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Abstract: Objective: We reviewed studies on pulmo-
nary, reproductive, and developmental toxicity caused by
carbon nanotubes (CNTSs). In paricular, we analyzed how
CNT exposure affects the several processes of pulmo-
nary toxicity, including inflammation, injury, fibrosis, and
pulmonary tumors. Methods: In pulmonary toxicity, there
are various processes, including inflammation, injury, fi-
brosis, respiratory tumor in the lungs, and biopersistence
of CNTs and genotoxicity as tumor-related factors, to de-
velop the respiratory tumor. We evaluated the evidence
for the carcinogenicity of CNTs in each process. In the
fields of reproductive and developmental toxicity, studies
of CNTs have been conducted mainly with mice. We
summarized the findings of reproductive and develop-
mental toxicity studies of CNTs. Results: In animal stud-
ies, exposure to CNTs induced sustained inflammation,
fibrosis, lung cancer following long-term inhalation, and
gene damage in the lung. CNTs also showed high
biopersistence in animal studies. Fetal malformations af-
ter intravenous and intraperitoneal injections and intra-
tracheal instillation, fetal loss after intravenous injection,
behavioral changes in offsprings after intraperitoneal in-
jection, and a delay in the delivery of the first litter after
intratracheal instillation were reported in mice-
administered multi-walled carbon nanotubes (MWCNTSs).
Single-walled carbon nanotubes (SWCNTSs) appeared to
be embryolethal and teratogenic in mice when given by
intravenous injection; moreover, the tubes induced death
and growth retardation in chicken embryos. Conclusion:
CNTs are considered to have carcinogenicity and can
cause lung tumors. However, the carcinogenicity of
CNTs may attenuate if the fiber length is shorter. The
available data provide initial information on the potential
reproductive and developmental toxicity of CNTSs.
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Introduction

Industrial nanomaterials have many outstanding physi-
cal and chemical properties due to the advancement in
nanotechnology; their applications and uses in various
fields are being explored all over the world. Among these
industrial nanomaterials, carbon nanotubes (CNTS), an in-
dustrial nanomaterial, are fibrous materials formed from
honeycomb crystal lattice layers of graphite wrapped into
a tube shape either as a single layer or as multiple layers,
which are respectively called single-walled carbon nano-
tubes (SWCNTs), and multi-walled carbon nanotubes
(MWCNTs). These CNTs are used in semiconductors, so-
lar cell mobiles, optical instruments, capacitors, and the
cables of the space elevator, making use of CNT’s special
qualities. However, the other properties of CNTs are re-
ported to have harmful effects on the human body. Com-
pared with micron-sized carbon-based particles, exposure
of CNTs induced pulmonary inflammation at a smaller
dose in animal studies'”. The inhalation exposure of
CNTs induced malignant mesothelioma in animal stud-
ies”, suggesting that CNTs may pose hazards similar to
asbestos. Damage to other organs due to pulmonary expo-
sure to CNTs has also been reported in animal studies™”.
Some studies have reported that maternal exposure to
CNTs may induce developmental toxicity, such as terato-
genicity”. Here, we review the toxicity of CNTs, particu-
larly as related to pulmonary toxicity, reproductive and
developmental toxicity.

Pulmonary Toxicity

Malignant tumors such as lung cancer and mesothe-
lioma are considered to be important target diseases to
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evaluate the pulmonary toxicity of respirable materials.
The process of the development of malignant tumors, es-
pecially in lung cancer, induced by respirable insoluble
materials is generally considered to be as follows”™.
When respirable materials are inhaled in the lungs and are
phagocytized by alveolar macrophages, inflammatory cy-
tokines and chemokines are released by alveolar macro-
phages, and repeated exposure of respirable materials in
the lungs induces persistent inflammation and damage™'”.
Persistent inflammation and damage finally lead to pul-
monary fibrosis and respiratory cancer due to surplus or
abnormal repair processes™”. Therefore, we mainly evalu-
ated the persistency of inflammation and injury, the find-
ings on repair disorder and fibrosis, the incidence of tu-
mor in the respiratory system, and the biopersistance of
CNTs as related factors in the pulmonary toxicity of
CNTs. Among the different types of pulmonary toxicol-
ogy studies following each part, inhalation studies are
considered to provide us particularly important informa-
tion about the pulmonary toxicity of respirable chemicals
because the physiological exposure route is similar to that
of occupational exposure in humans.

