Skip to main content
. 2017 Jul 12;22(6):843–859. doi: 10.1007/s10741-017-9634-3

Table 1.

Table showing the role of isozyme-specific PKCs in human heart failure and atherosclerosis

PKC Cardiac aetiology Model Features Ref.
PKC-βII Heart failure Human end-stage dilated cardiac myopathy Increase cardiac PKC-βII levels [67]
PKC-βII Heart failure Human end-stage dilated cardiac myopathy Increase cardiac PKC-βI levels [66]
PKC-α Atherosclerosis Human endothelium Increases superoxide production and inactivation of PKC-α [162]
PKC-α Atherosclerosis HepG2 LDL oxidation and decreased superoxide [163]
PKC-α Atherosclerosis U-937 cells PECAM1 expression and adhesion [164]
PKC-α Atherosclerosis Human endothelium Increased MMP-2 expression [165]
PKC-α Atherosclerosis HepG2 LDL upregulation [166]
PKC-β Atherosclerosis HepG2 Increased LDL activity [167]
PKC-β Atherosclerosis Human endothelium Induces expression of vascular cell adhesion, translocation of PKC-β [159]
PKC-β Atherosclerosis Human endothelium Increased MMP-1 and MMP-3 expression [161]
PKC-β Atherosclerosis Human endothelium Increased MMP-2 expression [165]
PKC-ε Atherosclerosis HepG2 Increased/decreased LDL activity [170]
PKC-ε Atherosclerosis Human endothelium Induces expression of vascular cell adhesion, translocation of PKC-β [165]
PKC-ζ Atherosclerosis Human endothelium Regulates TNF-α-induced activation of NADPH oxidase [171]