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This paper studies the real-life problems of outpatient clinics having the multiple objectives of minimizing resource overtime,
patient waiting time, and waiting area congestion. In the clinic, there are several patient classes, each of which follows different
treatment procedure flow paths through a multiphase and multiserver queuing system with scarce staff and limited space. We
incorporate the stochastic factors for the probabilities of the patients being diverted into different flow paths, patient
punctuality, arrival times, procedure duration, and the number of accompanied visitors. We present a novel two-stage
simulation-based heuristic algorithm to assess various tactical and operational decisions for optimizing the multiple objectives.
In stage I, we search for a resource allocation plan, and in stage II, we determine a block appointment schedule by patient class
and a service discipline for the daily operational level. We also explore the effects of the separate strategies and their integration
to identify the best possible combination. The computational experiments are designed on the basis of data from a study of an
ophthalmology clinic in a public hospital. Results show that our approach significantly mitigates the undesirable outcomes by
integrating the strategies and increasing the resource flexibility at the bottleneck procedures without adding resources.

1. Introduction

This article explores how supply and demand planning at the
tactical and operational level in terms of resource allocation
and patient scheduling can be considered simultaneously in
an appointment session. A joint study at an ophthalmology
outpatient clinic in a public hospital described in [1, 2] has
motivated investigation of this integrated planning problem
of improving system performance from the patient and staff
perspectives. The indirect benefit is to create an opportunity
for increasing service capacity and reduce patient access time
to the outpatient service. The problem characteristics in the
ophthalmology clinic can be generalized for outpatient
clinics operating like a multiphase and multiserver queuing
system. A large amount of appointment scheduling research
tends to focus on one or two services (e.g., a doctor’s consul-
tation as the main focus, with a preconsultation procedure as
a secondary focus) to derive analytical properties [3]. Simple
structure also allows an optimal patient sequence and sched-
ule to be obtained for queuing systems approximated by

distribution-free parameters [4, 5]. Multiphase appointment
systems involving a large number of patients in a session
are found in other practical situations such as outpatient
clinics in public medical centers or hospitals [1, 6]. Patients
are often categorized by classes with different routings,
requiring multiple resources through the outpatient center
with many stochastic factors. Stakeholders express their pref-
erences in multiple often conflicting performance measures
[7]. The complexity of the system thus increases the difficulty
of making good decisions.

Based on the classification of healthcare planning
decisions [8], three types of decisions are studied in this arti-
cle: the resource allocation, block appointment scheduling at
the tactical level, and service discipline (selection of the next
patient for treatment) at the operational level. The integrated
planning of multiple decisions can offer the advantage of
modelling their interactive effects in order to find the best
combination of decisions. This is a research direction that
was pointed out in a recent survey of optimization studies
in outpatient appointment systems [9]. Related studies
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include a single-phase single-server problem in an outpatient
procedure center where decisions on the number of patient
bookings, sequencing, and daily scheduling were considered
together [3]. With uncertainties in procedure duration and
attendance rate, the problem is formulated using a stochastic
programming model. The analytical properties derived from
the optimal solutions are used to develop near-optimal heu-
ristics for solving larger problems. Another study conducted
at a radiology department [10] considered both the resource
allocation and the appointment scheduling decisions for two
CT scanners (resource). Medium-term capacity is adjusted in
terms of opening hours, and short-term allocation of time-
slots is made between patient groups. As it is difficult to find
optimal solutions for this medium- and short-term planning
problem, patient scheduling rules resembling the practice at
the department (first-come randomly served, first-come-
first-served) are combined with static or dynamic allocation
plans to be used as benchmarks for comparison with the
proposed methods. The current work is similar in that
different service discipline will be combined with the tactical
level decisions for performance comparison.

Applying both demand and supply strategies is more
effective than a one-way strategy. Demand and supply plan-
ning strategies considered in healthcare research often
involved employing simulation and optimization techniques
in different ways. Surveys on the application of simulation to
healthcare can be found in [11–13]. In a capacity planning
problem in matching new patients to oncologists [14], the
demand strategies applied include patient diversion and the
development of scheduling rules to assign new patients to
oncologists to satisfy the access time tolerance. The supply
strategies include determining various mixes of oncologists
with different specializations and adding a number of add-
on appointments to the normal weekly capacity to meet
demands and fulfil new patients’ access time tolerance. The
specialization of each oncologist in treating one or more
types of tumour in [14] is analogous to the qualified set of
skills (procedures) of each resource unit in the current study.
The supply of resource units are already given, but they are
allocated to tasks in their qualified skill set to better match
with the demand strategies (appointment scheduling and ser-
vice discipline). Our work will incorporate the simulation
approach into the heuristic optimization framework in order
to search for and to evaluate different resource allocations
and patient scheduling decisions that need improvement.
As multiple bottlenecks may exist in the system and their
interactive effects on the system’s performance are not easily
understood, a computational approach is adopted to contin-
uously find a set of integrated decisions that can improve the
multiple objectives. In another study on admission and
capacity planning for skin cancer treatment [15], a new
one-stop-shop (OSS) concept was tested for its feasibility
and the best way to operate the service. Similar to the patient
classification in the current study, the capacity analysis in
[15] involves identifying treatment profiles (or types) and
resources used for new patients. The throughput (or system)
time for the treatment of new patients is the target perfor-
mance measure for reduction in [15] while multiple objec-
tives are considered in our study.

The healthcare environment often faces conflicting
objectives in managing the expectations of different stake-
holders. Waiting time on the appointment day is of typical
concern for scheduled patients. It is defined as the through-
put time excluding the sum of procedure times which better
represents the non-value-added time in the system. Excessive
overtime lowers staff morale and job satisfaction while con-
gestion in the waiting area affects satisfaction of all parties.
This work contributes to minimizing these three objectives
through combining them into a weighted objective function
where the weights are chosen by the user. In the healthcare
literature and survey on planning decisions [8], the first two
objectives are adopted more commonly. Congestion has been
given less attention with some exception such as a local med-
ical center where multiple specialties share the same waiting
area [6]. Among the improvement scenarios, the strategy to
reschedule patients from more congested specialty sessions
to less congested ones was found to reduce the peak conges-
tion most. This strategy has influenced the present design for
rescheduling patients from appointment time blocks
experiencing a large undesirable impact (or contributing a
large value to the objectives) to time blocks with a smaller
impact. In other clinics, service locations of the same spe-
cialty clinic are dispersed that not all patients wait in the
same area for all procedures. The relationship between
patient waiting time, server overtime, and congestion in the
clinic waiting area is expressed here by a weighted objective
function and their trade-off explored using simulation. Past
outpatient studies adopting a similar weighted score
approach included [7], a study in a large-scale oncology cen-
ter. To reduce the patient system time and resource overtime
in the multifacility system, a weighted score is constructed
considering multiple dimensions by day of the week, patient
type, facility, and time period. Improvement strategies
include changing either the supply or demand expressed as
16 separate factors. While most of the supply factors in [7]
consider adding resource of one doctor or one nurse, our
study searches for an improved resource allocation plan
computationally without adding resources. The patient
scheduling decisions are explored more extensively here by
automating the search for the (block) appointment schedule.
Similar to [7], the change in service discipline is tested. In [7],
priority is given to patients requiring appointments in more
facilities than those with fewer. We consider an equivalent
priority rule, the largest number of successors (LNS), in addi-
tion to other priority rules and a new adaptive rule. The
application of this multiobjective approach could be
extended to multispecialty clinics colocated in the same wait-
ing hall, sharing similar appointment periods and some com-
mon resources.

