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Abstract

Disentangling patients’ behavioral variations is a critical step for better understanding an 

intervention’s effects on individual outcomes. Missing data commonly exist in longitudinal 

behavioral intervention studies. Multiple imputation (MI) has been well studied for missing data 

analyses in the statistical field, however, has not yet been scrutinized for clustering or 

unsupervised learning, which are important techniques for explaining the heterogeneity of 

treatment effects. Built upon previous work on MI fuzzy clustering, this paper theoretically, 

empirically and numerically demonstrate how MI-based approach can reduce the uncertainty of 

clustering accuracy in comparison to non-and single-imputation based clustering approach. This 

paper advances our understanding of the utility and strength of multiple-imputation (MI) based 

fuzzy clustering approach to processing incomplete longitudinal behavioral intervention data.

Index Terms

longitudinal data; Missing values; Fuzzy clustering; Multiple imputation; MIFuzzy

I. Introduction

Behavioral interventions (e.g., physician advice; individual, group, or telephone counseling; 

self-help, including Internet use, and emerging use of wearable biosensors) [1]–[16] are 

commonly used to facilitate substance use treatments. Many such interventions have 

multiple components and are implemented over time, e.g., [17]–[32]. Over the course of an 

intervention, patients display complex and varying behaviors such as relapsing or dropping 

out for various psychological, social and environmental reasons, e.g., [33]–[41]. Their 

variations in engaging with or responding to interventions may contribute to different 

outcomes. Failure to appreciate these variations within, not only those between treatment 

and control groups, can ultimately lead to inappropriate and ineffective interventions, e.g., 

[38]–[42]. Thus, disentangling patients’ behavioral variations, is a critical step for better 

understanding an intervention’s effects on individual outcomes. However, capturing these 

variations poses significant computational and analytical challenges. Methods have been 

called for to address the variations in intervention effects for improving the design, conduct, 

and analyses of patient-oriented research [43]. Missing data also commonly exist in such 

complex longitudinal data, aggravating these methodological challenges. For these reasons, 

we propose an innovative trajectory pattern-recognition approach to tackle incomplete 

longitudinal behavioral intervention data, built upon our methods studied for observational 
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studies and our previous work on fuzzy clustering and missing data in longitudinal studies 

[44]–[52].

Multiple imputation (MI) has been well studied for statistical analyses [53], [54] but has not 

yet been scrutinized for clustering [55], [56]. One of major reasons is that we do not know 

how much the uncertainty of imputed data will affect the clustering accuracy. To answer this 

question, we need to compare the MI approach with single- (SI) and non-imputation (NI) 

based clustering approaches, which are commonly adopted in current pattern recognition 

areas. Although no single clustering approach can handle every type of data problem, our 

proposed MI-based Fuzzy clustering [48] was especially designed for longitudinal behavior 

related data that are typically non-normal, high dimensional, contain missing values, and of 

different types (i.e., continuous, ordinal and nominal). MI-Fuzzy was developed primarily 

because no other clustering technique overcomes all eight disadvantages for processing such 

data: 1) Cannot handle missing data directly; relies on list-wise/pair-wise deletion or single 

imputation; 2) Lack (available, tractable, replicable, or easy-to-use) validation indices or 

integrated validating processes; 3) Require statistical or prior distribution assumptions; 4) 

Require (manually) complicated parameter settings and repeated adjustment of model 

constraints and starting values of parameters in the clustering process; 5) Computationally 

intensive or malfunction for high-dimensional and longitudinal data with relatively large 

portions of missing values or increased number of clusters; 6) Results are (sometimes) not 

replicable (even using the same data set); 7) No graphic visualization of clusters from high-

dimensional data or longitudinal data trajectories; 8) Unclear utility in behavior-related data.

For example, probabilistic clustering, including Gaussian Mixture models [57] and Hidden 

Markov Model-based Bayesian clustering [58]–[61] are commonly used for clustering. For 

such models, we must specify underlying statistical distributions (Gaussian) or prior 

distributions (Bayesian approach). The expectation-maximum (EM) algorithm for the 

Gaussian model is iterative and requires specifying initial values of parameters and adjusting 

parameters during modeling. EM often converges to a local maximum or does not converge 

at all; also, it can be computationally very slow when there are multi-modal distributions or 

mixture of Gaussians (e.g., potential clusters) and large proportions, say greater than 20%, of 

missing values with high-dimensional data and many clusters. Bayesian clustering is also 

computationally intensive and requires parameter adjustment and setting model constraints. 