1) Inflammation in respiratory system

Persistent pulmonary inflammation is observed in most
intratracheal instillation and inhalation studies of CNTs,
although only transient or no inflammation in the lungs is
observed in some studies of CNTs (Table 1).

Some inhalation studies of CNTs with pulmonary in-
flammatory endpoints showed a tendency of pulmonary
inflammation induced by low concentrations of CNT.

Four 13-week inhalation studies in rats"™'“'** of three
types of MWCNTs and one MWCNT with a function of
high strength, showed that exposure to MWCNTSs and
carbon nanofibers (CNFs) induced persistent inflamma-
tion with no-observed-adverse-effect-level (NOAEL) be-
tween 0.1 mg/m’ and 0.25 mg/m’ and with lowest-
observed-adverse-effect-level (LOAEL) at 0.2 mg/m’. In
two of these four studies ™™, high concentration of
MWCNTs showed sustained inflammation in the lungs
during the observation periods. Two four-week inhalation
studies of MWCNTSs and SWCNTSs showed no inflamma-
tion in the rats’ lungs with maximum concentrations of
0.37 mg/m’ and 0.13 mg/m’, respectively'*'”. The length
of CNTs used in both studies was relatively short (mean
length was 1 um or less). One six-hour inhalation study of
MWCNTs at a concentration of approximately 30 mg/m’
did not show neutrophil influx in the lungs™.

Many intratracheal instillation and pharyngeal aspira-
tion studies of CNTs have been reported'*'*?*233740
Similar to the inhalation studies, most studies showed that
exposure to SWCNTs and MWCNTs induced persistent
pulmonary inflammation, while some studies showed
only transient pulmonary inflammation™. Compared with
short fibers, long fibers induced more pronounced pulmo-

395

nary inflammation* ", although short fibers of CNTs also
induced persistent pulmonary inflammation'®. It has been
reported that the type of CNTs is related to the location of
inflammation even if the length of a CNT is short*”. Fujita
et al. (2016)* examined the difference in inflammation
between short SWCNTs and MWCNTSs in the respiratory
system following intratracheal instillation. They showed
that exposure to SWCNTs caused persistent pulmonary
inflammation, while exposure to MWCNTs caused tran-
sient pulmonary inflammation and later induced greater
level of pleural inflammation.

Taken together from the inhalation and the intratra-
cheal instillation studies, both MWCNTs and SWCNTs
are considered to induce persistent pulmonary inflamma-
tion in experimental animals. However, pulmonary in-
flammation induced by short fibers tend to be less persis-
tence than that induced by long fibers in intratracheal in-
stillation studies.

2) Injury in respiratory system

The proliferation of epithelial cells is one of the usual
physiological responses after lung injury resulting from
stimulation by a foreign material. The finding of prolif-
eration corresponds to lung injury, although it is a com-
pensatory response. When the stimulant is totally re-
moved, cell proliferation ends. On the contrary, persistent
proliferation indicates physiological responses by persis-
tent stimulation or change of the phenotype of cell re-
sponse, such as an autonomous responses.

Some studies have found the proliferation of bronchio-
lar and alveolar epithelial cells after exposure to CNTs,
although some studies have not.

In two 13-week inhalation studies , exposure to
MWCNTSs at a concentration of 6 mg/m’ (probably more
than overload dose due to delayed clearance of
MWCNTs) induced hyperplasia in the bronchiole/alveo-
lar area at 39 weeks after inhalation. MWCNT concentra-
tions of 1.5 mg/m’ or less did not induce hyperplasia. Ex-
posure to carbon nanofibers stimulated only transient pro-
liferation of the terminal bronchiole, alveolar duct, and
the subpleural region in the lungs of male and female rats.

