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Three-dimensional (3D) liver tumor segmentation from Computed Tomography (CT) images is a prerequisite for computer-aided
diagnosis, treatment planning, andmonitoring of liver cancer. Despitemany years of research, 3D liver tumor segmentation remains
a challenging task. In this paper, an efficient semiautomatic method was proposed for liver tumor segmentation in CT volumes
based on improved fuzzy C-means (FCM) and graph cuts. With a single seed point, the tumor volume of interest (VOI) was
extracted using confidence connected region growing algorithm to reduce computational cost.Then, initial foreground/background
regions were labeled automatically, and a kernelized FCM with spatial information was incorporated in graph cuts segmentation
to increase segmentation accuracy. The proposed method was evaluated on the public clinical dataset (3Dircadb), which included
15 CT volumes consisting of various sizes of liver tumors. We achieved an average volumetric overlap error (VOE) of 29.04% and
Dice similarity coefficient (DICE) of 0.83, with an average processing time of 45 s per tumor. The experimental results showed that
the proposed method was accurate for 3D liver tumor segmentation with a reduction of processing time.

1. Introduction

Liver cancer is one of the most common types of cancerous
diseases worldwide, with increasingly high morbidity [1].
Early diagnosis and treatment are crucial to improve the sur-
vival rate, and the medical imaging techniques provide great
help. Among many different imaging modalities, Computed
Tomography (CT) is widely used for diagnosis of hepatic
disease as it can provide relatively high resolution images
with accurate anatomical information [2].Three-dimensional
(3D) segmentation of liver and tumors from CT images is an
important prerequisite for early diagnosis, treatment plan-
ning, and monitoring of liver cancer [3]. However, manual
segmentation of liver tumors slice by slice is still routinely
used by radiologists in clinical practice, which is laborious
and time-consuming due to the large amount of data, and also
prone to interobserver variability [4]. The need for accurate
and efficient tumor delineation leads to the development of
semiautomatic or automatic tumor segmentation methods.

3D liver tumor segmentation remains a challenging task
due to the high variability of tumor shape, size, intensity,

and the low contrast between tumor and surrounding liver
tissues [5]. Many different approaches have been proposed
to improve the tumor segmentation performance. Recent
publications mainly included semiautomatic and automatic
tumor segmentation methods based on region growing or
thresholding [6–8], clustering [9–11], level set [12, 13], graph
cuts [14, 15], and machine learning [16–19].

Region growing, thresholding, or clustering methods
have been commonly used in medical image segmentation
since they are fast and easy to be implemented and have a rel-
atively low computational cost. However, the main drawback
of these methods is that only intensity information is used.
As a result, such methods are prone to boundary leakage on
blurred tumor boundaries. Thus, prior knowledge or other
algorithms were integrated to reduce undersegmentation or
oversegmentation [7, 8, 11]. Anter et al. [7] proposed an
automatic tumor segmentationmethod using adaptive region
growing. The initial seed points for region growing were
detected by applyingmarker-controlledwatershed algorithm.
Zhou et al. [8] presented a performance benchmarking study
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of three semiautomatic methods for tumor segmentation,
including the two-dimensional (2D) region growing with
knowledge-based constraints and the 3D Bayesian rule-
based region growing method. Kumar et al. [9] developed
a computer-aided diagnosis (CAD) system for tumor seg-
mentation and classification. The alternative fuzzy clustering
algorithm was used in the segmentation stage, which used a
new distance function instead of the Euclidean metric. Das
and Sabut [11] used adaptive thresholding, morphological
processing, and a kernelized fuzzy C-means (FCM) algo-
rithm to segment liver tumors from CT images. Moghbel et
al. [10] proposed an automatic tumor segmentation scheme
based on the supervised randomwalker approach. FCMwith
cuckoo optimization was applied for the labeling of pixels for
the final random walker segmentation.

Active contour approaches, such as fast marching
and level set algorithms, are popular segmentation tech-
niques. However, good initialization and speed functions are
required in order to obtain accurate segmentation results,
especially for tumors with heterogeneous intensities and
weak boundaries. Li et al. [12] proposed a new level set model
integrating edge- and region-based information with prior
information. FCMalgorithmwas applied for the probabilistic
estimation of tumor tissues. Le et al. [13] proposed a semi-
automatic method to segment liver tumors from Magnetic
Resonance (MR) images, where the fast marching algorithm
was used to generate the initial labeled regions, and then other
unlabeled voxels were classified by the neural network. Graph
cutsmethods have also beenwidely applied formedical image
segmentation [14, 15], which can achieve global optimization
solution. Stawiaski et al. [14] proposed an interactive seg-
mentation method based on watershed and graph cuts. The
method achieved the highest accuracy compared to other
semiautomatic or automatic methods in the competition
of 2008 Liver Tumor Segmentation Challenge (LTSC08),
which was held in conjunction with the Medical Image
Computing and Computer Assisted Intervention (MICCAI)
2008 conference [20]. Linguraru et al. [15] presented an
automatic tumor segmentationmethod using graph cuts with
Hessian-based shape constraints biased to blob-like tumors.
However, the main drawback of such level set or graph cuts
based techniques is their relatively high computational cost,
especially for 3D volume data.