Several case studies on specialist outpatient clinics shed
light on the development of this work. A detailed study of
an ophthalmic specialist outpatient clinic was conducted in
Singapore National Eye Centre [16]. The classification of
the major patient groups (new and follow-up), the existence
of pre- and post-consultation procedures, and the complex
patient flow sequences are similar to those in this study. Four
improvement strategies were proposed, including a new
technology (dilation-free eye examination) and changing
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the appointment time slots (the duration and the ratio of
slots between two patient groups) in an individual appoint-
ment system. Changing the appointment time slots was
implemented and has reduced the average patient turn-
around time (system time). Sharing some similarities with
their work, we further target at improving the resource allo-
cation in coordination with patient scheduling. In another
study of eye outpatient clinics in a UK hospital [17], an initial
qualitative approach was recommended, followed by a series
of simple (or sometimes more sophisticated) quantitative
models depending on the circumstances. Both long-term
and daily operational strategies were proposed. From one of
the authors’ earlier work at an ophthalmology clinic of a pub-
lic hospital, a simulation study on operational improvement
[1] and a deterministic block appointment scheduling heu-
ristic [2] were presented. The current work is an extension
of [1, 2] by including the tactical decisions of resource alloca-
tion and the stochastic factors in the environment.

To summarize, this article addresses the following ques-
tions for a multiphase and multiserver queuing system with
stochastic factors in order to optimize the (weighted average)
objectives of patient waiting time, resource overtime, and
waiting room congestion:

(i) Service discipline: When a clinical staff member is
available, how is one of the patients waiting for
treatment selected?

(ii) Block appointment schedule: How does one decide
on a block appointment schedule for a given number
of patients, categorized by patient classes?

(iii) Resource allocation: How does one allocate
resources to tasks when each resource unit has one
or more skills in handling different tasks in the
system?

Having multiple skills will improve resource efficiency
and flexibility in task allocation. Such resource flexibility will
also contribute to the long-term development of continuity
of care emphasized in healthcare. Continuity of care refers
to practitioners handling their own set of patients, thus
allowing them to be responsive to an individual patient’s
changing needs. It has been proposed as one of the strategy
in enhancing primary care [18] as it will impact on the
long-term health condition of patients. However, in local
publicly funded specialty clinics, such practice has not been

implemented yet. Patients are simply assigned to an available
clinician (doctor, nurse) in every procedure. If resources were
specialized in a single skill, there will be a trade-off in acces-
sibility of healthcare providers when implementing continu-
ity of care. In a community midwifery problem where
midwives travel to the clients’ home locations to provide
postnatal care, the trade-offs between travel time and conti-
nuity of care were studied [19]. Results indicate that allocat-
ing and routing of midwives to their own set of clients cannot
be achieved perfectly, but a high degree of 70% is feasible
with relatively small additional travel time. The main obsta-
cles to perfect continuity of care are shift patterns and part-
time working of staff. It is suggested that with a reasonable
flexibility in the schedule of home visits, a higher degree of
continuity of care is achievable. This study has potential
relevance to the current work in analysing the integration
of service discipline, appointment schedule, and resource
allocation. When continuity of care is to be introduced,
having multiple skills will enable resources to serve a larger
set of clients, thereby improving efficiency. Besides, there
are resources and procedures still commonly shared by all
patients. Similar to [19], the current work can serve as a base
model to examine the trade-offs for implementing perfect or
high degree of continuity of care.

Figure 1 shows a graphical representation of the approach
with the time frame of the three decisions. The resource avail-
ability is known at a tactical level, say weeks or months before
the appointment day. The daily appointment quota for each
specialist clinic is usually set by considering various factors,
including the service demand, manpower available, and
capacity of physical facilities. Thus, the daily quota by a
patient class is also available at the tactical level. The tactical
decisions in the approach include finding an improved
resource plan (stage I) and block appointment schedule
(stage II) iteratively based on their initial configuration. At
the daily operational level, the staff can decide on the service
discipline. This is also included as an offline procedure in the
appointment scheduling stage to evaluate the resulting
performances. In addition to a proposed adaptive patient
selection rule as service discipline, a number of well-known
priority rules are applied for comparison. A two-stage algo-
rithm in this article is defined as the application of both stages
I and II (stage I + II) including a patient selection rule. All
methods are compared with a base scenario defined by an
initial resource plan and block appointment schedule with
the first-come-first-served (FCFS) rule.

Start

Initial resource
plan and block
appointment
schedule

Generate a
resource plan
(stage I)

Generate a block
appointment
schedule
(stage II)

StopService discipline

Tactical decisions
(e.g., weekly and monthly)

Operational decision
(e.g., daily)

Figure 1: Overview of the integrated resource allocation and appointment scheduling problem.
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1.1. Research Questions. The methodologies to be analysed
are classified in Table 1.

The following research questions are to be investigated in
the experiments based on the setting and parameters from an
ophthalmology clinic in earlier studies [1, 2]:

(i) How much improvement over the base scenario can
be obtained from the different methods?

(ii) Which algorithm performs better than the others?

(iii) Is it sufficient to find a good resource configuration
plan (stage I)? What is the additional benefit of
appointment scheduling (stage II) over the integrated
strategy (stage I + II)?

(iv) What is the impact of resource flexibility?

The rationale behind research question (iii) is that under
certain circumstances, such as equity concerns, operational
constraints, and incomplete patient information, it may not
be possible to optimize appointment scheduling. Question
(iii) is explored by comparing the benefits of using both strat-
egies together (stage I + II) over resource allocation without
appointment scheduling (stage I only).

1.2. Contribution. To the best of our knowledge, there is little
healthcare research aimed at integrating both resource
allocation and patient scheduling decisions for tactical and
operational planning. To solve problems of a realistic size
with hundreds of outpatients scheduled for a half-day session
requiring multiple procedures and resources, an iterative
two-stage simulation-based optimization approach is pro-
posed. The algorithm design is novel in its adaptive solution
approach without requiring adding resources. If the patient
flow statistics could be tracked in the system dynamically,
the problem parameters can be updated periodically to auto-
mate the solutions for decision support.

This article is organized as follows. Section 2 introduces
the integrated problem. The decomposition of the integrated
problem into two stages of the simulation-based heuristic fol-
lows in Section 3. The design of computational experiments
and the methods for comparison are presented in Section 4.
The results, discussion, and model limitations are given in
Section 5. Finally, the conclusions and insights are drawn in
Section 6.

2. Problem Description

The model assumptions of the integrated problem are
derived from early studies of an ophthalmology clinic [1, 2]
but can be generalized to multiphase and multiserver

queuing systems. Assumptions (i)–(xi) mainly focus on
patients and appointment scheduling, whereas the remaining
assumptions (xii)–(xvii) focus on resources and allocation.

2.1. Model Assumptions.

(i) A total ofQ patients are scheduled for the appoint-
ment session.

(ii) Each patient is categorized into exactly one of M
patient classeswithgiven classproportions. Patients
in a class may be diverted to one or more treatment
paths depending on their health conditions. Each
path corresponds to a defined series of procedures
treated by qualified resource units.

(iii) A treatment procedure can be performed by any
unit in the qualified resource group. The procedure
operates on either a single patient or a (continuous)
batch of patients.

(iv) The start time of a treatment procedure on a
patient must satisfy both the precedence relation-
ship of the patient’s treatment sequence (allowing
movement time and record handling time between
successive procedures) and the resource unit’s
completion time for the previous patient.

