.16 29.55 30.00 0.61

Maximum temperature[a] 33.32 33.00 3.03 32.66 33.00 1.81

Humidity[a] 78.97 78.00 17.57 75.69 76.00 9.08

Precipitation[a] 327.08 267.61 61159.66 181.71 149.56 13746.66

Maximum wind speed[a] 11.55 11.40 2.28 12.08 12.10 2.56

Mean wind speed[a] 8.09 8.30 3.51 8.35 8.10 3.52

Incidence[b] 0.83 0.66 0.20 1.16 1.07 0.28

Minimum temperature[b] 22.08 22.4 1.14 21.85 22.1 1.20

Mean temperature[b] 27.84 27.73 1.30 27.11 27.40 1.23

Maximum temperature[b] 31.41 31.57 1.76 30.68 30.73 1.82

Humidity[b] 76.76 76.37 16.91 77.03 77.00 14.81

Precipitation[b] 220.44 203.28 24058.78 186.47 149.82 17854.98

Maximum wind speed[b] 11.51 10.56 9.67 11.09 11.09 9.78

Mean wind speed[b] 8.39 7.57 8.22 7.96 7.04 7.98

Table 5.  Description on the incidences and climatic factors for two clustering areas. The clustering period is 
from May 2014 to September 2016 for the first clustering area, and is from June 2013 to November 2015 for the 
second clustering area. The other period denotes the period from 2012 to 2016 except the clustering period. We let 
[a]denote climate variables for the first clustering area, and let [b]denote variables for the second clustering area.
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The country is consisted of three agro-climatic zones, wet, dry and inter-mediate zones. In Sri Lanka, cli-
matic characteristics vary for different geographical environment. Generally, its upland areas are cooler, while the 
coastal areas are warmer. The climate of the island is affected by two seasonal monsoons. One is the Northeast 
monsoon, which occurs from November to late February annually and affects the whole island. The other is the 
Southwest monsoon, which occurs in June and July annually and only affects the areas in the central highlands 
and southwest of Sri Lanka39.

Data Collection.  This study is mainly focused on 25 districts of Sri Lanka. The monthly number of dengue 
cases for each district between January 2012 and December 2016 were obtained from the epidemiology Unit, 
Ministry of Health, Sri Lanka36. The latest available population data were collected from the estimates calculated 
in 2012 by Department of Census and Statistics37. The source and units of dengue disease data, population data, 
latitude and meteorological data were shown in Table 6. Dengue incidences at district level were calculated by the 
following formula:

= × .Incidence Number of cases
Total population at risk

10,000
(1)

Since monthly population data are not available, we used the mid-year population collected from Department 
of Census & Statistics of Sri Lanka37 as an approximation of the monthly data.

Data Analysis.  The ARIMA (AutoRegressive Integrated Moving-Average) model methodology proposed by 
box and Jenkins analyzes univariate stochastic time series, i. e. error term of this time series40. The prerequisite for 
using this method is that the mean, variance and covariance of the series are all constant over time. All the typical 
results of the classical regression analysis are not valid for non-stationary series. Empirical studies found that 
including leading indicators into the model improves forecasting performance. The series Yt is said to be 
ARIMA p d q( , , ) if

φ θ ε− =L L Y L( )(1 ) ( ) , (2)d
t t

where εt  is white noise and no common factors exist between autoregressive polynomial, φ = −L( ) 1  
φ φ− −L Lp

p
1 , and moving average polynomial, θ θ θ= + + +L L L( ) 1 q

q
1 , where L is a lag operator. The 

ARIMA model is extended into ARIMA model with explanatory variable (X), called ARIMAX p d q( , , ). 
Specifically, ARIMAX p d q( , , ) can be represented by

φ θ ε− = Θ + .L L Y L X L( )(1 ) ( ) ( ) (3)d
t t t

In this study, correlation analysis and ARIMAX model were used to elucidate the association of climatic fac-
tors with dengue incidences and forecast future outbreaks. The analysis was implemented by the SPSS software 
(version 19). For the independent variable X , we selected the climatic factors that have high correlation with 
dengue incidences. The values of p, d and q are determined by the software by minimizing the error between the 
data and the prediction.

Hot and cold spots at the district level were determined by the hot spot analysis tool built in ArcGIS 10.541–43. 
Hot spots for dengue incidences were identified by the Getis-Ord ⁎G d( )i  statistic, which is defined as follows44:

=
∑

∑
=

=

⁎G d
w d x

x
( )

( )
,

(4)
i

j
N

ij j

j
N

j

1

1

where w d( )ij  is the spatial weight between district i and j, and xj is the dengue incidence for district j, and N  is the 
total number of districts. The ⁎Gi  statistic was used to test the statistically significant autocorrelation of dengue 
cases, and to determine the spatial dependence of nearby observations, for each year. In order to improve the 

Data Unit Source

Dengue cases dimensionless 36

Population dimensionless 37

Longitude,Latitude degree 23

Mean temperature °C 23

Maximum temperature °C 23

Minimum temperature °C 23

Relative humidity °C 23

Precipitation mm 23

Mean wind speed mm 23

Maximum wind speed mm 23

Table 6.  Sources of the data.
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performance of this statistical test, Ord and Getis (1995)45 extended this statistic to a standardized form, which is 
equivalent to the z-value of ⁎Gi ,

=
−⁎

⁎ ⁎

⁎Z G d G d E G d
Var G d

( ( )) ( ) ( ( ))
( ( ))

,
(5)

i
i i

i

where the expectation and variance of ⁎Gi  are as follows:

∑=
=

⁎E G d
N

w d[ ( )] 1 ( ),
(6)

i
j

n

ij
1

∑ ∑=
−






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




−


















.

= =

⁎Var G d
N N

s
x

N w d w d[ ( )] 1
( 1)

( ) ( )
(7)

i
j
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ij
j

n

ij2

2

1

2

1

2

Here s is the standard variance and x  is the sample mean. In this study, the weights are determined by Thiessen 
polygons based on regions with similar climate and short distances. Thiessen Polygons are Voronoi Cells that 
divide an area given a set of known values at a relatively small number of points.

Spatial-temporal distribution of dengue in Sri Lanka between 2012 and 2016 was identified by Kulldorff ’s 
spatial scan statistic with searching spatial-temporal cylinders using SaTScan software. The spatial-temporal sta-
tistical technique uses a cylindrical window with a circular geographic base and a height defined by time interval. 
This technique can identify possible clusters as the center of the cylindrical window moves in space and time. The 
clusters represent areas that the density of events of the same type is different from outside, and have similar and 
consistent incidences during the clustering period46. Kulldorff ’s spatial scan statistic is an useful tool for detecting 
and evaluating the spatial-temporal clusters. The spatial-temporal clustering analysis was implemented by the 
SaTScan software with the Bernoulli model. The significance of the spatial-temporal scan statistic was tested 
under the null hypothesis that dengue incidences were equally distributed in Sri Lanka from 2012 to 2016. We 
used the population data of each district as the control data. Maximum window size was set to conclude 50 per-
cent of population at risk, and the window shape is circular. The number of replications was 999. Important cli-
mate factors associated with dengue incidences were detected for different clusters by plotting monthly dengue 
incidence and climatic factors varying with time between January 2012 and December 2016 and comparing 
means and variances of meteorological data during different periods. Statistical analysis for means and variances 
of climate variables was performed with SPSS (version 19).

Data availability statement.  All data generated or analyzed during this study are included in this article.
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