To deal with the variations of tumor shape, size, intensity,
and texture, machine learning based methods were also
studied. Foruzan and Chen [19] employed the support vector
machine (SVM) and scattered data approximation algorithms
to obtain the initial tumor boundary and then refined the
final lesion region by using a sigmoid edge model. Kadoury
et al. [17] developed an automatic tumor segmentation
framework by using themachine learning technique based on
discriminant Grassmannian manifolds. Nonlinear intensity
distributions of liver and tumor tissues were learned during
the training phase. Then, a higher-order conditional random
field (CRF) approach was applied to perform the tumor
segmentation. Zhang et al. [16] applied watershed transform
on the liver region and then employed region-based clas-
sification by SVM for tumor segmentation. However, for
machine learning based methods, a large amount of training

data with gold standards is required during the training
process.

Considering the clinical applicability and segmentation
accuracy as well as the processing time, our goal was to
develop an efficient, robust, and accurate tumor segmen-
tation method with low human interaction. Thus, in this
paper, a semiautomatic method based on improved FCM
and graph cuts was proposed to realize 3D liver tumor
segmentation from CT images. With a single user-selected
seed point, both the tumor volume of interest (VOI) and
labeled foreground/background regions for graph cuts seg-
mentation were extracted using the confidence connected
region growing algorithm. To improve segmentation accu-
racy, a kernelized FCM algorithm with spatial information
was incorporated when estimating the probabilistic models
of tumors and liver tissues.

The rest of this paper is organized as follows. Section 2
introduces the details of the proposed method. Section 3
presents the experimental results, and the discussion is
given in Section 4. Finally, the conclusion is summarized in
Section 5.

2. Methods

The proposed liver tumor segmentation framework is illus-
trated in Figure 1. It consists of four major steps: (1) prepro-
cessing, (2) tumor VOI extraction, (3) tumor segmentation,
and (4) postprocessing. Together with the original input CT
volume, the presegmented liver mask is required to extract
the liverVOI to reduce the computational cost.The livermask
can be obtained by using a 3D liver segmentation method
such as the one in our previous work [21].

2.1. Preprocessing. In the preprocessing step, firstly, nonliver
tissues were removed and the liver VOI 𝐼Liver was extracted
from the original CT image using the liver mask. Then, 𝐼Liver
was smoothed by median filtering and resampled to isotropic
voxel of size 1 × 1 × 1mm by linear interpolation.

To segment the tumor, one seed point was manually
selected on the middle tumor slice. The middle tumor slice
was defined as an axial slice, which contained a relatively
large lesion region. The seed point V𝑠 was selected near the
center of the lesion. To reduce interoperator variability, an
automatic correction was applied by replacing the seed point
to the darkest voxel within a cube of 5 × 5 × 3 voxels centered
at the selected seed point.

2.2. Tumor VOI Extraction Using Confidence Connected
Region Growing. Based on the seed point, the tumor VOI𝐼Tumor was extracted by defining a bounding box around the
tumor. Further analysis was conducted on 𝐼Tumor in order to
reduce the computational complexity and processing time.
Thebounding boxwas computed using confidence connected
region growing algorithm (CCRG), in the axial, coronal, and
sagittal slices.

The concept of CCRG is similar to conventional region
growing based methods [7, 8]. Through an iterative region
growing process that started from the seed point V𝑠, neigh-
boring voxels v with intensities inside the defined range 𝐼V ∈
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Figure 1: The proposed liver tumor segmentation framework. (VOI: volume of interest; KFCMS: kernelized fuzzy C-means with spatial
constraints).

[𝑚𝑐 − 𝑙𝜎𝑐, 𝑚𝑐 + 𝑙𝜎𝑐] were included in the tumor region, where𝑚𝑐 and𝜎𝑐 are themean and standard deviation of the intensity
in the region and l is a user-defined multiplicative factor. A
region of radius 2 voxels was defined as the initial region.The
new inclusion range was acquired by recomputing𝑚𝑐 and 𝜎𝑐
at each iteration of region growing.The expansion continued
until nomore neighboring voxels were added to the region or
the maximum number of iterations was reached.