(v) The appointment session of duration T is divided
into K time blocks. The first K − 1 time blocks have
equal length (but equal length is not always neces-
sary), whereas the last block behaves like a large
time buffer until the end of the session.

(vi) Each patient is scheduled to arrive at the start of
exactly one of the K time blocks, though the actual
arrival times may be different.

(vii) The congestion level (or queue length) is measured
by the number of patients and their accompanying
visitors waiting for a procedure in the clinic wait-
ing area. Patients and visitors queuing or attending
procedures outside the clinic waiting area (e.g.,
registration and appointment booking) will not
be included in the congestion headcount.

(viii) Visitors accompanying patients will follow them
throughout their outpatient service process (includ-
ing waiting and going into the treatment room).

(ix) The stochastic factors considered include patient
punctuality, earliness/tardiness regarding the
appointment time, a patient in a class being

Table 1: Methodologies for analysis.

Type Resource allocation (stage I)/appointment scheduling (stage II) Service discipline

Base scenario (Given plan and schedule) FCFS

Integrated strategy
Stage I + II (Sections 3.1 and 3.2) Adaptive rule, priority rules (Sections 3.2.2 and 3.4)

Stage I (Section 3.1) Adaptive rule, priority rules (Sections 3.2.2 and 3.4)
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diverted to different treatment paths, procedure
time, and the number of visitors accompanying
each patient.

(x) Given that appointment reminders are issued by
hospital staff and that the demand for outpatient
services (in public hospitals) is high, no-shows
either are not considered or have been accounted
for when deciding on the appointment quota (Q)
in assumption (i).

(xi) To avoid a further increase in staff workload
(observed in some public hospitals), an overbook-
ing strategy is not adopted nor has it been
accounted for in assumption (i).

(xii) The total number of resource units in the resource
set (ℜ) and the skill set of the individual resource
units are given at the tactical level and remain
constant during the planning horizon.

(xiii) Each resource unit is assigned to a single treatment
procedure or a combined set throughout the
appointment session (e.g., registration and
appointment booking are often combined and
assigned to one or more resource units).

(xiv) A resource unit is fully assigned to perform a batch
procedure throughout the appointment session.

(xv) Resource units assigned to perform a treatment
procedure (or a combined set) are considered
identical and have the same service rate.

(xvi) Each procedure should be assigned to at least one
resource unit.

(xvii) Each resource unit has the flexibility to select any
patient waiting for his or her next treatment.

2.2. Multiple Objectives. The integrated problem has the mul-
tiple objectives of minimizing the average patient waiting
time (Z1), the average resource overtime (Z2), and the aver-
age congestion level (Z3) expressed as a weighted function in

Min Z = 〠
3

h=1
wh ⋅ Zh, 1

where wh represents the weight or relative importance of
objective h = 1, 2, 3 decided by the user. A similar weighted
performance measure has been adopted in [7] for the aver-
age system time and average clinic overtime. On the basis
of the observed practice [1], early arriving patients are
allowed to start registration in order for the service to be
people centered and to avoid resource idle time. Accord-
ingly, the start of patient waiting time is defined by the
actual patient arrival time (stochastic) or the beginning time
of the appointment session, whichever is later. The overtime
of a resource unit is the excess working time beyond the ses-
sion duration (T), if any. The average overtime per resource
unit Z2 is the sum of overtimes divided by the total num-
ber of resource units. The average congestion objective Z3

only considers patients (and visitors) waiting for treatment
procedures in the clinic waiting area as some procedures are
performed externally. This is estimated by Little’s law for
the average queue length Lq = λ ⋅Wq [20]. It can be
expressed alternatively as the sum of the time spent on wait-
ing in a queue for all arrivals, divided by the duration of the
observed period. The arrivals include patients and visitors
∑Q

j=1 1 + νj observed during the session duration (T),
where vj is the number of visitors accompanying patient
j = 1,…,Q .

2.3. Model Decisions. The three tactical and operational deci-
sions (Figure 1) optimizing the weighted objective function
(1) are defined in the following. Their integrated and separate
effects will be analysed in the computational experiments for
investigating the research questions (Section 1.1).

(D1) Resource configuration plan (R): Assignment of
each resource unit (r ∈ℜ) to one of its qualified
procedures (single or combined set) for the entire
appointment session

(D2) Block appointment schedule (A): The number of
patients Qik from a patient class i = 1,…,M
scheduled for the start of an appointment time
block k = 1,…, K , where ∑M

i=1∑
K
k=1Qik =Q

(D3) Service discipline (S): Selection among the waiting
patients of the next patient for treatment, whenever
a resource unit is free.

The manpower available by a resource group is known at
the tactical level. Even at the operational level, the assignment
of resource units to qualified procedures (D1) can be
improved for a given appointment schedule or by consider-
ing all three decisions simultaneously. The block appoint-
ment schedule (D2) decided at the tactical level can serve as
a reservation list for making future appointments. The ser-
vice discipline (D3) at the operational level will utilize the
system status information, including the resource units and
their waiting patients.

2.4. System Constraints. The system constraints in a multi-
phase and multiserver system are typically related to manag-
ing supply, demand, and the flow sequence. These include
the allocation of each unit of different resources to qualified
procedures (assumptions (xiii) and (xiv)) and the staff
requirement of each procedure (assumption (xvi)). Assigning
patients to time blocks ensures that each patient will be
scheduled to exactly one appointment time block (assump-
tion (vi)). Conversely, the sum of patients assigned to each
time block must not fall below a minimum limit, to avoid
resource idle time and possible overloading of other time
blocks. Patient arrival times are stochastic, and patients
may arrive earlier or later than the scheduled appointment
time, but not earlier than the facility opening time. The pro-
cedure start time for each patient must not be earlier than the
available starting time of the assigned resource unit(s). The
precedence constraints ensure that a patient’s procedure can
only start when the preceding procedure has been completed,
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allowing a time gap for patient movement and for staff to
handle records. Similarly, time constraints for a resource unit
apply to every consecutive pair of patients being treated
sequentially. The capacity constraint for the continuous
batch procedure restricts the number of patients (and accom-
panied visitors) processed at any time so that it does not
exceed a maximum limit. (An example is a video session
for educating day surgery patients and accompanying visi-
tors. The video is played continuously and repeatedly, and
the maximum limit is the room capacity.)

Regarding the problem complexity, a special case of the
deterministic problem is the flow shop scheduling problem
having a fixed resource plan with identical treatment
sequences for all patients and the single objective of mini-
mizing mean system time (or mean waiting time plus a
constant). This special case has been proved to be NP-
complete [21]. Consequently, a heuristic approach applying
simulation to handle the uncertainties is proposed for the
current problem.

3. Methodology

To tackle this complex integrated problem that involves sto-
chastic factors, a novel two-stage simulation-based heuristic
is proposed. The resource allocation (stage I) is the high-
level problem, and the block appointment scheduling includ-
ing the service discipline (stage II) is the secondary problem,
or subproblem. The methodology used is an iterative heuris-
tic optimization algorithm with probabilistic search and
memory structures. The details of each stage will be
explained in a top-down manner.

