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Abstract
Cholangiocarcinoma (CCA) is an aggressive malignancy that arises from
damaged epithelial cells, cholangiocytes, and possibly de-differentiated
hepatocytes. CCA has a poor overall survival rate and limited therapeutic
options. Based on this data, it is imperative that new diagnostic and therapeutic
interventions be developed. Recent work has attempted to understand the
pathological mechanisms driving CCA progression. Specifically, recent
publications have delved into the role of cancer stem cells (CSCs),
mesenchymal stem cells (MSCs), and microRNAs (miRNAs) during CCA
pathology. CSCs are a specific subset of cells within the tumor environment
that are derived from a cell with stem-like properties and have been shown to
influence recurrence and chemoresistance during CCA. MSCs are known for
their anti-inflammatory activity and have been postulated to influence
malignancy during CCA, but little is known about their exact functions. miRNAs
exert various functions via gene regulation at both the transcriptional and the
translational levels, giving miRNAs diverse roles in CCA progression.
Additionally, current miRNA-based therapeutic approaches are in clinical trials
for various liver diseases, giving hope for similar approaches for CCA.
However, the interactions among these three factors in the context of CCA are
unknown. In this review, we focus on recently published data (within the last 3
years) that discuss the role of CSCs, MSCs, and miRNAs and their possible
interactions during CCA pathogenesis.
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Introduction
Cholangiocarcinoma (CCA) is a hepatobiliary malignancy with 
a poor 5-year survival rate and limited treatment options. CCA 
arises from damaged cholangiocytes, the epithelial cells that line 
the biliary tree. CCA can be classified into intrahepatic, perihilar, 
or distal subtypes1. Intrahepatic CCA, the second most common 
form of liver cancer, is generally located proximal to the second-
order bile ducts, perihilar CCA is located between the second-order 
bile ducts and the intersection of the cystic duct into the common 
bile duct, and distal CCA is found in areas between the cystic duct 
and the ampulla of Vater (Figure 1)2. Aside from being categorized 
by anatomic location, CCA is categorized on the basis of his-
topathological analysis and by growth-type patterns as well3,4. For  
instance, CCA that has been derived from large cholangiocytes 
is predominantly categorized as perihilar CCA with well to mod-
erately differentiated mucin-producing cells and periductal infil-
trating growth pattern, whereas CCA that is derived from small  
cholangiocytes is predominantly categorized as intrahepatic CCA 
and largely contains non–mucin-producing cells and has mass-
forming growth patterns3,4. CCA is highly heterogeneous not  
only in initiation and location but also in progression, making it 
difficult to categorize CCA into distinct subtypes.

CCA incidence has been steadily increasing5. One of the first  
lines of treatment for CCA is resection; however, options for  
resection are limited since the disease is generally too advanced 
at the time of diagnosis6. Recently, it has been reported that  
following resection in patients with intrahepatic CCA the 5-year 

and 10-year survival rates are 32.3% and 8.4%, respectively7. If  
unresectable, liver transplantation is another option for patients 
with intrahepatic CCA, and post-liver transplantation 5-year  
survival rates are 51%8. For patients with perihilar CCA, resec-
tion may be an option but outcomes are poor; 5-year survival  
rates are 10%9. It has also been suggested that some subsets of  
perihilar CCA may benefit from neoadjuvant chemoradiation  
therapy or biliary drainage or both, but outcomes are variable10–12. 
For patients with distal CCA following resection, 5-year survival 
rates are 23%9. Furthermore, these patients should not be sub-
jected to biliary drainage, since they tend to have increased com-
plications related to this surgery13. It is apparent that our current  
approaches for CCA are lacking, as demonstrated by the poor  
survival rates and limited treatment options. For these reasons, it is 
critical that new and effective therapies be developed.

The CCA microenvironment contains a plethora of cell types,  
extracellular structures, and secreted factors that influence the 
progression of the tumor. Cancer cells are surrounded by stroma, 
which is made up of various stromal cells and extracellular  
matrix14. Additionally, cytokines, chemokines, growth factors, 
and proteinases secreted from cancer cells and stromal cells can 
promote a pro-inflammatory environment14. This type of tumor  
microenvironment can lead to myofibroblast activation, cancer  
stem cell (CSC) initiation, and the recruitment of various inflam-
matory cell types14. The CCA microenvironment is a complex  
network that is influenced by a multitude of soluble factors and  
cell types.