Bayesian clustering has been developed and tested for large datasets (e.g., gene data) but its 

utility beyond gene analyses is unclear. If the observed data are generated by the assumed 

distributions, these probabilistic clustering models should be robust. However, high-

dimensional behavioral intervention data typically have multi-modal distributions and their 

exact (joint) distributions are a priori unknown.

Neural networks models [62], [63] are mostly used for supervised learning (e.g., 

classification where the group labels of each subject are previously known). The well-known 

neural networks model for unsupervised learning (clustering where the group labels of each 

subject are a priori unknown) is called Kohonen’s Self Organizing Map (SOM). The SOM 

architecture consists of an input layer and a Kohonen layer. The number of neurons (nodes) 

in the input layer corresponds to the number of attributes. Each input to the Kohonen layer is 

modified by a weight, which multiplies with the input value. SOM initializes weights by 
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assigning them random values. The Kohonen layer represents potential clusters. Hidden 

layers can also be added between the input and Kohonen layers to fit nonlinear data; 

however the number of neurons on this layer is arbitrary, and different settings lead to 

different results even for the same data. SOM has been applied in areas such as imaging, 

speech and voice recognition. Its validation indices or procedures are unclear. SOM itself 

cannot handle missing values. Its utility in behavioral intervention studies is unknown.

Hierarchical clustering [62], [64] has two major forms: Agglomerative (bottom-up) and 

Divisive (top-down). Agglomerative clustering starts with an every individual in his own 

cluster; at every step it merges the closest pair of clusters. Divisive clustering starts with all 

subjects in one cluster and split this cluster into smaller pieces. We will focus on 

agglomerative, as divisive clustering is much less used in applications [62], [64]. No matter 

what form, the disadvantages of hierarchical clustering are well-known: its inability to 

incorporate information about the shape and size of clusters, and its static nature (data are 

committed to a cluster once and cannot be moved to another cluster later [40]). It assumes 

the data have a hierarchical or nested structure which is implausible for, say, distinct 

components of behavioral interventions. Although it works in some areas, this model 

performed poorly in our preliminary prenatal tobacco exposure studies, yielding unreliable 

and trivial clusters (e.g., many small clusters with few individuals in each). With a pre-

specified number of clusters, its clustering accuracy and inconsistency rates were the poorest 

in comparison to MI-Fuzzy and K-means. Partition-based clustering [62], [64] also comes in 

two flavors: hard (crisp) clustering that partitions the data set into mutually exclusive 

subsets, and fuzzy clustering that allows subjects to belong to several subsets but with 

different degrees of membership (see Section Innovation). The best-known hard clustering 

model is K-Means. It was designed to cluster numerical data into clusters in which each 

cluster has a center called mean. Although K-Means has been widely applied with appealing 

computational efficiency, it cannot handle missing values. Our preliminary analyses indicate 

that it has lower accuracy and higher inconsistency rates than MI-based fuzzy-clustering for 

pregnant smoking behavioral data.

Based on our prior research for longitudinal behavior intervention data, we will theoretically 

comparing MI- to SI- and NI-based fuzzy clustering approaches. In addition to our 

theoretical demonstration, we will use two real datasets. Table I are the notations of symbols 

used in this paper.

The rest of this paper is organized as follows: Section II introduces MI-based Fuzzy 

clustering. Section III theoretically compares and demonstrates MI-, SI- and NI-based fuzzy 

clustering approaches. Section IV presents numerical results under three missing data 

mechanisms. Section V concludes the paper.

II. Multiple Imputation Based Fuzzy Clustering

To compare the three missing data imputation approaches, two longitudinal behavioral 

intervention datasets will be used as examples to demonstrate our MI-based approach: 

TDTA [65], [66] and QuitPrimo (QP) [67]. TDTA data were collected from a culturally-

adapted smoking cessation intervention for Korean Americans. Intervention attributes in MI-

Zhang and Fang Page 3

IEEE Int Conf Connect Health Appl Syst Eng Technol. Author manuscript; available in PMC 2017 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fuzzy were based on data availability and/or selected to maximize information that depicts 

individual response variations resulting from their psychological factors and engagement 

with the intervention. All designed intervention components and time for cessation 

counseling were included at the beginning. The three components were (a) cognitive 

behavioral therapy, (b) cultural adaptation, and (c) nicotine replacement therapy. The first 

two components described smokers’ psychological reactions to the culturally adapted 

cognitive behavioral therapy, which were measured by scores on Perceived Risks and 