Two intratracheal instillation studies of MWCNTs
showed lung injury®*”. One study using proliferating cell
nuclear antigen (PCNA) immunolabeling showed that ex-
posure to pristine or functionalized MWCNTs stimulated
the proliferation of alveolar and bronchiolar epithelial
cells, although the observation period (16 days) was not
long enough to evaluate the persistency of hyperplasia.
The other study showed that oropharyngeal aspiration of
MWCNTs caused alveolar hyperplasia of type 2 pneumo-
cytes at 5 weeks after the end of the exposure period, al-
though it is not the bronchoalveolar area that is the origin
of lung cancer. In another intratracheal instillation
study'”, SWCNT exposure did not induce the prolifera-
tion of lung parenchymal cells by 5-bromo-2-
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deoxyuridine (BrdU).

Xu et al. (2012)*” conducted an intratracheal instilla-
tion using a special spray-type cannula. As per the find-
ings of their study, exposure to MWCNTSs induced vis-
ceral mesothelial cell proliferation, although it is not the
parietal pleura where malignant mesothelioma originates.

Summarized collectively, inhalation and intratracheal
instillation studies of MWCNTs and SWCNTs, the evi-
dences on persistent hyperplasia of bronchoalveolar epi-
thelial cells was not sufficient.

3) Fibrosis in respiratory system

Pulmonary fibrosis is regarded as surplus or abnormal
repair after lung injury. It is unknown whether pulmonary
fibrosis and fibrosis-related factors caused by exposure to
CNTs directly affect the transformation and proliferation
of normal epithelial cells to cancer cells. However, Chang
et al. (2012)* reported that SWCNT-induced pulmonary
fibrosis in mice was associated with epithelial-
mesenchymal transition, namely epithelial cell derived fi-
brosis with the function of collagen production. Pulmo-
nary fibrosis, such as idiopathic pulmonary fibrosis is ac-
companied by lung cancer at a high frequency®. In
chronic inhalation studies of asbestos and man-made vit-
reous fibers, fibers that induced pulmonary fibrosis devel-
oped into pulmonary tumor™. Therefore, the fibrosis and
fibrosis-related factors induced by exposure to CNTs may
affect the transformation and proliferation of epithelial
cells. We consider that the finding of pulmonary fibrosis
induced by CNTs is related to tumor-related factors.

Table 1 shows results of inhalation and intratracheal in-
stillation studies. Most of these studies showed pulmo-
nary fibrosis and most of the CNT-exposed groups with
the finding of fibrosis in inhalation and intratracheal in-
stillation studies corresponded to CNT-exposed groups
with persistent pulmonary inflammation. Compared with
short fibers, needle-like long fibers in both studies tended
to induce fibrotic responses such as fibroblast prolifera-
tion and collagen deposition”*”. As for the intraperitoneal
injection study, long MWCNT exposure led to granulo-
matous inflammation in the peritoneal cavity but tangled
MWCNT showed weak or little responses™.

4) Biopersistence of CNTs in the lung

Biopersistence of materials in the lungs is how long the
materials remain in the lungs. Materials with high bioper-
sistence remain in the lungs for a long time; on the con-
trary, materials with low biopersistence get quickly
cleared from the lungs. Fibrous materials with high
biopersistence, such as asbestos and ceramic fibers are re-
ported to cause pulmonary fibrosis and cancer™. In other
words, if materials remain in the lungs for a long time,
they have high probability of causing persistent inflam-
mation and injury in the lungs. CNTs are reported to have
high biopersistence. The retention half-times of
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MWCNTs in the lungs, an index of clearance, at 0.1 mg/
m’, 0.4 mg/m’, 1.5 mg/m’, and 6 mg/m’ following a 13-
week inhalation exposure of MWCNTs were 151, 350,
318, and 375 days, respectively'”. Although there are dif-
ferences in the half-times, the authors considered that
these delayed times were related to volumetric overload.
A twelve-day inhalation study revealed that 65.1% of the
total lung burden of MWCNTSs at 5 mg/m’ remained in
the murine lungs 336 days after inhalation exposure™. In-
tratracheal instillation of MWCNTs at 0.2 mg and 0.55
mg revealed that the burden of MWCNTs in the lungs did
not decrease significantly between 1 day and 364 days af-
ter exposure™.