As shown in Figure 2, the results of confidence connected
segmentation were affected by the selection of multiplicative
factor l. A fixed value of l might lead to undersegmentation
for large tumors, while causing oversegmentation for small
tumors. Thus, to reduce undersegmentation and overseg-
mentation errors, we employed an iterative process by using
confidence connected region growing under the value of l
ranging from 1.5 to 2.5 (Figure 3). The iteration stopped if
the segmented tumor region area was close to that of the
liver region, or the distance between the seed point V𝑠 and
the centroid of the segmented tumor region was larger than
20mm. Then, all of the segmented masks were added to
generate an integrated image 𝐼confi.The tumor regionwas then
extracted from 𝐼confi using binary thresholding with the low
threshold defined as half of the maximum value in 𝐼confi.

After computing the 3D bounding box of the tumor
region on the three cross-section slices, the tumor VOI was
defined by adding a safety margin of 15mm around the 3D
bounding box.

2.3. Tumor Segmentation Based on Improved Fuzzy C-Means
and Graph Cuts

2.3.1. Initialization. The graph cuts segmentation in the
tumor VOI 𝐼Tumor was initialized by the initial seed mask, the
sigmoid of gradientmagnitude of 𝐼Tumor, and the probabilistic
distributions of lesion and liver tissues (Figure 4).

To generate the initial foreground/background seed
mask, voxels located inside the confidence connected seg-
mented tumor regions (see Section 2.3) were labeled to 255
as foreground seeds, while the voxels outside the liver region
or adjacent to the boundaries of tumor VOI were labeled to 0
as background seeds.

An intensity transform was applied on the gradient
magnitude of 𝐼Tumor according to the following sigmoid
function:

𝐼sg = (1 + exp(−(𝐼𝑔 − 𝛽𝑠)𝛼𝑠 ))−1 , (1)

where 𝐼𝑔 denotes the gradient magnitude of 𝐼Tumor, 𝐼sg is
the sigmoid of 𝐼𝑔, 𝛼𝑠 and 𝛽𝑠 are parameters that define
the mapping range of the input 𝐼𝑔, 𝛼𝑠 determines the input
intensity window width, and 𝛽𝑠 defines the window center.

Gaussian mixture model (GMM) is commonly applied
to estimate the intensity distribution [21, 22]. However, only
intensity information is used in GMM without considering
spatial information. In this paper, a kernelized FCM algo-
rithm with spatial information was employed to estimate the
probabilistic models of lesion/liver tissues.

2.3.2. Kernelized FCM with Spatial Constraints. Let 𝐼 =(𝐼1, 𝐼2, . . . , 𝐼𝑁V) denote the intensities of the voxels in the
tumor VOI and let 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑁𝑐) denote the cluster
centers, where𝑁V and𝑁𝑐 are the number of voxels and clus-
ter centers, respectively. Fuzzy clustering based algorithms
assign voxels v to each cluster by minimizing the objective
function defined as follows [23, 24]:

𝐽 = 𝑁V∑
𝑗=1

𝑁𝑐∑
𝑖=1

𝑢𝑚𝑓𝑖𝑗 󵄩󵄩󵄩󵄩󵄩𝐼𝑗 − 𝑐𝑖󵄩󵄩󵄩󵄩󵄩2 , (2)
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Figure 2: Comparison of confidence connected segmentation results under different values of multiplicative factor l. Each row represents an
example of segmentation for tumor with varying size. The orange contour indicates liver region and red point shows the tumor seed point.

where𝑢𝑖𝑗 is a partitionmatrix that represents themembership
of the voxel in the ith cluster and𝑚𝑓 is a weighting factor that
controls the fuzziness of the resulting partition.The objective
function is minimized through an iterative optimization.The
membership value in 𝑢𝑖𝑗 indicates the probability that a voxel
belongs to a specific cluster.

In traditional FCM algorithm, the membership matrix
and cluster centers were updated by

𝑢𝑖𝑗 = (𝑁𝑐∑
𝑘=1

( 󵄩󵄩󵄩󵄩󵄩𝐼𝑗 − 𝑐𝑖󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐼𝑗 − 𝑐𝑘󵄩󵄩󵄩󵄩󵄩)
2/(𝑚𝑓−1))

−1

,

𝑐𝑖 = ∑𝑁V𝑗=1 𝑢𝑚𝑓𝑖𝑗 𝐼𝑗∑𝑁V𝑗=1 𝑢𝑚𝑓𝑖𝑗 .
(3)