Benefits of Quitting Smoking, Perceived Family and Peer Norm for Quitting, and Self-

efficacy in Quitting scales. Each scale has four repeated measures collected at four follow-

ups: 1, 3, 6, and 12 months from the quit day, total 20 intervention attributes (5 subscales×4 

times). The last component “Nicotine Replacement Therapy” was measured by the number 

of nicotine patches returned after use (1 attribute) and the counseling time was measured in 

the unit of minutes (1 attribute). In all, 22 intervention attributes were initially used for MI-

Fuzzy clustering. The percentage of missingness of TDTA data ranges from 9% to 18% on 

each of tested intervention attribute; and 65% participants have all values, 34% have more 

than 5 values on intervention attributes.

QP is a two-arm longitudinal web trial used to assist in the smoking cessation of a general 

smoker population. The data were collected via an online referral portal with 1320 

individuals. The intervention arm was engaged with three components which the control arm 

cannot see. The first intervention component describes how often smokers communicate 

with a tobacco treatment specialist in a secure form. The second one measures how often the 

smokers are engaged or encouraged by experts. The third main component describes how 

many times smokers view messages and dialogue from peers and ex-smokers through a 

resource website. Each smoker has six monthly measures for each component for six months 

(total 18 attributes).

MI-Fuzzy is the first clustering model to date that employs a full theoretical integration of 

(a) multiple imputation (MI), (b) fuzzy clustering, and (c) comprehensive validation [48], 

[49]. It simultaneously copes with real-world situations where patients have membership in 

multiple clusters, handles high-dimensional longitudinal intervention data with missing 

values (e.g. multiple repeatedly-measured correlated constructs), and validates response 

patterns.

Our MI process was described in detail elsewhere and implemented in Matlab [68]. Briefly, 

we assume intervention data follow an arbitrary missing pattern, where other missing 

patterns such as monotone patterns are special cases [69]. Imputed datasets were generated 

using the Markov Chain Monte Carlo (MCMC) method with multiple chains, non-

informative Jeffreys prior of the Bayesian approach, and 500 burn-in iterations. Before the 

MCMC process, an expectation-maximization (EM) procedure is conducted to train the 

parameters of the data. At each MCMC iteration, an I-step is conducted to fill the data by 

random draws from the model according to the trained parameters, followed by a P-step to 

update the parameters in the new completed data. The I-step and P-step are conducted 

iteratively until the Markov Chains stabilized.

The fuzzy clustering aims to minimize an objective function
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(1)

where X is the dataset, V is the cluster centroids, k is the k-th cluster, w is parameter of U is 

a vector of uik where 0 ≤ uik ≤ 1, ∀ i, k denotes the fuzzy degree of membership for subjects 

i, (i = 1, 2, . . . , n) in the respective cluster k. In MI-Fuzzy, we minimized this fuzzy 

objective function (e.g., we minimized the intra-cluster variance) for each imputed data set,

(2)

where λ is a weight and λ ≥ 0.

Intervention data have a unique feature that can be used to evaluate clustering accuracy. For 

example, MI-Fuzzy can be evaluated based on the intervention clustering accuracy rate ( ) 

for treatment data where we know the labels with certainty (for example, who is in the 

control vs. intervention group), but not whether there will be different clusters (subgroups) 

within the intervention group due to behavioral variations. This rate is calculated as the 

average clustering accuracy rates across M imputed datasets:

(3)

where N is the total sample size, ncontrol is the number of mislabeled control group members 

and nintervention is the number of mislabeled intervention group members. The larger the rate 

the more accurate the clustering.

Given a termination clustering number (CT), , where N is the sample size, the 

MI-Fuzzy algorithm searched for the optimal number of clusters through a comprehensive 

validation procedure [48], [49], [51].

III. MI- VS. SI- AND NI- FUZZY CLUSTERING

For statistical analyses, MI-based parameter estimation were shown more reliable than 

single imputation approach (e.g., mean, regression, and hot deck) which can introduce bias 

or lose precision. However, for clustering, MI-based approach has not yet been theoretically 

demonstrated better than other imputations, although intuitively would improve the 

uncertainty of clustering accuracy. Below we showed our theoretical demonstration.
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1) MI vs Non-imputation (NI) Clustering

Lemma 1. MI- achieves higher clustering accuracy rate than NI-based Fuzzy 
Clustering

Proof: Let X denote the N * d data matrix, where n denotes the number of patients who 

belong to k clusters and d the number of attributes. Let Xmis denote the missing part of X, 

and Xobs denotes the observed part with N′ patients, N′ < N, who also belong to these k 

clusters. Assume the n patients are clustered into the k clusters with accuracy . With NI-

fuzzy clustering, (N − N′) patients are not clustered due to their missing values on d. Then 

the clustering accuracy for NI is

(4)

For MI, Xmis are multiply-imputed, therefore, N patients are clustered. Suppose NMI (0 < 
NMI ≤ N − N′) patients with Xmis is correctly clustered, then the accuracy is,

(5)

Therefore, MI > NI. Thus, the MI-based achieves higher accuracy than NI-based fuzzy 

clustering.