The biopersistence of fibrous materials, including as-
bestos, is thought to be regulated by length and durabil-
ity™. Long and insoluble fibers are biopersistent because
macrophages cannot phagocytize long fibers; further-
more, poor degradation makes the clearance of fiber diffi-
cult. While relatively long CNTs were used in the studies
mentioned above, some studies did use short CNTs,
which showed a relatively short half-time in the lungs.
One four-week inhalation study of short MWCNTSs (geo-
metric mean length: 1.1 um) revealed that the biological
half-time of MWCNTSs at 0.37 mg/m’ was 51-54 days™.
CNTs with short fibers tend to have shorter half-times
than those with long fibers. The length may affect the
clearance of materials such as asbestos in the lungs. In as-
bestos, fibers with length more than 20 pm are reported to
have higher biopersistence compared with fibers with a
length less than 5 um®.

As for solubility, CNTs are generally thought to be re-
sistant to chemical attack due to their fundamental gra-
phitic structure. The insolubility of MWCNTs and
SWCNTs is equal to or higher than asbestos™. Therefore,
length is an important characteristic in the biopersistence
of CNTs. There are a few soluble-type CNTs. These
CNTs become shorter due to degradation and are effi-
ciently cleared from the lung, suggesting that a character-
istic of CNT is low biopersistence. Osmond-Mcleod et al.
(2011)* reported that soluble-type CNTs induced low
pathogenic potential.

5) Gene damage in the lung

Gene damage in the lungs is considered to play a key
role in the transformation and proliferation of cells (espe-
cially epithelial cells) as an abnormality of restoration fol-
lowing lung injury.

Most CNT studies showed the results of genotoxicity
in an acute phase following exposure and induced the for-
mation of DNA breakage, micronuclei, and mutations in
the lungs after inhalation and intratracheal instillation. In-
tratracheal or pharyngeal instillation and inhalation of
MWCNTs to mice induced DNA strand breaks in the
lungs in a dose-dependent manner through the comet as-
say”™. Among studies with gene mutation assays, one
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study showed that the intratracheal instillation of
MWCNTs increased the mutation frequency in the lungs
detected by gpt assay™. In a study of 10 commercial
MWCNTs, the intratracheal instillation of some
MWCNTs induced the DNA breaks in the lung™, and
multiple regression analysis showed that a lower
Brunauer-Emmett-Teller surface area or a corresponding
larger diameter was associated with increased genotoxic-
ity. On the contrary, some studies did not induce genotox-
icity in vivo. An intratracheal instillation of MWCNTs in
rats did not induce DNA damage in their lungs®, and the
inhalation of MWCNTs did not induce DNA double
strand breaks (detected by y-H2AX foci) or micronuclei
in blood leukocytes ™ ; another study showed that
MWCNT did not increase gpt mutation®”. Possibly, the
gene damage observed in the acute phase can be restored,
and the gene mutation observed in the chronic phase of
CNTs is considered gene damage that is not restored. K-
ras mutation plays an important role in the signal trans-
duction of epidermal growth factor receptor and is one of
the representative oncogenic driver mutations. The pha-
ryngeal aspiration of SWCNTs and CNFs in mice in-
creased the incidence of K-ras oncogene mutations in the
lungs at 1 year post exposure®. Four days inhalation of
SWCNTs also increased the incidence of K-ras and mi-
cronuclei positive cells in the lungs at 1 year post expo-
sure.

As for short fibers, in the intratracheal instillation stud-
ies using 10 commercial MWCNTs (Most MWCNTS
with less than 1 ym)™, none of the exposure of all
MWCNTs did not induce DNA breaks in murine lungs at
the chronic phase in the comet assay, although there is a
transient DNA damage in the acute phase.