3.1. Resource Allocation Problem (Stage I). The main decision
is the resource configuration plan (D1 in Section 2.3), defined
by the number of compatible resource units assigned to per-
form each (single or combined) procedure. This stage is acti-
vated whenever stage II termination condition is met. The
waiting time statistics from the most recent appointment
schedule recorded at the end of stage II are used to reallocate
resource units among their qualified procedures to improve
the weighted objective (1). Despite not having a convergence
proof of optimality, this approach of using waiting time sta-
tistics for resource allocation is patient centered. It is inspired
by the demand diversion strategy of motivating specialty
patients to visit hospitals in clusters with short waiting times
[22]. Assumption (xii) is crucial for this stage as resource
flexibility (skill set) determines the degree to which resource
units can be reallocated.

3.1.1. Reduce Deviation in Average Waiting Time (Stage I).
The objective of the high-level resource allocation problem
is to reduce the deviation in the average waiting time among
procedures by reallocating resource units (Figure 2). This
helps alleviate the workload of busy servers. A memory of
the resource plans examined (denoted by MI) is maintained
to avoid repetition. For this complex problem with the three
layers of discrete decisions (Section 2.3), achieving computa-
tional efficiency is also important. A greedy resource alloca-
tion approach offers a quick, improved solution, but with

no guarantee of solution quality owing to its heuristic nature.
The concept is to identify the busiest procedure, denoted by
β, with the largest average waiting time, and to reallocate a
compatible resource unit from another procedure with a
smaller average waiting time to β. This is implemented by
sorting the average waiting time statistics by procedure in
descending order, as calculated from the recent set of replica-
tions of the simulation (stage II). The associated procedures
are placed in a list called L. The first procedure in L is consid-
ered to be the busy procedure (β), and a compatible resource
unit from another procedure (in the reverse order of list L)
will be identified for reallocation to β. If the resulting
resource plan ℜ is new and feasible (i.e., at least one unit is
assigned to each procedure), ℜ will be recorded in stage I
memory (MI). Otherwise, the process will repeat using the
next procedure in L. Once a new feasible plan ℜ is found,
stage II (appointment scheduling) starts again with the recent
appointment schedule (π), and the stage II memory (denoted
byMII) will be refreshed as ℜ is new and unique. Eventually,
when no new feasible planℜ can be found, stage I will termi-
nate, and the entire algorithm will end. The best-recorded
resource plan is the one associated with the best appointment
schedule (πbest) found in stage II.

3.2. Block Appointment Scheduling Problem (Stage II). In past
studies, the appointment scheduling problem mostly focused
on a single clinic. With certain modifications, the proposed
method could be extended to multiple clinics sharing some
common resources and waiting areas. The tactical decision
of block appointment schedule (D2 in Section 2.3) is
searched heuristically for a given resource allocation plan
(ℜ in stage I). This stage includes the service discipline
(D3 in Section 2.3) as an offline operational procedure
for performance evaluation and comparison. The solution
method is an extended development of an adaptive
scheduling heuristic for the deterministic problem [2].
The new development in this stage includes three aspects:
improving the patient selection rule on the basis of the
dynamic status information; enhancing the new schedule
generation mechanism; and incorporating simulation into
the optimization framework to handle uncertainties. The
design logic of stage II is shown in Figure 3.

3.2.1. Evaluating Schedule Performance. Starting with a given
resource allocation plan from stage I, the performance of the
most recent block appointment schedule (π0), defined by
Qik, i = 1,…,M, k = 1,…, K , will be forecasted by simulat-

ing the stochastic factors using discrete event simulation.
Each schedule will be run for a given replications to ensure
the margin of error = tα/2,n−1 ⋅ s/ n in estimating the
weighted objective value is not more than a predetermined
limit 100ε% from the sample average (Z) at a 100 (1−α)%
level of confidence. (s is the sample standard deviation of
the weighted objective from the n replications of the simula-
tion.) As in stage I, a memory of block appointment sched-
ules generated under the current resource plan, denoted by
MII, will be retained to avoid repeating the same schedule.
At the end of stage II, the last schedule and its performance
statistics will be used to generate a new resource allocation
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plan (stage I). Except for this last schedule (to be used as the
starting schedule in the next iteration of stage II) and the best
overall schedule (πbest), the other schedules in the memory of
MII will be cleared.

3.2.2. Patient Selection Rule (or Service Discipline). This oper-
ational decision is included as an offline procedure in stage II
together with the appointment schedule to test its impact on
the objective. In another study of an ophthalmology clinic

Start stage I

End of list L?

Stage II

Sort procedures
into list L in
descending order
of average
waiting time.
Incumbent
procedure �훽 ← �휙
 

�훽 ← next
procedure in L

No

Yes

Stop

No

Yes
Found new plan
R ∉ MI by reallocating a
resource unit to �훽 ?

MI ← MI ∪ R

Initialize:
R ← R0;
MI ← R

Initial
resource plan
(R0)

Figure 2: Stage I: Find a new resource plan (ℜ) to reduce deviation in average waiting time among procedures.
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Start stage II

Z < Zbest
statistically
significant?

Initialize:
�휋 ← �휋0;
MII ← �휋

Stage I

Update:
�휋best ←�휋;
Zbest ←Z.
Reset termination
parameters

No

Simulate performance of �휋
for n replications.
Z ← average weighted
objective 

Stage II
termination
condition met?

Restart from
best schedule
�휋best?

Time elapsed
< time limit?

No

End

Yes

Yes

Generate new
schedule
�휋new ∉ MII.

MII ← MII ∪ �휋new;
�휋 ← �휋new

Yes

Yes

No

No

Reset:

Update search
parameters

�휋←�휋best;
Z←Zbest.

Read resource 
plan (R) and
most recent
schedule (�휋0)

Figure 3: Stage II: Simulation-based heuristic for block appointment scheduling.
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[16], apart from the commonly used first-come-first-served
(FCFS) rule, selection by appointment time order is also
adopted in certain procedures, such as evaluation and con-
sultation. The benefit of flexible patient selection is explored
here under assumption (xvii). For the current multiphase and
multiserver complex network with a large number of patients
per session and frequent updates of system status, the adap-
tive rule proposed in (2) calculates the immediate impact of
a selected patient on the objective function (1). It suggests
selecting the patient j∗ from the set of waiting patients,
denoted by Ω, that has the least undesirable impact, ΔZ j∗ ,
on the (weighted) objective value:

ΔZ j =
w1 ⋅ countp

Q
+
w3 ⋅ countI – 1 – vj

T

⋅ E tj,l j+1 −
w2
R

⋅ 〠
nj

l=l j+1
E tjl , j ∈Ω,

2

ΔZ j∗ =min
j∈Ω

ΔZ j 3

Consider an available resource unit and one of its waiting
patients j ∈Ω. Let l j and l j + 1 be the recently completed and
current procedure for patient j, respectively. Apart from
patient j, suppose there are countp = Ω − 1 waiting
patients that can be selected by the same resource unit. If
the current procedure is performed inside the clinic, let
countI be the sum of waiting patients and accompanying vis-
itors, and 0 otherwise. The impact of selecting patient j on
each of the three objectives is explained separately as follows:

(i) The first term in (2) represents the estimated impact
on the objective of average patient waiting time
(with weight w1) when the countp patients will each
be delayed by patient j with expected treatment time
E t j,l j+1 . The total delay is averaged over the total

number of patients (Q), resulting in an overall
expression of w1 ⋅ countp ⋅ E t j,l j+1 /Q.