Only intensity informationwas includedwithout considering
the local spatial information. To improve the robustness of
fuzzy classification, spatial neighborhood information was
incorporated into the membership matrix [24], and the

Euclidean distance was replaced by the Gaussian kernel-
induced distance measure [23, 25]. The membership matrix
was then updated by

𝑢󸀠𝑖𝑗 = 𝑢𝑝𝑖𝑗ℎ𝑞𝑖𝑗∑𝑁𝑐
𝑘=1

𝑢𝑝
𝑘𝑗
ℎ𝑞
𝑘𝑗

, (4)

where

ℎ𝑖𝑗 = ∑
𝑘∈NB(𝐼𝑗)

𝑢𝑖𝑘,

𝑢𝑖𝑗 = (1 − 𝐾 (𝐼𝑗, 𝑐𝑖))−1/(𝑚𝑓−1)
∑𝑁𝑐
𝑘=1

(1 − 𝐾 (𝐼𝑗, 𝑐𝑘))−1/(𝑚𝑓−1) ,
𝐾 (𝐼, 𝑐) = exp(−‖𝐼 − 𝑐‖22𝜎𝑓2 ) .

(5)

Here,𝑝 and 𝑞 are weighting factors determining the influence
of both functions, NB(⋅) represents the neighboring window,
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Figure 3: Illustration of tumor VOI extraction using confidence connected region growing. (a) Confidence connected segmentation results
under l in the range [1.5, 2.5]. (b) The integrated image of (a). (c) The extracted tumor mask. (d) The bounding box of tumor region (green
rectangle), the tumor mask (yellow contour), and the seed point (red point).

(a) (b) (c) (d) (e) (f)

Figure 4: Intermediate results of the initialization of graph cuts segmentation. (a) The middle tumor slice. (b) The sigmoid of gradient
magnitude. (c) Probabilistic distribution of lesion. (d) Probabilistic distribution of liver. (e) Initial seedmask. (f) Comparison of segmentation
results of the proposed method (yellow contour) and the ground truth (green contour).

and 𝜎𝑓 is the adjustable parameter of the Gaussian kernel𝐾(𝐼, 𝑐). The new cluster centers were updated by

𝑐𝑖 = ∑𝑁V𝑗=1 𝑢󸀠𝑚𝑓𝑖𝑗 𝐾(𝐼𝑗, 𝑐𝑖) 𝐼𝑗∑𝑁V𝑗=1 𝑢󸀠𝑚𝑓𝑖𝑗 𝐾(𝐼𝑗, 𝑐𝑖) . (6)

For convenience, the improved kernelized FCM algorithm
with spatial constraints was called KFCMS. Details of the
KFCMS algorithm are presented in Algorithm 1.

As shown in Figures 4(c) and 4(d), the probabilistic
models of lesion and liver were obtained using KFCMS. The
probability value of each voxel in tumor VOI was in range[0, 1] and was mapped to grayscale for visualization.

2.3.3. Graph Cuts Segmentation. Tumor segmentation prob-
lem can be formulated in terms of energy minimization, and
graph cuts segmentation is an optimization process aimed
to find optimal surface with minimal cost [26, 27]. In this
paper, a graph was constructed on the tumor VOI, which
consisted of three types of nodes V = {T,N,S} and three
types of undirected edges E = {𝐸𝑛, 𝐸𝑡, 𝐸𝑠}. The sink nodeT
represents a set of foreground seeds, and the source node S
denotes the background seeds. The node set N corresponds
to the voxels in 𝐼Tumor. In the edge set 𝐸𝑛, the so-called n-link
edges connect all neighboring voxels. In 𝐸𝑡 and 𝐸𝑠, the so-
called t-link edges connect each voxel to the sink and source
node, respectively.
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input: the tumor seed point V𝑠, the tumor VOI 𝐼Tumor
output: the probabilistic models for tumor 𝑃fg(V) and liver 𝑃bkg(V)(1) Set the number of clusters𝑁𝑐 ← 2, weighting factor𝑚𝑓 ← 2, 𝑝 ← 2, 𝑞 ← 1,

neighborhood window of radius 3 voxels, the Gaussian parameter 𝜎𝑓 ← 8,
maximum number of iterations 𝑡𝑚 ← 10, and maximum error 𝜀𝑓 ← 0.01(2) Set the intensity of the seed point, and the average intensity value of the liver
region as the initial cluster centers(3) for iteration 𝑡 ← 1 do(4) Calculate the membership matrix 𝑢󸀠𝑖𝑗 according to (4)(5) Update the new cluster centers 𝑐𝑖 according to (6)(6) 𝑡 ← 𝑡 + 1, if 𝑡 < 𝑡𝑚, ‖𝑐𝑡𝑖 − 𝑐𝑡−1𝑖 ‖ > 𝜀𝑓(7) end for(8) Generate probabilistic model for each cluster derived from 𝑢󸀠𝑖𝑗.