2) MI vs Single Impution (SI) Clustering

The most commonly used single imputation methods include mean, regression and hot-deck 

imputation [70], which are used for demonstration in comparison to MI based clustering 

hereafter.

Lemma 2. MI-based approach reduces the uncertainty of clustering accuracy 
for incomplete longitudinal data compared to SI-based fuzzy clustering

Proof

1) Mean based SI: The missing values are filled by the means of the observed values. The 

variance of data is underestimated after mean imputation. For clustering, the patients close 

to each other are more likely to be classified into the same cluster. Since the missing values 

are filled by the same value (the mean), the patients with these means become closer to each 

other, and likely to be classified into the same cluster.

For a completed d-dimensional data X with n patients, suppose X contains k clusters where 

each cluster has N/k patients. Let r be the percentage of missingness, then each cluster has 

rN/k patients with missing values. The missing values are imputed by the mean SI before 

clustering. Then patients with imputed values (μ) are likely to be clustered in the same 

cluster and the mean SI-based clustering accuracy is expressed as
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(6)

where rN(k − 1)/k is the number of mistakenly clustered patients.

Figure 1a demonstrates a scenario where the mean-imputation reduces the clustering 

accuracy . The scatter plot shows a two-dimentional X represented by (xi1, xi2), where k = 

2. The missing values of xi1 are marked by green circles in the 1st cluster and by green 

squares in the 2nd cluster. The patient i with missing values are denoted by

(7)

By conducting one-time mean-imputation, all the missing values are filled by x1μ (marked 

by red circles/squares), then the patients are represented by

(8)

where  and n′ is the number of observed xi1 from all patients.

This one-time imputed values are the same and treated as if they are observed values and 

then used for clustering. As demonstrated in Figure 1b, 50% of the patients with missing 

values can be mistakenly clustered into the 1st cluster marked by circles.

2) Regression based SI clustering: A regression model can be learned from Xobs and the 

learned model with estimated coefficient is used to impute missing values of a variable 

based on other variables. For illustrative purposes, the regression co-efficient β̂ can be 

learned based on observed two-dimensional data, e.g.,

(9)

then

(10)

Figure 2a demonstrates a scenario SI-reg where the regression SI reduces the clustering 

accuracy. With the same notation, the patient i with missing values on the second variable 

are denoted by
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(11)

The missing values are imputed only once by this regression SI (marked by red circles/

squares), and more likely to fit perfectly along the regression line since the imputed data do 

not have an error term included in their estimation,

(12)

Again, this one-time imputed values with errors are treated as if they are actual observed 

values and used for clustering. In the worst case, all cases with missing values can be 

mistakenly clustered, as shown in Figure 2b.

3) Hot-deck SI clustering: This type of SI first sorts a dataset according to any variables, 

and fill the missing values by using the observed values immediately prior to them and 

repeat this process until all missing values are imputed. If the selected variable that used to 

order the data does not have a significant role in clustering patients, the imputed data could 

be fully messed up after sorting and the likelihood of clustering the patients with missing 

values to their corresponding clusters is small.

Figure 3a shows how hot-deck SI reduces the clustering accuracy. Similarly, for a two-

dimensional data X, represented by (x1, x2), where k = 2. The missing values of x1 are 

marked by green or circles squares in these two clusters, respectively. By conducting the 

hot-deck SI, the data are sorted by x1, and the missing values are filled by the observed x1 

values just prior to them (marked by red circles/squares),

(13)

where j is the index of the case just before the i-th cases ordered according to x2. As shown 

in Figure 3b, the cases with missing values could be completely misplaced in different 

clusters using this imputation.