Figure 1. Schematic image of the anatomical locations of intrahepatic, perihilar, and distal cholangiocarcinoma (CCA). CCA is 
categorized on the basis of its location within the biliary tree. Intrahepatic CCA is found proximal to the second-order bile ducts, perihilar 
CCA is found between the second-order bile ducts and the convergence of the cystic duct and the common duct, and distal CCA is found 
between the cystic duct and ampulla of Vater.
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This review will focus on recent publications (within the last 3 
years) that advance our understanding of CCA and will analyze 
how their findings could lead to new diagnostic or therapeutic tar-
gets. Overall, these publications discuss their findings within the 
context of all three subtypes of CCA (intrahepatic, perihilar, and 
distal), and for this reason we discuss the findings of the articles in 
the context of general CCA. Among the recent publications, many 
of the articles fell into similar categories. Specifically, publica-
tions tended to focus on the functional and mechanistic roles of  
(i) CSCs, (ii) mesenchymal stem cells (MSCs), or (iii) microRNAs 
(miRNAs) in CCA progression. We will be discussing how these 
three categories influence the CCA microenvironment, either alone  
or in relation to one another.

Cancer stem cells
The tumor microenvironment comprises many different cell  
types with various functions. Recently, CSCs have been identi-
fied in the tumor microenvironment and add complexity to our  
understanding of CCA. Specifically, CSCs have been identified 
for their role in tumor initiation, progression, and relapse. CSCs 
function in a manner similar to normal stem cells, wherein they 
are capable of self-renewal, can differentiate into multiple differ-
ent cell types, and have unlimited division15. CSCs promote an 
inflammatory environment through the activation of stromal cells  
and the recruitment of inflammatory cells16. The cell type from 
which CSCs are derived is still under debate, but it has been  
hypothesized that CSCs may be derived from a stem-like cell that 
acquires a cancer-promoting alteration17. Multiple studies have 
found that hepatocellular carcinoma (HCC) progression is driven 
by CSCs18–21; however, little is known about the role of CSCs in 
CCA.

As previously stated, the CCA microenvironment is a complex  
network of various cell types. Among the various cell types,  
macrophages are associated with CCA tumor progression and  
are significantly correlated with a poorer prognosis and metastasis4.  
A recent article by Raggi et al. hypothesized that CSCs  
secrete factors that promote macrophage differentiation toward 
the tumor-associated macrophage (TAM) subtype22. First, CCA  
spheres were cultured and medium was collected and placed on 
cultured macrophages. Following treatment with CCA sphere 
medium, macrophages expressed cluster of differentiation 68 
(CD68), CD115, human leukocyte antigen-D related, and CD206, 
indicating an activated phenotype. These activated macro-
phages had TAM-like features, including increased invasiveness.  
To identify whether these findings were clinically relevant, mac-
rophages were isolated from human CCA resections, and it was 
noted that these isolated macrophages expressed a phenotype  
similar to that of the treated cultured macrophages. The authors 
then identified the factors secreted from CCA spheres that were 
driving this TAM-like phenotype and found that interleukin-13  
(IL-13), IL-34, and osteoactivin were detected in CCA sphere 
medium and in serum of patients with CCA. Furthermore, these  
factors were associated with CSC presence, and the authors con-
cluded that the secreted factors driving the TAM-like phenotype 
must be derived from CSCs. These findings present a novel mecha-
nism by which CCA-associated CSCs influence the activation of 
TAMs that promote CCA progression22. Given that much of the 

work was done with CCA sphere medium, more work regarding 
the exact factors secreted from CSCs is necessary to definitively 
demonstrate that the activation of TAMs is specifically driven by 
CSCs.