Algorithm 1: Kernelized FCM with spatial constraints (KFCMS).

For the node setN and a set of labelsL, the goal is to find
a labeling 𝑓 : N → L by minimizing the following energy
function 𝐸(𝑓):

𝐸 (𝑓) = ∑
V∈N

𝑅 (𝑓V) + 𝛾 ∑
(V,𝑢)∈𝐸𝑛

𝐵 (𝑓V, 𝑓𝑢) , (7)

where 𝑅(𝑓V) and 𝐵(𝑓V, 𝑓𝑢) are the region term and boundary
term, respectively, and 𝛾 is a weighting factor. These terms
correspond to the weights of the two types of edgesE and are
defined as follows:

For (V,T) ∈ 𝐸𝑡,
𝑅 (𝑓V) =

{{{{{{{{{
∞, V ∈ T,
0, V ∈ S,
𝑃fg (V) , others.

(8)

For (S, V) ∈ 𝐸𝑠,
𝑅 (𝑓V) =

{{{{{{{{{
0, V ∈ T,
∞, V ∈ S,
𝑃bkg (V) , others.

(9)

The regional term 𝑅(𝑓V) specifies the cost of assigning a label
to voxel v based on the probabilisticmodels𝑃fg(V) and𝑃bkg(V)
of tumor and liver tissues (see Section 2.3.2):

𝐵 (𝑓V, 𝑓𝑢) = 𝛿 (𝑓V, 𝑓𝑢) ⋅ (((𝐼V − 𝐼𝑢)2 + 1)−1 + 𝜆𝐼sg) ,
𝛿 (𝑓V, 𝑓𝑢) = {{{

1, if𝑓V ̸= 𝑓𝑢,0, if𝑓V = 𝑓𝑢.
(10)

The boundary term 𝐵(𝑓V, 𝑓𝑢) represents the penalty of dis-
continuity between two adjacent voxels v and u by integrating
both the intensity and gradient information 𝐼sg (see Sec-
tion 2.3.1).

After the graph was constructed, the optimal tumor
surface can be obtained via the max-flow/min-cut algorithm
[26, 28]. Details of the graph cuts algorithm are presented in
Algorithm 2.

2.4. Postprocessing. After completing the graph cuts segmen-
tation, postprocessing steps were conducted to refine the
segmentation result, including connected region selection
by the seed point V𝑠, median filtering, and morphological
dilating. Then, the postprocessed result was resampled to the
original input CT resolution and size for further evaluation.

3. Experimental Results

3.1. Datasets. The proposed method was evaluated on the
public clinical contrast-enhanced CT dataset (3Dircadb
(http://www.ircad.fr/research/3dircadb)), which contains 15
CT volume images involving 120 liver tumors of different
sizes. The pixel spacing, slice thickness, and number of
slices varied from 0.56 to 0.87mm, 1 to 4mm, and 74 to
260, respectively, with the in-plane resolution of 512 × 512
pixels in all cases. Tumors manually segmented by clinical
experts were also provided and considered as ground truth.
Tumors less than 5mm in diameter were not included in our
experiment, as they are too small and only visible in one or
two slices, which are not suitable for 3D segmentation. As our
method was designed for the segmentation of single tumors,
connected tumors were also excluded.

3.2. Evaluation. To evaluate the performance of the proposed
method quantitatively, the five metrics used in the competi-
tion of LTSC08 [20] and Dice similarity coefficient (DICE)
were computed to measure the volumetric overlap or surface
distance of the segmentation result compared to ground
truth. The five metrics are volumetric overlap error (VOE),
relative volume difference (RVD), average symmetric surface
distance (ASD), rootmean square symmetric surface distance
(RMSD), andmaximum symmetric surface distance (MaxD).
For the detailed definitions of these statistic measures, please
refer to [29, 30]. The value of DICE ranges from 0 to 1,
with a value of 0 indicating no overlap and 1 representing
perfect segmentation. For the other five metrics, a value of
0 represents perfect segmentation. A negative value of RVD
indicates undersegmentation. A scoring system, employed
in LTSC08, assigned a score between 0 and 100 to each
metrics to compute an overall score. A score of 100 indicates