Overall, the SI can be computed as,

(14)

Although SI-derived data have the appearance of completeness, it can mislead the clustering 

results because SI again does not account for the imputation uncertainty and clustering 

accuracy from such data is uncertain.
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4) MI-clustering: Unlike SI methods, the uncertainty of clustering accuracy is accounted by 

computing the average of clustering accuracy from clustering each of multiply imputed 

datasets generated from the stochastic processes. The variance of MI aforementioned above 

is computed as,

(15)

where M is the number of imputations which can be estimated given the expected relative 

efficiency and the missing information of parameter estimates of attributes [71]. As shown in 

Table II, given our expected relative efficiency of 0.98 and missing information for TDTA 

(20%) and QP (10%), we chose 10 imputations for each.

The confidence interval of MI could be estimated as:

(16)

For example, given two dimensions, x1 and x2,

and assume the true value for the missing value is 4, the mean SI would fill the missing 

value as 9, regression SI will estimate 10 (x2 = 2 × x1), and hotdeck sorts x2 and gives 12. 

Then these values will treated as “true”. Differently, MI can estimate the missing value 10 

times to account for the imputation uncertainty and thus, for clustering, it can reduce the 

uncertainty of clustering accuracy. As shown in Figure 4a, two patients marked green in each 

cluster have missing values on x1 or x2. Assuming missing values are imputed 10 times, 

based on the clustering results from the ten imputed datasets, the two patients would still 

stay in their own clusters, even if the ten impute values can differ widely, as shown in Figure 

4(b). Thus, the imputation uncertainty is accounted in MI process and the consequent 

uncertainty of MI is reduced.

Overall, our theoretical demonstration indicates MI-based clustering is superior to NI- and 

SI-clustering because it accounts for the uncertainty of imputation and clustering accuracy 

for incomplete data.

IV. NUMERICAL ANALYSES

This section evaluates the performance of MI-based fuzzy clustering in comparison to SI- 

and NI-clustering using TDTA and QP data. In addition, we simulated data using the 
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parameters from these two behavioral intervention studies. Specifically, we evaluated these 

three imputation-based clustering approaches under three missing data mechanisms. We also 

varied the percentage of missingness to evaluate the clustering performance based on the 

same validation index, called overlap over septation validation (OOS [51]) and clustering 

accuracy.

A. The Missing Mechanisms

In statistical theories, the three missing data mechanisms are termed as missing completely 

at random (MCAR), missing at random (MAR) and missing not at random (MNAR) [72], 

[73]. Using incomplete TDTA and QP data as an example, let X be the complete data 

without missing values, X = Xobs ∪ Xmis, Xmis are the missing values on observed attributes 

P in the incomplete data X; and P′ are unobserved attributes. For example, for QP web trial 

study, we have longitudinal zero-inflated count data, then zero-inflated Poisson (ZIP) models 

are considered for data simulation under the generalized linear mixed model (GLMM) 

framework while the typical GLMM were used to generate data using parameters from 

TDTA.

1. Missing Complete At Random (MCAR): we simulated data assuming Xmis are 

missing independently of both observed attributes P and unobserved P′.

2. Missing At Random (MAR): Data were simulated assuming Xmis are missing 

independently of unobserved P′.

3. Missing Not At Random (MNAR): Data were simulated assuming Xmis relate to 

unobserved attributes P′. MNAR occurs when the condition of MAR is violated.

B. Performance Evaluation Using TDTA and QuitPrimo

As shown in Figure 5, for TDTA, MI-based fuzzy clustering identified the optimal number 

of clusters as three, because the validation index reaches the lowest value, with clustering 

accuracy of 100%. SI-based clustering identified 3 clusters with accuracy of 85% and NI-

based identified 3 clusters with accuracy of 80%.

For QP, MI Fuzzy identified 4 clusters with with clustering accuracy of 78%, as shown in 

Figure 6. SI-based clustering identified 5 clusters with accuracy of 70% and NI-based 

identified 4 clusters with accuracy of 68%.

As demonstrated in the theoretical section, SI- and NI-based approach do not account for the 

uncertainty of imputation and treated the imputed values as if they are observed for 

clustering. Therefore, their clustering results could be misleading, and the uncertainty of 

clustering accuracy is also not counted. Even if they identified the same clusters as MI-, the 

results could be due to chance.

We also evaluated the three imputation clustering approaches using simulation, where we 

primarily focus on their performance with a medium percentage of missingness (10%–15%) 

for each missing mechanism. We set the sample size n at 1000 and the dimension d at 20.
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C. Performance under MCAR

As shown in Figure 7, for MCAR, MI-based fuzzy clustering identified the correct number 

of clusters, 4, and achieves 95% and 94% accuracy for 10% and 15% missingness, 

respectively. SI-based fuzzy clustering identified 4 clusters, with accuracy of 89% and 87% 

for 10% and 15% missingness, respectively. NI-based fuzzy clustering identified 4 clusters, 

with accuracy of 85% and 84% for 10% and 15% missingness, respectively.