Laminins are a family of extracellular matrix proteins that are  
mainly found in the basement membrane and are composed 
of α, β, and γ chains23,24. The γ2-chain of laminin-332 (Ln-
332) is highly elevated in HCCs expressing the biliary marker  
cytokeratin-19 (CK-19) and is correlated with a poor progno-
sis for patients with HCC or intrahepatic CCA25–27. The aim of 
the publication by Govaere et al. was to characterize the CSC 
niche and determine the possible cell of origin28. This publication 
slightly deviates from the others discussed in this review because 
it looks at CSCs in mixed HCC/CCA samples. It was noted that 
elevated biliary and hepatic progenitor cell (HPC) markers were 
seen with increased expression of LAMC2, the gene that encodes 
the γ2-chain of Ln-332. Immunopositivity for the γ2-chain of  
Ln-332 was found surrounding small HPC-like tumor cells that 
had a low proliferation rate, identified as possible CSCs. Lastly,  
the γ2-chain of Ln-332 was strongly co-expressed in ductular 
areas with low proliferative capacity but was expressed at low lev-
els in the hepatocyte areas of HCC/CCA. The authors concluded  
that Ln-332 maintains the CSC niche and supports stem-like prop-
erties in these cells28. While this article is one of a few that looks at 
the factors that maintain CSCs, future work needs to be performed 
to look at the role of Ln-332 specifically in CCA samples.

Given these findings, it is evident that the formation of CSCs 
strongly impacts the surrounding tumor microenvironment, 
which can impact disease progression. Specifically, these articles 
identify the pro-inflammatory role of CSCs during CCA. First, 
CSCs were shown to promote macrophage transition to a TAM-
like phenotype. Furthermore, CSC accumulation of laminins, 
a key component of extracellular matrix, may promote the  
survival, migration, and invasion of tumor cells as well as stro-
mal activation. It is evident that CSCs are key in maintaining 
and promoting a pro-inflammatory environment during CCA  
initiation and progression.

Mesenchymal stem cells
Recently, interest in the role of MSCs in tumor progression and 
metastasis has increased. MSCs are non-hematopoietic stem cells 
that primarily reside in the bone marrow but are recruited to injured 
tissues, inflammatory sites, and primary tumors29–31. As stated 
above, the presence of CSCs promotes an inflammatory environ-
ment, which may promote MSC migration and the infiltration of 
CCA tumors. MSCs have low immunogenicity and, following 
recruitment to injured tissues, are able to maintain their multi- 
differentiation capacity32. Specifically, MSCs may differentiate 
into cancer-associated fibroblasts, myofibroblasts, or hepatic stel-
late cells to promote tumor progression33,34. These various cell types 
increase the inflammatory capacity of the stromal environment, 
further promoting the initiation of CSCs and the recruitment of  
MSCs. Moreover, MSCs secrete various cytokines that promote 
an inflammatory microenvironment35,36. For these reasons, the 
role of MSCs in CCA progression and inflammatory response has  
become a topic of interest.

Page 4 of 10

F1000Research 2017, 6(F1000 Faculty Rev):1818 Last updated: 09 OCT 2017



While MSCs are known to influence the inflammatory envi-
ronment of tumors, the exact microenvironment necessary for  
these effects is unknown. Also, it has been postulated that inflam-
matory conditions are a major activator of MSC-associated  
immunosuppression37. Recent work from Zhong et al. found that 
tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-
γ) were able to stimulate the expression of TNF-α, C-C motif 
chemokine ligand 5 (CCL5), IL-6 and indoleamine 2,3-dioxyge-
nase, and activated nuclear factor kappa B (NF-κB) signaling in 
MSCs38. Secreted factors from these stimulated MSCs were able 
to induce CCA cell migration and metastasis in vitro and in vivo. 
Furthermore, CCA cells treated with supernatants from the stimu-
lated MSCs had increased expression of C-C motif chemokine 
receptor 5 (CCR5). Increased CCL5/CCR5 signaling in CCA cells 
was able to increase the expression of matrix metalloproteinase-2 
(MMP-2) and MMP-9. Overall, the authors deduced that TNF-α 
and IFN-γ stimulate MSCs to secrete CCL5, which in turn activates 
CCR5 on CCA cells to promote inflammation and metastasis38.  
Inhibition of TNF-α or IFN-γ signaling or both could block MSC 
recruitment, thereby reducing CCA inflammation and metastasis to 
hopefully contribute to an improved outcome.