(ii) Similarly, for the objective of average congestion in
the clinic waiting area (with weight w3), selecting
patient j will cause a delay of E tj,l j+1 for each other

waiting patient and accompanying visitors. These
are then converted into the congestion measure.
With a total of countI patients and visitors currently
waiting for the resource unit, countI − 1 − vj will
remain if patient j is selected where vj is the number
of accompanying visitor(s). The impact on the con-
gestion objective is estimated by using Little’s law
Lq = λ ⋅Wq [20], by dividing the sum of the wait-
ing times in the queue, countT – 1 – vj ⋅ E t j,l j+1
by the session duration (T). This results in the sec-
ond weighted expression in (2).

(iii) The last term in (2) represents the estimated impact
on the objective of average resource overtime (with
weight w2) over all resource units. Resource

overtime is related to the remaining treatment time
for patients with unfinished treatments. For the cur-
rent resource unit, all the waiting patients (set Ω)
require an expected total remaining treatment time
of ∑i∈Ω∑

ni
l=li+1E til , which is a constant at this time

point. If patient j is selected, the expected remaining
sum of treatment times (excluding j) per resource
unit would be ∑i∈Ω∑

ni
l=li+1E til −∑

nj

l=l j+1E tjl / R ,

where R is the total number of resource units.
Ignoring the constant term ∑i∈Ω∑

ni
l=li+1E til gives

the weighted expression in the last term of (2).

Equation (2) represents a rule governing the trade-off
between the immediate treatment time and the remaining
treatment time. (If the system is entirely patient centered,
that is, w2 = 0, (2) and (3) become the shortest processing
time rule.) Conversely, if the average resource overtime dom-
inates, that is,w2 > 0,w1 = w3 = 0, (2) and (3) would select the
patient with the longest remaining treatment time, and this is
known as the critical path rule.) Equation (3) chooses the
ideal patient (j∗) with the least undesirable impact expressed
by (2). An implication of this adaptive rule is that a patient
with a short immediate treatment time and a long remaining
treatment time is always preferred over different weights.
When ties occur in choosing the ideal patient (j∗) from (3),
the FCFS rule can also be applied to ensure fairness.

3.2.3. Generating a New Schedule. The performance of every
incumbent appointment schedule (π) will be evaluated by
running n replications of the simulation. (n is chosen such
that the margin of error in estimating the true mean objective
value is within 100ε% of the sample mean value.) The proce-
dure used to generate a new schedule from the current sched-
ule π employs a probabilistic greedy approach. The rationale
behind it is to improve the objective function by rescheduling
a pool of patients from time blocks having a greater undesir-
able impact on the objective to time blocks having less of
an impact. The impact of a patient class is the sum of the
weighted objective values from all its patients. If the simu-
lation results reveal that a certain patient class would have a
large impact on (i.e., contribute a larger value to) the objec-
tive function of the current schedule, patients in such a
class would be given a larger probability of being selected
for rescheduling.

First, a procedure that has caused a large impact is
selected probabilistically. Next, a related patient class is iden-
tified, and one of its patients is rescheduled from a time block
that has a greater impact to another time block that has less
impact. The selection of a procedure, related patient class,
and time blocks (of removing and reinserting patients) are
based on probability distributions constructed from the per-
formance statistics recorded in the recent n replications. The
target characteristics (e.g., having a large impact on the objec-
tive) are given a greater probability of selection by construc-
tion. These procedures for selecting a patient will be repeated
until a pool of psize patients has been rescheduled to create a
new schedule (πnew) not recorded in memory MII. (If πnew
has occurred before, another pool of psize patients will be
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selected for rescheduling.) πnew is then added to the memory
MII to replace the incumbent schedule (π), and its perfor-
mance is evaluated by simulation.

3.2.4. Testing for an Improved Schedule and Termination
(Stage II). Whenever an incumbent appointment schedule
(π) is evaluated by the simulation, the average objective value
Z over the n replications will be compared with the best-
recorded objective value Zbest from the associated schedule
πbest. An improved schedule is tested by the research hypoth-
esis Z < Zbest (versus the null hypothesis Z ≥ Zbest) at a prede-
termined 100γ% significance level. If the test is statistically
significant, Zbest and πbest will be updated by Z and π, respec-
tively. The algorithm design includes intensification and
diversification search strategies. Whenever an improved
schedule is identified, the maximum number of selected
patients for rescheduling (pmax_size) will increase, allowing
the search time to extend before reaching the stage II ter-
mination condition. When restarting from the best sched-
ule, the pool size parameter (psize) is increased by one to
slightly enlarge the size of the neighbourhood for searching
new schedules.

3.3. Base Scenario. The base scenario is a resource plan and a
block appointment schedule collected at an ophthalmology
specialist outpatient clinic in a public hospital [1, 2] while
assuming the first-come-first-served (FCFS) patient selection
rule. They are also adopted as the initial resource plan (ℜ0 in
stage I) and the initial schedule (π0 in the first iteration of
stage II) in the proposed method.

3.4. Priority Rules for Comparison. In addition to the pro-
posed patient selection rule in (2) and (3) and the FCFS rule
in the base scenario, a number of well-known priority rules
are applied for comparison. Each of these rules benefits one
or more of the three objectives (1). They are as follows: short-
est processing time first (SPT), largest number of successors
(LNS), critical path (CP), and shortest queue at the next oper-
ation (SQNO). (A review of the priority rules can be found in
[23].) In appointment scheduling literature, scheduling
patients with low variance first is known to be effective in
balancing between patient waiting time and server idle time
[24]. We apply a closely related rule, the low range (LR)
rule, which is to select the waiting patient with the smallest
range in treatment time as the range information is avail-
able from the earlier study [1] for the current experiments.
Each of these priority rules is combined with the stage I
or two-stage algorithm (Sections 3.1 and 3.2), as an alterna-
tive of (2) and (3), to explore further the impact of integrat-
ing strategies.

4. Computational Experiments

The classification of parameters in outpatient scheduling
problems and solution methods can be found in a survey
[25]. In a local case study [1, 2] related to this work, all
medical procedures are performed inside the clinic while
the registration and appointment booking counters are
located outside the clinic. The problem is generalized to a
multiphase and multiserver queuing system sharing some

common resources or waiting area with multiple conflict-
ing objectives.

4.1. Operating Parameters. Table 2 lists the parameters repre-
sentative for an outpatient setting. Table 3 shows their values
based on data collected from the case study [1, 2]. The num-
ber of appointments at the time of the study was 200 for a ses-
sion of 4.5 hours. To account for growth in demand, a 25%
increase is assumed here with the original staff size and oper-
ating conditions. The distribution of the appointments
among the time blocks is maintained in the same proportion
by assumption. To avoid resource idle time and overloading
in other time blocks, a minimum number of appointments
per time block are imposed here. The minimum limit is
assumed to depend on the total number of appointments
(Q) and number of time blocks (K) by adopting a simple
function Q/K/3 = 6. The data collected on earliness and
tardiness (Table 3) revealed the same probability of early
arrival for different patient classes. Patient punctuality is sim-
ulated in the experiments using the empirical distribution of
data collected in Table 3. Resources are grouped by doctors,
nurses, and equipment (room). Doctors start later than the

Table 2: Operational information and parameters in an outpatient
(block) appointment system.