Gene damage is also reported to be associated with re-
active oxygen species (ROS)®*”. MWCNTs induced the
mutation of hypoxanthine phosphoribosyltransferase
(HPRT) genes in Chinese hamster lung fibroblasts
through ROS®. SWCNTs induced DNA breakage, micro-
nuclei formation, and ROS production in human periph-
eral bool lymphocytes; however, these stimulating effects
of SWCNTs were inhibited by N-acetylcysteine, which is
an antioxidant®. The mitochondrial damage caused by
MWCNTs leads to ROS production, which may damage
the nucleus.

6) Malignant tumor in the respiratory system

There are two inhalation studies demonstrating malig-
nant tumors in the respiratory system; one is a long-term
inhalation study and the other is a study of the estimation
of cancer-promoting effects®*. Both studies showed that
CNT induced the onset and the promotion of lung cancer.

A 104-week inhalation study of MWCNTSs used males
and females at the concentrations of 0 mg/m’, 0.02 mg/
m’, 0.2 mg/m’, and 2 mg/m’ ®. Lung carcinoma, mainly
bronchioloalveolar carcinoma and combined carcinoma
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and adenoma were significantly increased in males ex-
posed to 0.2 mg/m’ or more and in females exposed to 2
mg/m’. The NOAEL for the endpoints of respiratory tu-
mor was 0.02 mg/m’. Pleural mesothelioma was not ob-
served.

In another study, carcinogenesis phases were classified
into some stages, and there was a test protocol that util-
ized a two-stage initiation (action of carcinogen)/promo-
tion (promotion of cell growth with existing DNA dam-
age) in order to estimate the carcinogenicity of chemi-
cals®. Sargent et al. (2014)*” performed a 15-day inhala-
tion study (5 mg/m’, five hours/day) of MWCNTs follow-
ing the intraperitoneal injection of an initiator, methylcho-
lanthrene (MCA), and found that MWCNTs significantly
increased tumor rates (bronchioloalveolar adenomas and
adenocarcinoma) in the lung exposed to MCA, suggesting
that MWCNTSs act as a promoter of carcinogenesis.

In an intratracheal instillation study of MWCNTs that
was conducted using a specific spray-type cannula®, ex-
posure of MWCNTs induced not only lung tumor but also
malignant mesothelioma in a 2-year observation period.

In an intraperitoneal injection study, exposure of short
MWCNT did not induce carcinogenic responses®.

The MWCNTs used in the studies mentioned above
were long, thin fibers (mostly MWCNT-7), and there are
no studies following the long-term inhalation of short
length CNTs.

7) Discussion and summary of the pulmonary toxicity of
CNTs

In the process of lung disorders caused by respirable
materials, CNTs induced sustained inflammation, fibrosis,
finally increase in tumor rate. The finding of dose-
dependent responses between MWCNTs and lung tumor
following long-term inhalation, which is similar to the ex-
posure in humans, is significant for the estimation of pul-
monary toxicity.

We think that the pulmonary toxicity of CNTs cause
pulmonary tumor. Although there are few studies, there
are data or suspected data regarding the sustained prolif-
eration of epithelial cells. Fujita et al. (2015)"" reported
that gene expression by SWCNTs with thin bundles with
short linear shapes was strongly associated with cell pro-
liferation by comprehensive gene express analysis. One
13-week inhalation study' showed that MWCNT expo-
sure induced hyperplasia of epithelial cells after certain
observation periods when the concentration of MWCNTSs
was high. Frank et al. (2016)* found that the oropharyn-
geal aspiration of CNT caused alveolar hyperplasia of
type 2 pneumocytes at 5 weeks after the end of exposure,
although that was not in the bronchoalveolar area, that is
the origin of lung cancer. The carcinogenicity of CNTs
has been observed in the case of long needle-like struc-
tures of CNTs, but If the fiber is shorter, the carcinogenic-
ity of CNTs will be attenuated. Compared with long fi-
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bers, the exposure to short CNTs induced less inflamma-
tion, fibrosis, and in vivo genotoxicity in the chronic
phase.