D. Performance under MAR

As shown in Figure 8, for MAR, MI-based fuzzy clustering identified the correct number of 

clusters, 4, and achieves the accuracy of 96% and 93% for 10% and 15% missingness, 

respectively. SI-based fuzzy clustering identified 4 clusters, with accuracy of 88% and 85% 

for 10% and 15% missingness, respectively. NI-based fuzzy clustering identified 4 clusters, 

with accuracy of 86% and 83% for 10% and 15% missingness, respectively.

E. Performance under MNAR

As shown in Figure 9, for MNAR, MI-based fuzzy clustering identified the correct number 

of clusters, 4, and achieves the accuracy of 90% and 89% for 10% and 15% missingness, 

respectively. SI-based fuzzy clustering identified 4 clusters, with accuracy of 81% and 82% 

for 10% and 15% missingness, respectively. NI-based fuzzy clustering identified 4 clusters, 

with accuracy of 80% and 79% for 10% and 15% missingness, respectively.

Overall, under three mechanisms, MI-based clustering performance are similar and seems 

invariant to different missing data mechanisms. This invariant property of MIFuzzy may 

attribute to the fact that the actual MIFuzzy algorithm does not learn the ”concepts” of 

missing mechanisms but is somewhat sensitive to the real numbers such as the percentage of 

missingness. With the increase of the percentage of missingness, MI-based clustering 

accuracy decreased but still achieved at least 93% across the three mechanisms. Although SI 

and NI identified the same number of clusters, as discussed in the theoretical section, it is 

likely due to chance and their clustering accuracy is lower and misleading, as they cannot 

account for the imputation uncertainty and therefore the accuracy is uncertain.

V. Conclusion

Reliable and more accurate trajectory pattern recognition approaches will help capture 

patients’ variations in engaging with or responding to behavioral interventions. Explaining 

these observed variations within and between treatment and control groups can ultimately 

lead to appropriate and effective interventions adaptive to patients with at-risk patterns. This 

paper advances our understanding of the utility and strength of multiple-imputation (MI) 

based fuzzy clustering approach to processing incomplete longitudinal behavioral 

intervention data. Specifically, this paper theoretically, empirically and numerically 

demonstrated how MI-based approach can reduce the uncertainty of clustering accuracy in 

comparison to non-and single-imputation based clustering approach. Our future research 

will further evaluate MI-based approach under a large percentage of missingness and focus 

on visualization-aided validation to further expand the MI-based clustering approaches.
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Fig. 1. 
An illustration of mean-imputation
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Fig. 2. 
Clustering accuracy of single regression imputation
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Fig. 3. 
Clustering accuracy of single hotdeck imputation
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Fig. 4. 
Clustering accuracy of multiple imputation
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Fig. 5. 
Performance of MI-, SI- and NI-clustering on TDTA data
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Fig. 6. 
Performance of MI-, SI- and NI-clustering on QP data
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Fig. 7. 
MI- vs. SI- and NI-clustering under MCAR
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Fig. 8. 
MI- vs. SI- and NI-clustering under MAR
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Fig. 9. 
MI- vs. SI- and NI-clustering under MNAR
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Table I

Notations

Symbols Notations

Xobs, Xmis Observed data and missing values

X Dataset consists of Xobs and Xmis

M Number of imputations

N Number of cases in data X

N′ Number of cases in data X with missingness

ncontrol Number of mislabeled control group members

nintervention Number of mislabeled intervention group members

Clustering accuracy

NI Non-imputation clustering accuracy

SI-mean Mean-imputation clustering accuracy

SI-regression Regression-imputation clustering accuracy

SI-hotdeck Hot deck-imputation clustering accuracy

MI Multiple-imputation clustering accuracy

P, P′ Observed and unobserved attributes of X

CT Termination clustering number

U Fuzzy degree of cluster membership

V Cluster centroids

n′ Number of patients with observed first attribute

r Percentage of missing values

μ Mean value

d dimension of data X

k Number of clusters
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Table II

RE vs. r and M

M r=10% r=20% r=30% r=50%

3 0.968 0.938 0.910 0.857

5 0.980 0.962 0.934 0.910

10 0.990 0.980 0.971 0.952

20 0.995 0.990 0.985 0.976
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