Chemoresistance is a major obstacle in cancer treatment.  
Previously, it was demonstrated that MSC-secreted IL-8 induces 
doxorubicin resistance in triple-negative breast cancer39. Consid-
ering these findings, Wang et al. examined the role of MSCs in 
the progression of CCA development40. Using human umbilical 
cord–derived MSCs, the authors noted that cultured CCA cells  
that were co-cultured with these MSCs had increased cell  
proliferation, metastasis, and resistance to the anti-cancer drug 
compound K in vivo. In vitro, CCA cells co-cultured with MSCs 
had increased colony formation and invasion. The tumors from 
mice injected with CCA cells co-cultured with MSCs demonstrated 
enhanced Wnt/β-catenin signaling. These findings were corrobo-
rated in vitro where MSCs and their secreted factors were shown 
to stimulate Wnt signaling via nuclear translocation of β-catenin, 
upregulation of Wnt, and increased expression of the downstream 
targets MMP-2, cyclin D1, and c-Myc in cultured CCA cells.  
Overall, this study indicates that MSCs increase CCA metasta-
sis and chemoresistance via increased Wnt/β-catenin signaling40.  
Targeting the Wnt/β-catenin signaling pathway may prove thera-
peutic for patients with CCA.

It is interesting to note that TNF-α and IFN-γ are necessary to 
drive MSC migration to CCA tumors. Given that CSCs promote an 
inflammatory environment, this may play a role in the recruitment 
of MSCs to the CCA tumor. Based on these articles, the presence 
of MSCs in CCA is indicative of increased CCA migration and  
invasion, and inhibition of MSC migration or induction of MSC 
apoptosis may be therapeutic for patients with CCA.

microRNAs
miRNAs are short, non-coding RNAs that regulate the expression 
of specific mRNAs41. Specifically, miRNAs will recognize and 
bind to complementary sequences found within the 3′ untranslated 
region (3′ UTR) of specific mRNAs to regulate their expression 
levels42,43. The role of miRNAs varies, depending on the cellular 
process, in both physiological and pathological conditions44–46. The 

function of miRNAs during CCA has increasingly become a topic 
of interest; multiple human clinical trials evaluating the efficacy of 
miRNA-based therapeutics during various liver diseases are under 
way47,48. miRNA signaling has been noted in all three subtypes of 
CCA49–51; however, the identification of subtype-specific miRNAs 
has not been made. It is known that miRNAs can regulate MSC 
and CSC function52–54, but this regulation has not been reported in 
the context of CCA. Further understanding the impact of miRNAs 
on CCA development and progression may bring about novel diag-
nostic tools or therapeutic interventions. In this section, we will be 
discussing the role of miRNAs during CCA progression but also 
analyzing their potential impacts on CSC and MSC biology.

Menin is a known tumor-suppressor gene that is expressed in all 
tissues55, but its role in CCA is poorly defined. miR-24 has previ-
ously been recognized as an oncogene in multiple gastrointestinal 
cancers and has been shown to target menin, but this interaction 
in the context of CCA is not understood56–59. A recent article by 
Ehrlich et al. evaluated the role of menin during CCA prolifera-
tion and angiogenesis and its regulation by miR-2451. The authors 
found that human advanced CCA tumor sections, as well as in vitro 
human CCA cell lines, had increased miR-24 expression alongside 
decreased menin expression. In vitro, human CCA cell lines treated 
with an miR-24 inhibitor showed increased menin levels with a sub-
sequent reduction in cell proliferation, angiogenesis, migration, and 
invasion. It was then demonstrated that miR-24 negatively regulates 
menin expression. In vivo, the authors noted that tumor size and 
the expression of proliferative and angiogenic markers were sig-
nificantly reduced in the miR-24–inhibited tumor group compared 
with controls. Interestingly, fibrogenesis was enhanced in the miR-
24–inhibited tumor group when compared with controls. From this 
study, it is evident that miR-24 acts as an oncogene to suppress 
menin expression, thereby increasing tumor burden, proliferation, 
angiogenesis, migration, and invasion51. However, further work is 
necessary to delineate the exact downstream mechanisms regulat-
ing these events as well as understand the primary cellular source of 
miR-24 during CCA, which may help us understand why fibrogen-
esis increased even as tumor burden and angiogenesis decreased. 
While this study focuses on the role of miR-24 in cultured CCA 
cells, miR-24 has previously been shown to promote stemness in 
embryonic stem cells60. In this context, miR-24 may promote the 
formation of CSCs in CCA, leading to increased CCA migration 
and invasion.