Pauluhn (2011)® showed that the predicted NOAELSs
based on volumetric overload threshold was almost the
same as the obtained NOAEL (0.1 mg/m’). We think that
the onset of lung tumor is at least partially related to the
overload of CNTs, because 1) the predicted value of
NOAEL by Pauluhn® is not so different to the obtained
values of NOAEL in carcinogenicity bioassay studies®
and because 2) even if dispersed CNTs are exposed in the
lungs, an CNT agglomerates are formed in the lungs due
to overstress that gives cells through recognition of exces-
sive volume of CNTs"™.

Malignant mesothelioma was observed in a 2-year ob-
servation period in an intratracheal instillation study of
MWCNTs using only a spray type cannula, but not in any
inhalation studies of MWCNT. We speculate that the use
of spray type cannula for intratracheal instillation induced
the transfer of MWCNTs into the pleural space much
more efficiently compared than in inhalation studies. It
has been reported”” that intratracheal injection using
spray-type cannula make CNTs translocate into the pleura
space at short periods. Xu et al. (2012)*” found CNTs and
crocidolite in the pleural cavity after nine days following
the first intratracheal instillation. It is not known whether
CNTs directly penetrate into the pleural space or move
into the pleura through lymph nodes. There may be dif-
ferences in the clearance patterns of CNTs between inha-
lation studies and intratracheal instillation studies using
spray type cannula. How these responses are evaluated as
pulmonary toxicity is another issue for future studies.

As the carcinogenicity of CNTs is based on animal
studies only, their carcinogenicity for humans must also
be examined. In future research, we should consider the
physicochemical properties of CNTs in work environ-
ments and human data. These also are topics for future
studies.

8) Reproductive and developmental toxicity

Table 2 shows the significant effects on fetal develop-
ment as reported in toxicity studies performed on rodents.
Reproductive and developmental toxicity studies of CNTs
have been conducted mainly with mice.

Transient histopathological changes were reported in
mice after intravenous injection of MWCNTs in adult-
hood™. A delay in the delivery of the first litter was ob-
served after intratracheal instillation in the female prior to
mating””. Administration of MWCNTs in pregnant mice
induced fetal malformations after intraperitoneal and in-
travenous injections and intratracheal instillation, miscar-
riage after intravenous injection, and effects on the off-
spring’s central nervous system after intravenous and in-
traperitoneal injection™””. Moreover, developmental tox-
icity was also observed in mice intravenously injected
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with amine-functionalized MWCNTs™. There was an in-
crease in the rate of miscarriage and estradiol in maternal
sera. The abortifacient effect of oxidized-MWCNTSs was
observed in mice intravenously injected with a dose of
20 mg/kg/d™. In contrast, the oral administration of
MWCNTs to dams was not associated with adverse ef-
fects on fetal development in rats or on female reproduc-
tion and offspring growth in mice™”.

Some pristine and functionalized SWCNTSs appeared to
be embryolethal and teratogenic when administered in
mice via intravenous injection™ or oral gavage®. One
study showed that developmental toxicity was dependent
on SWCNT functionalization®”. SWCNTs may also in-
crease the production of ROS which may be involved in
developmental toxicity, possibly due to placental effects.
It was, however, unclear whether ROS levels was gener-
ally increased in the placentas of exposed dams or only in
affected embryos/fetuses. Placental transfer of SWCNTs
was reported after intravenous injection during late gesta-
tion in p53+/— mice, but not in CD1 mice™.

Overall data on the reproductive and developmental
toxicity of CNTs are limited, and interpretation in some
cases was hampered by the applied study designs, includ-
ing a lack of control for potential litter effects as well as
the characterization of the CNTs in suspension. Studies
on male and female reproduction and further develop-
mental toxicity following exposure via the anticipated
route of human exposure are required in order to elucidate
the reproductive and developmental toxicities of CNTs.

Conflicts of interest: The authors declare that there are
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