http://www.ircad.fr/research/3dircadb


BioMed Research International 7

input: the tumor VOI 𝐼Tumor, the gradient magnitude 𝐼𝑔, the probabilistic models
for tumor 𝑃fg(V) and liver 𝑃bkg(V)
output: the binary tumor mask(1) Set parameters 𝛾 ← 2, 𝜆 ← 0.01, 𝛼𝑠 ← −5(2) Generate initial seed mask. Set 𝐼V ← 255 inside the confidence connected

segmented tumor regions (V ∈ T), and 𝐼V ← 0 outside the liver region or
adjacent to the boundaries of 𝐼Tumor (V ∈ S)(3) Compute the mean value𝑚𝑔 of 𝐼𝑔. Set 𝛽𝑠 ← 𝑚𝑔, and then generate sigmoid
of 𝐼𝑔 according to (1)(4) Construct the graph on 𝐼Tumor(5) for V𝑖 on 𝐼Tumor, 𝑖 ← 0 do(6) Compute region cost according to (9)(7) Compute boundary cost according to (10), using the 6-neighborhood
system(8) 𝑖 ← 𝑖 + 1, if 𝑖 < 𝑁V(9) end for(10) Find optimal tumor surface via the max-flow/min-cut algorithm. Set 𝐼V ← 255
for V ∈ T and 𝐼V ← 0 for V ∈ S

Algorithm 2: Graph cuts segmentation.

Table 1: Quantitative evaluation of the proposed tumor segmentation method. Results are represented as mean ± standard deviation (VOE:
volumetric overlap error; RVD: relative volume difference; ASD: average symmetric surface distance; RMSD: root mean square symmetric
surface distance; MaxD: maximum symmetric surface distance; DICE: Dice similarity coefficient).

VOE (%) RVD (%) ASD (mm) RMSD (mm) MaxD (mm) DICE Diameter (mm)
Small tumor 35.90 ± 7.06 0.38 ± 25.29 0.66 ± 0.23 0.99 ± 0.31 3.34 ± 1.27 0.78 ± 0.05 9.42 ± 2.11
Max 47.76 37.99 1.25 1.74 6.32 0.86 14.80
Min 24.11 −31.24 0.40 0.69 2.00 0.69 5.54
Large tumor 26.62 ± 7.11 −3.11 ± 11.05 0.74 ± 0.35 1.13 ± 0.54 4.57 ± 3.40 0.84 ± 0.05 16.95 ± 9.20
Max 46.50 18.25 2.40 3.27 20.78 0.95 45.38
Min 8.78 −18.07 0.40 0.68 1.73 0.70 7.61
Average 29.04 ± 8.16 −2.20 ± 15.88 0.72 ± 0.33 1.10 ± 0.49 4.25 ± 3.03 0.83 ± 0.06 14.99 ± 8.63

a perfect tumor segmentation, and the manual segmentation
of the average quality (VOE = 12.94%, RVD = 9.64%, ASD =
0.40mm, RMSD = 0.72mm, and MaxD = 4.0) is worth the
score of 90.

In our experiments, the parameters described in Sec-
tion 2.3 were determined experimentally by considering
the segmentation performance and computational cost. The
proposed method was implemented in C++ and tested on a
2GHz Intel Xeon E5-2620 PC workstation with 32GB RAM.

3.3. Results. The statistical results of the proposed method
are represented in Table 1. In this paper, a tumor with an
approximate diameter larger than or equal to 10mm was
defined as a large one, and a small tumor had a diameter
less than 10mm. Our method achieved an average VOE and
RVD of 29.04% and −2.20%, an average ASD, RMSD, MaxD
of 0.72mm, 1.10mm, and 4.25mm, and an average DICE of
0.83, respectively. Figure 5 shows the scores of ourmethod for
small tumor and large tumor segmentation.The average score
of VOE for all tumors was 77.56. For large tumors, a VOE of
26.62%, RVD of −3.11%, ASD of 0.74mm, MaxD of 4.57mm,

VOE RVD ASD RMSD MaxD

Small tumor
Large tumor
Average

50
55
60
65
70
75
80
85
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95

100
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or
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Figure 5: Scores of segmentation results obtained by the proposed
method (VOE: volumetric overlap error; RVD: relative volume
difference; ASD: average symmetric surface distance; RMSD: root
mean square symmetric surface distance; MaxD: maximum sym-
metric surface distance).



8 BioMed Research International

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6: Segmentation results obtained by the proposed method compared to ground truth manual segmentation. Each column from (a) to
(g) shows one case of tumor segmentation results in axial, coronal, and sagittal view and the 3D reconstruction result. (h) 3D reconstruction
of segmented tumors inside the liver. The contour/surface of the ground truth is in green. The contour/surface of the segmented tumor by
the proposed method is in yellow. The liver surface is shown in brown.