Circadian rhythms are endogenous oscillations that are regulated 
by clock genes and are present in the central nervous system,  
peripheral tissues, and single cells61. While circadian oscilla-
tions are a normal physiological process, dysregulation of these  
oscillations promotes tumor development62,63; however, little 
is known about the role of the circadian rhythm during CCA. A 
recent publication identified that the expression of Per1, which 
negatively regulates circadian oscillations, was decreased in human 
CCA samples and cultured human CCA cell lines64. In addition,  
overexpression of Per1 decreased cell proliferation and increased 
apoptosis in cultured human CCA cells. These findings were mim-
icked in vivo, wherein immunocompromised mice injected with 
cultured human CCA cells overexpressing Per1 had decreased 
tumor growth, proliferation, angiogenesis, and metastasis. Per1 
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was found to be a target of miR-34a, and following treatment with 
a miR-34a inhibitor, human cultured CCA cells had decreased pro-
liferation, migration, and invasion. These findings are the first to 
identify that the disruption of clock genes regulated by miR-34a 
contributes to CCA malignancy64. As stated, circadian clock genes 
are present in all cells and tissues, and previous work has shown 
that circadian clock genes regulate MSC differentiation, migration, 
and cell cycle65. It is possible that the regulation of core clock genes 
via miR-34a plays a role in MSC migration and activation during 
CCA. Also, the disruption of core clock genes in CCA cells may 
contribute to the tumor niche, thereby supporting CSC formation or 
MSC recruitment or both.

Tumor growth and metastatic potential are regulated by a myr-
iad of factors, including epigenetic changes, such as DNA  
methylation66,67. Specifically, it has been shown that DNA meth-
ylation plays a prominent role in the progression of CCA68. On the 
basis of this information, Zhou et al. set out to investigate the func-
tional and mechanistic role of miR-191 in CCA69. It was first noted 
that miR-191 expression was increased in CCA tumors when com-
pared with adjacent normal bile duct tissue. miR-191 expression  
was found to be an independent risk factor for a worse progno-
sis for human CCA patients. In vivo and in vitro analysis revealed 
that overexpression of miR-191 was associated with enhanced  
proliferation, invasion, and migration and reduced ten-eleven trans-
location 1 (TET1) expression, which induces DNA demethyla-
tion and was shown to be a direct target of miR-191. The authors 
then found that TET1 expression allows for the methylation of  
CpG-rich regions in the gene transcription start site of p53, a tumor 
suppressor, leading to a reduction of p53 expression and subse-
quent increase in tumor burden. These findings suggest that the  
overexpression of miR-191 is associated with CCA progression 
via miR-191/TET1/p53 signaling69. Aside from its role in p53  
expression70, miR-191 has been shown to promote CSC-like  
properties in bronchial epithelial cells, alluding to the fact that  
miR-191 may influence the CSC niche in CCA as well. This pub-
lication identifies a novel therapeutic target for the treatment of  
CCA and suggests that miR-191 levels may be used as a diagnostic 
or prognostic factor or both.

Aside from p53, N-myc downstream-regulated gene 2 (NDRG2) 
is another tumor suppressor that plays a role in the progression 
of various cancers71,72. NDRG2 has been shown to be downregu-
lated during tumor progression, and it has been postulated that  
NDRG2 inhibits the metastasis of HCC71–73. miR-181 is upregu-
lated in several cancers74–76; however, miR-181 has also been shown 
to inhibit tumor formation77–79. Leukemia inhibitory factor (LIF) 
is a member of the IL-6 cytokine family whose dysregulation has 
been observed in different cancers79. The potential function of  
NDRG2, LIF, and miR-181c in the development and progression 
of CCA is not fully understood, and a recent publication evalu-
ated the potential roles and mechanisms of these factors80. The 
authors found that the expression of NDRG2 was decreased and 
miR-181c and LIF increased in human CCA compared with non- 
tumor tissues. Furthermore, downregulation of NDRG2 along-
side overexpression of miR-181c or LIF indicated a poorer  
overall survival in patients with CCA. In vivo and in vitro, it was 
shown that overexpression of NDRG2 was able to inhibit CCA  