Patients

Number of appointments per session

Number of patient classes

Set of patient class and distribution

Number of paths by patient class

Set of paths by patient class

Distribution of visitors per patient

Patient punctuality

Probability of arriving early/late

Distribution of earliness by patient class

Distribution of tardiness by patient class

Resources

Resource groups (resource units in group)

Available start time by resource unit

(Initial) allocation plan of resource units to procedures

Skill set by resource unit

Procedures

Number of procedures

Set of procedures, operating mode and capacity (single/batch)

Procedure duration by patient class

Movement time between successive procedures (including
record handling)

Operating environment

Duration of appointment session

Number of time blocks in appointment session

Start time of time blocks

Appointment schedule

(Initial) distribution of appointments by time block

Minimum number of appointments per time block
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start time of the appointment session (assumed time 0) due
to assigned duties before the outpatient session, and patients
also have other preconsultation procedures. Nurses are
assigned to different procedures requiring different skills
and experiences (Table 4). The resource allocation plan was
collected from the original operating conditions [1, 2] while
their additional skills are assumed and explained in the next
section. The procedure information and related parameters
(Table 5) were provided by the hospital management during
the case study.

4.2. Resource Flexibility Scenario. When resource units pos-
sess multiple skills, reallocating such units among their qual-
ified procedures will improve system performances for a
given appointment schedule. Reallocation is feasible at the
operational level as staff on duty and the appointment

schedule are known at least a day before the appointment ses-
sion. Sharing of resource (nurse with multiple specialisms) is
observed in practice even between different specialist outpa-
tient clinics when manpower is scarce in one clinic at the
operational level.

To examine the impact of resource flexibility on perfor-
mance, a scenario of the resource skill sets is created, repre-
senting some degree of flexibility in reallocation. In some
clinics, such as oncology clinics, a high degree of specialized
skills is required, as oncologists are trained to specialize in
different cancer types. A medium-term resource allocation
tool would be helpful for training/recruiting staff with the
right set of skills [14]. The rationale behind the currently
created scenario is that doctors would concentrate on consul-
tation; experienced staff (senior nurses) would handle proce-
dures requiring higher degrees of judgement (e.g., nurse
assessment), and some staff can be reallocated to more rou-
tine procedures, depending on demand during the session.
Junior staff would handle clerical procedures (e.g., registra-
tion and appointment booking) for different patient classes.
The created scenario in Table 6 represents a resource set with
multiple skills offering some degree of flexibility for realloca-
tion. It is assumed that clerical procedures (registration and
appointment booking, that is, V+VI) for different patient
classes can be handled by the same group of nurses or clerical
staff (N13–N15). All staff (N3–N9) who can perform visual
acuity/eye examination (procedure III) are assumed to be
able to measure eye pressure/apply eye drops (procedure
IV). A few of them (N3) can also perform assessment tasks
requiring more experience (procedure II).

4.3. Objective Weights. A numerical approach is adopted to
examine the solution quality of the two-stage simulation-
based heuristic over a tested range of objective weights
(w1, w2, and w3 in (1)). By standardizing the weight of the
average patient waiting time objective to 1 (i.e., w1 = 1), the
ratio of importance (w2 w1) between average resource over-
time (Z2) and average patient waiting time (Z1) is tested over
the range from 0 to 10, specifically, w2 = 0, 0 1, 0 2,
0 4, 0 6, 0 8, 0 9, 1, 2, 4, 6, 8, 10 versus w1 = 1. Similarly, the
ratio of importance (w3 w1) between the average congestion
level (Z3) and average patient waiting time (Z1) is tested
simultaneously over the range from 1/3 to 3, specifically,
w3 = 1/3, 1/2, 1, 2, 3 versus w1 = 1. Overall, this results in
1 × 13 × 5 = 65 instances of different weights (w1, w2, w3)
being run for every method.

4.4. Labelling of Instances. The 65 instances are divided into 5
groups with 13 instances per group. Group g contains
instances labelled as 13(g− 1) + 1 to 13g, where g = 1, 2,…, 5.
To facilitate comparison of methods in Section 5, each group
consists of 13 pairs of (w1, w3) with the same values while w2
increases within the group over the stated range (Section
4.3). Between the groups, the weight on the congestion
objective (w3) increases.

4.5. Algorithm Parameters. The algorithm parameters
(Table 7) for the two-stage simulation-based heuristic are
chosen after running the initial experiments. The parameters

Table 3: Parameter values used in experiments from an
ophthalmology clinic [1, 2].

Patients

250 appointments per session

4 patient classes and 8 paths (with details in Table 9)

Distribution of visitors per patient = {0 (70%), 1 (23.3%),
2 (6.7%)}

Patient punctuality

Probability of arrival status = {0.7 (early), 0.3 (late)}

Empirical data on earliness (min)

Patient class 1 to 3: {1, 8, 10, 12, 13, 14, 15, 16, 24, 30, 37, 47,
80, 121};

Patient class 4: {13, 20, 21, 25, 27, 31, 32}

Empirical data on tardiness (min)

Patient class 1 to 3: {0, 6, 8, 8, 11, 16}

Patient class 4: {3, 6, 30, 59}

Resources

Doctors (D1,…, D8), nurses (N1,…, N16), educational
video (TV)

Available start time (in minute) = {30 for doctors, 0 otherwise}

(Initial) allocation plan of resource units to procedures (Table 4)

Skill set by resource unit (assumption in Table 6)

Procedures

A total of 8 procedures

Set of procedures, operating mode and capacity (single/batch)
(Table 5)

Procedure duration by patient class (Table 5)

Movement time between successive procedures (Table 5)

Operating environment

4.5 hours (or 270min) of appointment session

12 time blocks in appointment session

Start time of time blocks (in minute) = {0, 15, 30, 45, 60, 75, 90,
105, 120, 135, 150, 165}

Appointment schedule

(Initial) distribution of appointments = {16, 41, 19, 38, 19, 20, 23,
19, 14, 15, 13, 13}

A minimum of 6 appointments per time block

11Journal of Healthcare Engineering



in the block appointment scheduling problem (stage II) are
modified from those in the deterministic scheduling problem
[2] to strike a balance between exploring a sufficiently
large number of resource plans (stage I) and rescheduling
patients (stage II) within the maximum time limit. The
resource plans are explored systematically based on greedy

reallocation, but the search is not exhaustive. To generate
a new schedule in stage II, a pool of patients of initial size
p0 = 20% ×Q/itermax is selected from the incumbent
schedule (π) for rescheduling. (This allows a minimum pro-
portion, 20%, of all Q patients in π to be rescheduled in every
execution of stage II.) All algorithms have been coded in

Table 5: Procedure duration (min) by patient class, operating mode, and capacity.

Patient
class

I
Consultation

II
Nurse

assessment/
health

consultation

III
Visual

acuity/eye
exam

IV
Measure eye
pressure/
apply eye
drops

V
Registration

VI
Appointment

booking

VII
Nurse

reminder
on day
surgery

VIII
Educational
session

Movement
time between
procedures

(incl. records)

1 5–10 4–6 3–5 3–5 1–1.5 1–1.5 — — 2-3

2 5–10 4–6 3–5 2–4 3–5 1–1.5 — — 2-3

3 5–10 4–6 3–5 2–4 2–4 1–1.5 — — 2-3

4 5–10 4–6 3–5 3–5 1–1.5 2-3 5–10 8–12 2-3

Operating
mode
(capacity)

Single (1) Single (1) Single (1) Single (1) Single (1) Single (1)
Single
(1)

Batch (15) —

Table 6: Resource skill set (resource flexibility assumption).

Doctors Nurses Educational video
Resource unit D1–D8 N1, N2 N3 N4–N9 N10–N12 N13–N15 N16 TV

Procedure I II II, III, IV III, IV IV V, VI VII VIII

Table 4: (Initial) allocation plan of resource units to procedures.