Table 2: Statistical performance of the proposed method compared to some other methods. Results are represented as mean ± standard
deviation.

Method Year Auto Dataset VOE (%) RVD (%) ASD (mm) RMSD (mm) MaxD (mm) DICE Runtime
Stawiaski et
al. [14] 2008 Interactive LTSC08 29.49 ± 12.80 23.87 ± 34.72 1.50 ± 0.67 2.07 ± 0.89 8.30 ± 4.10 — 5–8mins

Li et al. [12] 2012 Semi LTSC08 26.31 ± 5.79 −10.64 ± 7.55 1.06 ± 0.38 — 8.66 ± 3.17 — 30 s
Kadoury et
al. [17] 2015 Auto LTSC08 25.2 ± 1.7 14.3 ± 2.8 1.4 ± 0.3 1.6 ± 0.4 6.9 ± 1.8 — 102 s

Moghbel et
al. [10] 2016 Auto 3Dircadb 22.78 ± 12.15 8.59 ± 18.78 — — — 0.75 ± 0.15 30 s/slice

Foruzan and
Chen [19] 2016 Semi 3Dircadb 30.61 ± 10.44 15.97 ± 12.04 4.18 ± 9.60 5.09 ± 10.71 12.55 ± 17.07 0.82 ± 0.07 154 s

Our method Semi 3Dircadb 29.04 ± 8.16 −2.20 ± 15.88 0.72 ± 0.33 1.10 ± 0.49 4.25 ± 3.03 0.83 ± 0.06 45 s

and DICE of 0.84 were obtained. For small tumors, a higher
VOE of 35.90% and a lower DICE of 0.78 were obtained,
which led to lower accuracy scores.

As shown in Table 2, the average running time of the
proposed method taken to do seed point selection, tumor
VOI extraction, and graph cuts segmentation was 45 s. For
a particular tumor, the running time varied with the tumor
size. For a large tumor with approximately 45mm in diame-
ter, the time for VOI extraction and graph cuts segmentation
was 3 s and 28 s, respectively.The time for selecting themiddle
tumor slice and the tumor seed point was typically less than
30 s.

Table 2 shows the comparative results of the proposed
method with previous methods [10, 12, 14, 17, 19]. The
methods of Li et al. [12], Stawiaski et al. [14], and Kadoury
et al. [17] were evaluated on the dataset provided by the
competition of LTSC08, which included 4 CT volumes with
10 tumors. However, the LTSC08 dataset is not available now.
The methods of Moghbel et al. [10] and Foruzan and Chen
[19] were evaluated using the 3Dircadb dataset involving

120 tumors. The 3Dircadb dataset includes more challenging
cases than the LTSC08 dataset does. Compared with other
previous methods, our method improved the time efficiency
of liver tumor segmentation, while maintaining accuracy.

Figure 6 shows a typical example of one patient’s CT
volume data consisting of 7 tumors with different sizes,
intensities, and positions. It can be seen that our method
achieved comparable results to the ground truth manual
segmentation in most cases. However, relatively large under-
segmentation and oversegmentation errors occurred when
the tumor presented ambiguous or low contrast boundaries
(Figures 6(e) and 6(g)). More examples of challenging cases
are presented in Figure 7.

4. Discussion

In this paper, we proposed a new semiautomatic method to
segment liver tumors from CT volume images. It consists of
two major steps: (1) tumor VOI extraction using confidence
connected region growing algorithm with one single seed
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(a)
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Figure 7: Some challenging cases. Each row shows a case of tumor segmentation results in sequential slices and 3D visualization. The
contour/surface of the ground truth is in green. The contour/surface of the segmented tumor by the proposed method is in yellow.

point; (2) tumor segmentation based on KFCMS and graph
cuts algorithms.

The proposed method was evaluated on the 3Dircadb
dataset. Experimental results showed that the segmentation
accuracy of ourmethodwas comparable to that of themanual
segmentation for most cases (Figure 6), while the efficiency
of segmentation was improved significantly with an average
processing time less than one minute per tumor (Table 2). As
shown in Table 1 and Figure 5, small tumors were prone to
have higher volumetric overlap errors than large tumors.This
was because, for small tumors, a small discrepancy between
the segmentation and the ground truth could lead to a consid-
erably increased error. Figure 7 shows the undersegmentation
and oversegmentation results on challenging cases, which
had lower accuracy scores than average.The undersegmenta-
tion and oversegmentation errors were mainly due to the low
contrast or weak boundaries of tumors. Large tumors with
inhomogeneous intensity adjacent to the boundary of liver
were also prone to be undersegmented.