cell proliferation, chemoresistance, and metastasis. LIF was able 
to activate miR-181c, while NDRG2 inhibited LIF transcription. 
These findings identify that NDRG2 and LIF/miR-181c counter-
act each other, and dysregulation of one of these pathways may 
contribute to carcinogenesis and metastasis80. Given that LIF 
is an IL-6 cytokine, miR-181c regulation of LIF may influence 
the inflammatory properties of the microenvironment so that it 
favors CSC formation or MSC recruitment. Though complex, this 
novel pathway may serve as a potential therapeutic target for the  
treatment of CCA.

The role of miR-16 in tumorigenesis has been studied in various 
cancers81–83, but its role in CCA is unknown. Yes-associated pro-
tein 1 (YAP1) is inhibited by the hippo signaling pathway, but in 
the absence of this inhibition, YAP1 acts as an oncogene in numer-
ous cancers84–88; however, mechanisms regulating YAP1 expression 
in human CCA are largely unknown. Recent work found that in 
human CCA tissues miR-16 expression was significantly down-
regulated and correlated with tumor size, metastasis, and staging89. 
Furthermore, downregulation of miR-16 was strongly associ-
ated with increased tumor progression and worsened overall sur-
vival in human CCA patients. In vivo and in vitro experimentation 
demonstrated that overexpression of miR-16 inhibited CCA cell  
proliferation, invasion, and metastasis. The authors then found 
that YAP1 was a direct target of miR-16. In support of these find-
ings, it was noted that YAP1 levels are greatly enhanced in human  
CCA tissues, which was inversely correlated with the above find-
ings that miR-16 is largely downregulated in human CCA. This 
publication concludes that miR-16 acts as a tumor suppressor in 
CCA through downregulation of YAP189. The miR-16/YAP1 inter-
action may not only be a therapeutic target but also act as a reliable 
prognostic marker for CCA. Additionally, YAP1 has been shown 
to control the self-renewal and differentiation of MSCs; therefore, 
miR-16 regulation of YAP1 may influence MSC function during 
CCA90.

It has long been known that miRNAs play a role in the initiation 
and progression of CCA, but miRNA regulation of MSCs and 
CSCs during CCA is unknown. While these publications discuss 
the role of miRNAs in CCA cells and tissues, we can draw compari-
sons to the impact that they may have on MSC and CSC function.  
Furthermore, we can note that miRNA signaling may manipulate 
the microenvironment to become pro-inflammatory, which will 
favor the initiation of CSC formation as well as the recruitment 
of MSCs to the injured tissue. However, the discussion of miRNA 
regulation of MSCs and CSCs during CCA is largely speculative, 
and further research is necessary to fully understand this signaling 
process.

Conclusions
Currently, therapeutic options for patients with CCA are extremely 
limited, a worrying predicament given the increase in incidence. In 
addition, options for patients with CCA are further limited since the 
disease tends to be at an advanced stage at the time of diagnosis. 
These facts indicate the imperative need to develop better diagnos-
tic tools to help identify CCA at an earlier time point as well as 
more sophisticated therapeutic tools to improve survival rates. The 
roles of MSCs and CSCs during CCA are a new area of study with 
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little information known about these cells. For this reason, more 
studies are needed to fully elucidate the impact that MSCs and 
CSCs have on CCA development and progression. It is possible 
that therapies targeting these cells will reduce chemoresistance and 
recurrence, but only future studies will be able to fully define this. 
There are a large number of publications regarding miRNA regula-
tion of CCA progression; however, miRNA regulation of MSCs and 
CSCs during CCA is unknown. Given that miRNA therapies for 
various liver diseases are currently in clinical trials, there is hope 
that new miRNA-based therapies are developed for CCA, specifi-
cally those that may impact MSC and CSC function. While we have 
made strides in terms of understanding the CCA tumor environment 
and the pathways regulating progression, few translational findings 
have been developed. In the future, translational studies are neces-
sary to help find diagnostic, prognostic, and therapeutic tools for 
the treatment of CCA.
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