Resource
group

I
Consultation

II
Nurse

assessment/health
consultation

III
Visual

acuity/eye
exam

IV
Measure eye
pressure/apply

eye drops

V+VI
Registration +

appointment booking

VII
Nurse

reminder on
day surgery

VIII
Educational
session

Doctors D1–D8

Nurses N1, N2 N3–N9 N10–N12

N13, N14
(patient classes 1 and 4)

N15
(patient classes 2 and 3)

N16

Educational
video

TV

Table 7: Algorithm parameters.

Description Notation Value

Number of simulation replications per schedule n 30

Maximum % estimation error in Z (for determining n) ε 10%

Level of confidence in estimating Z (for determining n) 1−α 95%

Level of significance in testing for an improved schedule γ 0.1

Number of new schedules created from an incumbent schedule itermax 5

Initial pool size of patients for rescheduling p0 10

Fixed increment of pool size pstep_size 2

Initial maximum pool size pmax_size 12

Maximum time limit for algorithm (CPU seconds) tlim 7200
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Microsoft Visual Basic .NET 2010 version and are performed
on an Intel(R) Xeon(R) CPU E31270, 3.4GHz processor. The
maximum time limit (tlim) allowed for each algorithm on
each test instance is 7200 CPU seconds.

5. Results and Discussion

To investigate the research questions (i)–(iv) in Section 1.1,
the two-stage simulation-based heuristic is compared with
the base scenario (Section 3.3) and the integrated strategies
with the priority rules (Sections 3.2.2 and 3.4). Results over
the 65 instances, and insights drawn, are given as follows.

5.1. Analysis of Research Questions

5.1.1. Improvement over the Base Scenario. The base scenario
is compared with the two-stage algorithms and stage I

algorithms in Figure 4. Each vertical line shows the mini-
mum, average, and maximum objective value of each algo-
rithm over the 65 instances. In Figure 4 and in every
instance, the base scenario representing the initial plan can
be improved by any integrated strategy. Simply finding a bet-
ter resource plan (stage I) while adhering to the FCFS rule
can result in an average improvement of 43%. If the patient
selection rule in (2) and (3) is used (stage I simulation-
based heuristic), the largest average improvement of 53% is
recorded. Further incorporating the appointment scheduling
strategy can lead to more benefits at the expense of computa-
tional effort and time.

In terms of computational time, the base scenario
takes negligible time in the simulation. The stage I algo-
rithms take between 120 CPU seconds for priority rules
and 1400 CPU seconds for the simulation-based heuristic.
The two-stage algorithms would take between 3000 CPU
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Figure 4: Performance comparison of stage I and two-stage algorithms with the base scenario on the (minimum, average, and maximum)
objective.
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seconds to the maximum time limit of 7200 CPU sec-
onds for the priority rules and the simulation-based
heuristic, respectively.

5.1.2. Comparison between Algorithms. As stated in Section
4.4, the 65 instances are divided into 5 groups with each
group indicated by its first instance in Figures 5, 6, 7, and 8.
Within each group, the weight of the resource overtime
objective (w2) increases from 0 to 10 while the other two
objective weights are kept constant. From group 1 to group
5, the weight of the congestion objective (w3) increases from
1/3 to 3.

To find the best overall algorithm for the specialty clinic
under study, the best integrated strategy for each patient
selection rule ((2) to (3) and Section 3.4) is selected for com-
parison in Figure 5. In addition, one-tail paired t-test is
applied for pairwise comparison at the 5% significance level
as described in Section 5.1.3 below. From Figure 5 and the
statistical results, the high performers on the objective are
listed in the following priority order: two-stage simulation-
based heuristic, two-stage CP, two-stage LNS, two-stage
SPT, two-stage LR, stage I SQNO, and two-stage FCFS. The
two-stage simulation-based heuristic using (2) to (3) is
more flexible over different weights and outperforms all
the others. As expected, when resource overtime is more
important (large w2), the two rules CP and LNS perform
better than SPT and vice versa.

5.1.3. Impact of the Resource Allocation Strategy (Stage I
Only) with/without Appointment Scheduling. The integrated
strategy two-stage algorithm is compared with stage I only
under each patient selection rule. The representative ones
are depicted in Figures 6–8 showing their respective perfor-
mance with and without resource flexibility. Figures 6–7
show that under two patient selection rules, (2) to (3) and
CP, finding good appointment schedules, combined with
resource allocation will result in significantly more benefit
than applying resource allocation only. (Similar perfor-
mance is observed in the LNS rule.) However, under the
SPT rule (Figure 8), improvement from appointment sched-
uling is observed only for small values of the weight on
resource overtime (w2). This implies the stage I SPT rule
combined with appointment scheduling will give improve-
ment when patient waiting time is considered more impor-
tant than resource overtime, as well as when congestion is
given more concern (large w3). For the remaining three
patient selection rules (LR, FCFS, and SQNO), the stage
I and two-stage algorithms do not show much difference
in performances, implying the resource allocation strategy
is sufficient.

More specifically, a one-tail paired t-test is applied to
each pair of comparison at the 5% significance level. The
two-stage algorithmwith each patient selection rule performs
better on the objective, except for the LR and SQNO rules.
The LR rule shows no difference when integrating with either
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Figure 5: Comparing the algorithms with their best integrated strategy.
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strategies while the SQNO rule can perform better with the
stage I strategy.

5.1.4. Impact of Resource Flexibility. If there were no resource
flexibility as in Table 6, each resource unit has only a single
skill which is the assigned procedure in the initial resource
plan (Table 4). Each integrated strategy would then terminate
at the end of this first resource plan (ℜ0) when stage I is exe-
cuted once. The best-recorded objective at this point will be
compared with the best found (Zbest) when resource flexibil-
ity exists, that is, when stage I is executed multiple times. For
the 7 patient selection rules, the stage I and two-stage algo-
rithms with resource flexibility are each compared with their
counterpart without resource flexibility. Figures 6–8 show
the case for three patient selection rules. Significant differ-
ence between the objective values (Z) is observed in each pair
of comparison. This implies creating resource flexibility has
great impact regardless of the integrated strategy and/or
patient selection rule adopted.

5.2. Choice of Objectives and Weights. For publicly funded
specialist outpatient clinics which are often resource con-
strained, resource utilization including overtime is a typical
concern. Emphasis on service quality has led to implementa-
tion of many measures by the hospital management to
increase service capacity and manage waiting time. If conges-
tion is to be controlled due to capacity concern, changing this
objective to a constraint by imposing a bound (e.g., physical

capacity limit) would be realistic. Then the only trade-off
remaining is between resource overtime and patient waiting
time. Publicly funded clinics typically serve a larger number
of patients per session than the private ones. Reducing con-
gestion helps mitigate the risk of infection. Naturally, there
are other objectives that could be considered, such as maxi-
mizing preferences of staff, patients, and operational condi-
tions. These could be treated as soft constraints, and
penalty costs are imposed in the objective function when they
are violated. A multicriteria operating theatre timetabling
problem [26] demonstrates another example of many objec-
tives. When there are more than two objectives, using a
weighted function combining multiple objectives allows the
trade-offs to be examined analytically. It is also easier to han-
dle than the efficient frontier approach. When setting up
appointment policies, the calibration of the ratio of the server
completion time to expected customer waiting time is not an
easy task [27]. Incorrect estimation of this ratio can lead to
loss of utility of server and customer. The estimation of
weights in [26] has shed light on these parameter values.
The weights are also used to balance various objectives
designed to smooth bed usage, give surgeons preference on
time slots and repeated weekly assignments. It is suggested
to use equal weights initially and then adjust them according
to the changes desired in the resulting timetable. Similarly, in
the proposed simulation-based heuristic with (2) and (3), it is
suggested to start with equal objective weights. Taking
advantage of the relatively short running time of the stage I
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algorithm, run the stage I simulation-based heuristic to
adjust the weights until the objective values are desirable or
no further improvement is observed. Then apply the incum-
bent set of weights to run the two-stage algorithm to further
optimize the objectives. This approach is supported by the
instances tested in this work.