Compared with previous approaches (Table 2), the pro-
posed method can achieve accurate 3D liver tumor segmen-
tation in a fast manner. Among the graph based methods,
Stawiaski et al. [14] constructed a region adjacency graph on
subregions of watershed transform and applied graph cuts
for tumor segmentation; Kadoury et al. [17] applied a high-
order graphical model with potential functions based on
discriminant Grassmannian manifolds learning. Kadoury’s
method achieved one of the highest accuracies in Table 2,
and the average segmentation time per tumor was 102 s,
with the average training time of 6 hours. For Staviaski’s
method, it took a long time to segment a tumor, including
1 minute to define the tumor VOI manually, 1-2 minutes
to mark seed points for graph cuts segmentation in three
orthogonal slices, and 2–5 minutes to refine the segmented
tumor contours in an interactive way. Unlike Staviaski’s and
Kadoury’s methods, user interaction was reduced to mark
one single seed point in our method, and then the tumor
VOI extraction and graph cuts initialization processes were

conducted automatically and efficiently. Fuzzy probabilistic
models and gradient informationwere introduced to improve
the accuracy and robustness of our method.

Among the semiautomatic methods, Li et al. [12] used
level sets method integrating FCM based regional infor-
mation and gradient based boundary information; Foruzan
and Chen [19] obtained initial tumor contours using super-
vised watershed, SVM, and scattered data approximation
for large/small tumors and then refined the contours based
on sigmoid edge model. For Li’s method, an average time
of 30 s was taken per tumor in a given tumor VOI, which
was defined by two user-selected seed points in the tumor
and surrounding liver regions. The average time of Foruzan’s
method was 154 s per tumor, including seed points selection,
training, tumor contour extraction, and refinement. Several
seed points for the tumor, liver, and other background were
marked in the middle tumor slice through user interac-
tion [19]. Compared with Li’s and Foruzan’s methods, we
employed confidence connected region growingwith one sin-
gle seed point in three orthogonal slices to extract the tumor
VOI rapidly. The kernelized FCM with spatial constraints,
instead of FCM, and the sigmoid of gradient magnitude
were incorporated in the energy function as regional and
edge information. No training process was needed for the
initialization of our graph cuts based method.

Among all the methods in Table 2, Moghbel et al. [10]
proposed an automatic hybrid method based on FCM with
cuckoo optimization and random walkers. It achieved the
highest accuracy and the average time was 30 s per slice,
approximately 16 minutes per case. The performance of our
method on the 3Dircadb dataset was comparable to that
of Foruzan, and the tumor segmentation procedure was
performed in a fast way with low computational cost.

The contributions of the proposed method are as follows.(1) User interaction was reduced significantly compared to
the traditional graph cuts method. Only one seed point
was required to be marked close to the center of tumor in
the middle tumor slice. An automatic correction was also
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conducted to reduce interoperator variability in choosing the
seed point. (2)The tumor VOI was extracted adaptively using
confidence connected region growing in the three orthogonal
slices to reduce computational cost. Initial tumor regions on
the three slices were obtained based on the integrated images
of CCRG segmentations to improve the robustness of tumor
VOI extraction. (3) Image intensity and spatial and gradient
information, corresponding to the probabilistic distributions
estimated by KFCMS and the sigmoid of gradientmagnitude,
were incorporated in the energy function to improve the
performance of graph cuts segmentation. (4) The proposed
method was efficient while maintaining accuracy. Such a
fast segmentation method might be used for practical appli-
cations like trajectory planning for radiofrequency ablation
without significantly increasing the processing time, which
involves segmentations of all relevant organs/structures [31].

One limitation of our method is that it mainly focused
on liver tumors with hypointensity. For tumors with hyper-
intensity, some parts of the method shall be adjusted like
the automatic correction of seed point in the VOI extraction
step. Also, the evaluation experiments should be extended to
include more types of liver lesions. To deal with challenging
cases of tumorswith low contrast and ambiguous boundaries,
our method may be enhanced by incorporating more texture
information and a contour refinement process in future.

5. Conclusion

This paper presented a semiautomatic method for 3D tumor
segmentation in CT images using improved FCM and graph
cuts algorithms. Low interaction was required and the tumor
VOI was extracted to reduce computational cost. Probabilis-
tic distributions estimated by KFCMS and sigmoid of gradi-
ent magnitude were incorporated into the energy function of
graph cuts.While being faster thanmost of previousmethods
with an average computational time of 45 s per tumor, the
proposed method achieved accurate segmentation results. In
future, improvements for reducing undersegmentation and
oversegmentation errors shall be conducted to enhance the
performance of the proposed method on challenging cases.
Datasets withmore types of tumors for evaluation are needed.
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