5.3. Examining Multiple Objectives. After concluding the
investigation of the research questions (i) to (iv) in Section
1.1, the two-stage simulation-based heuristic using (2) and
(3) will be examined more closely in its solution quality. Opti-
mizing a single (weighted) measure serves as a tool for deriv-
ing a good balanced solution over all objectives. Table 8 shows
the case where resource overtime is the most important and
congestion is the least (w1 = 1,w2 = 10,w3 = 1/2) for the two
best algorithms, two-stage simulation-based heuristic with
(2) and (3), and two-stage with CP. The improvement from
the first to the best solution is drastic for each algorithm. Both
are far better than the base scenario.

To summarize, the improvement in the weighted objec-
tive (Z) when applying the appointment scheduling strategy
to a resource plan is usually gradual, compared with the
change between successive resource plans. Flexibility in real-
locating resource units could lead to a drastic improvement
if this process can be automated to find the right configura-
tion plan (which is often not the most obvious one tested). A
single/composite priority rule could achieve significantly
better performance when combined with both resource allo-
cation and appointment scheduling, or even only with
resource allocation.

With only a single strategy, improvement could be lim-
ited by the initial conditions. The two-stage simulation-
based heuristic using (2) and (3) is the best performer on
average and is more flexible in handling the different weights
of the conflicting objectives (Figure 5). Nevertheless, when
staff overtime is the top priority, the integrated strategy with
CP or with LNS can sometimes give better results. A small
degree of resource flexibility targeting the bottleneck proce-
dures can lead to a great improvement. This is analogous to
the conclusion in [14] that operational efficiency can be
improved by optimizing the oncologist specialization mix.
The importance of matching not only the demand volume
but also the request and resource types is also demonstrated
in this study.

5.4. Discussion and Limitations of Study. This section dis-
cusses some limitations of this study followed by the response
from the hospital clinic in our study.

Our method requires the data on patient class informa-
tion, resource availability, and skill sets to be known in
advance. Data collection could be facilitated by extracting
the electronic health records of patients, staff roster, and per-
sonnel records. Information technology support could help
automate this process.

On the variability of data, the empirical data collected
from the specific clinic (Table 3) has been used in the simu-
lation of parameters. In addition, a sample of 89 doctors’ con-
sultation times has been collected in the previous joint study
[1]. They revealed a multimodal distribution with extreme
values of 3 and 25 minutes. The stated range of consultation
time from 5 to 10 minutes (Table 5) provided by the hospital
has similar average and has captured 70% of the majority of
collected values. Hence, it has been used in simulating the
consultation time variable. Other procedure times (Table 5)
all have small range of not more than 5 minutes. For simplic-
ity, a uniform distribution has been assumed for each vari-
able in Table 5. If data have larger variability, the standard
error of the estimated objective function (Z) increases. This
is observed in additional computational experiments when
the range of procedure duration (Table 5) is doubled while
keeping the same distribution and average. The standard
error of the individual objective component also increases
in general. However, the objective function, a weighted aver-
age of performance measures, can be better or worse than
before due to randomness of variables and probabilistic
design in the algorithm.

The patient flow sequences of the ophthalmology clinic
depicted in Table 9 could exhibit some deviation even for
patients in the same class. This depends on an individual’s
health condition and the on-site assessment of the health
professional. To reduce the problem complexity, the given
information (Table 9) has been used only in this study. (For
information updates, the patient flow sequence and waiting
times could be recorded with patients’ consent and informa-
tion technology support.) The current results are based on a
computational approach with no guarantee of optimality or
proof of stochastic convergence. The weights of the multiple
objectives, representing their relative importance, have been
chosen on the basis of easily perceived (Section 4.3) but not

Table 8: Multiobjective performances of different integrated strategies under the resource flexibility scenario where
w1,w2,w3 = 1, 10, 1/2

Integrated strategy
Patient

selection rule
Solution Z

Z1: avg. patient
waiting time (min)

Z2: avg. resource
overtime (min)

Z3: avg. congestion
per time unit

Avg. max. resource
overtime (min)

(Base scenario) None FCFS — 1408 152 122 78 193

Stage I only FCFS Best 597 138 44 34 132

Stage I + II FCFS Best 508 145 34 37 140

Stage I + II Eqns. (2) and (3) First 449 194 20 118 178

Best 254 140 9 42 109

Stage I + II CP First 606 198 34 127 179

Best 263 146 9 47 109
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exhaustive scales. (Some guidelines on the choice of objec-
tive weights are given in Section 5.2.) The resource alloca-
tion phase (stage I) relies on the existence of multiple
skills for certain staff (Table 6) to allow reassignment
between procedures. Thus for other specialty clinics or an
environment with multiple specialties sharing some com-
mon resources or waiting areas, the best combination of
integrated strategies would need to be investigated for their
specific parameters (Tables 3–6 and 9) and characteristics.

The public hospital in our study is currently employ-
ing electronic monitoring and reactive control to shorten
waiting time. They have developed an electronic manage-
ment system that displays the real-time queue status of
specialist outpatients, informing them about their
expected waiting time. If actual waiting times were long,
more staff with lighter workload at the time would be
called to the clinic. The operations manager of the spe-
cialist outpatient departments has regarded our research
results and conclusions as specific and clear. Despite not
having specific plan of implementation yet, we anticipate
there would be comprehensive planning with similar tech-
nology tools in the future.

6. Conclusion

This article elaborates one of the first studies analysing an
integrated resource allocation and (block) appointment
scheduling problem for tactical and operational planning.
Developing novel multidecision solution approaches to
better address real-life problems is a research direction sug-
gested by a recent survey of outpatient appointment systems
[9]. From the observation that patient demand (Q) is growing
while staff supply is often a shortage issue in healthcare orga-
nizations, our study proposes long-term and short-term
strategies summarized as follows:

(1) Long-term strategy: The bottleneck procedure
may not be the most obvious one expected (e.g.,
doctor’s consultation). This study has illustrated a

computational approach to identify multiple bottle-
neck procedures in an ophthalmology clinic.
Resource flexibility at the bottleneck procedures in
the clinic can be increased by providing staff training
to enable redeployment or by employing automation.

(2) Short-term strategy: Integrating strategies can effec-
tively improve system performance. In this study, a
two-stage model integrating the greedy resource allo-
cation strategy and the adaptive appointment sched-
uling heuristic [2] extended by simulation shows the
most promising improvement on the patient- and
staff-centered performance measures. Simply com-
bining the resource allocation strategy with a good
priority rule ((2) and (3), CP, LNS, or SPT) can bring
about a significant improvement over the base sce-
nario (with a given resource configuration, appoint-
ment schedule, and the FCFS rule).

Future studies could examine other specialty clinics or an
environment with multiple specialties sharing some common
resources or waiting areas. Another direction is to customize
the integrated strategies for implementing continuity of care.
Trade-offs in the objectives can then be evaluated with the
current setting where resources are pooled.
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