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Fragile X syndrome (FXS), due to mutations of the FMR1 gene, is
the most common known inherited cause of developmental dis-
ability. The cognitive, behavioral, and neurological phenotypes
observed in affected individuals can vary considerably, making it
difficult to predict outcomes and determine the need for interven-
tions. We sought to examine early structural brain growth as a
potential marker for identification of clinically meaningful sub-
groups. Participants included 42 very young boys with FXS who
completed a T1-weighted anatomical MRI and cognitive/behavioral
assessment at two longitudinal time points, with mean ages of
2.89 y and 4.91 y. Topological data analysis (TDA), an unsupervised
approach to multivariate pattern analysis, was applied to the lon-
gitudinal anatomical data to identify coherent but heretofore un-
known subgroups. TDA revealed two large subgroups within the
study population based solely on longitudinal MRI data. Post hoc
comparisons of cognition, adaptive functioning, and autism sever-
ity scores between these groups demonstrated that one group
was consistently higher functioning on all measures at both time
points, with pronounced and significant unidirectional differences
(P < 0.05 for time point 1 and/or time point 2 for each measure).
These results support the existence of two longitudinally defined,
neuroanatomically distinct, and clinically relevant phenotypes among
boys with FXS. If confirmed by additional analyses, such information
may be used to predict outcomes and guide design of targeted
therapies. Furthermore, TDA of longitudinal anatomical MRI data
may represent a useful method for reliably and objectively defin-
ing subtypes within other neuropsychiatric disorders.
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Over the past several decades, clinical neuroscience research
has enhanced our understanding of the neurobiological and

genetic bases for psychiatric disorders. This neurobiological and
genetic information holds potential to inform disease-specific
targeted interventions promising substantial improvement over
current treatments (1). Fragile X syndrome (FXS) is the most
common inherited cause for intellectual disability (2). The ge-
netic etiology of FXS, a repeat expansion in the fragile X mental
retardation-1 gene (FMR1) on the X chromosome, results in
diminished levels of the fragile X mental retardation protein
(FMRP), which plays an essential regulatory role in synaptic
plasticity and dendritic pruning, processes critical for neuro-
development (3). The known biological basis of FXS allows for
investigation of cognitive and behavioral (e.g., autism) symptoms
in an etiologically homogeneous genetic disorder (4).
This well-characterized genetic disorder has also been the

focus of targeted therapies aimed at correcting aberrant brain
neurotransmitter systems such as up-regulation of metabotropic
glutamate receptor 5 (mGluR5) signaling, which is disrupted in
the Fmr1 knockout (KO) mouse model (5). Although several
targeted therapies have demonstrated promising phenotype

rescue in animal models (6–8), they have been unsuccessful thus
far in human trials (9). One potentially important factor to con-
sider within this context is neurobiological heterogeneity within
full mutation FXS. Identification of specific subtypes within this
disorder may inform the design of targeted therapies and aid in
the prediction and testing of response to these therapies.
Despite sharing similar FMR1 mutation genotypes, our pre-

vious work suggests that there may be biologically defined sub-
groups within boys with FXS, which exhibit clinically distinct
behavioral profiles at a young age (mean = 2.89 y). Specifically,
classification based solely on anatomical MRI data revealed two
large subgroups that differed in terms of neuroanatomical and
cognitive/behavioral profiles (10). However, several important
questions remain regarding development with respect to these
subgroups. In particular, longitudinal research is critical in the
case of FXS to increase our understanding of the developmental
effects of FMRP on the brain (11). In the present study, we
report results of a 2-y follow-up using longitudinal neuroimaging
data and topological data analysis (TDA) to understand varia-
tion in this well-characterized cohort of young boys with FXS.
Specifically, we sought to understand if cognition and behavior
developed differently depending on subgroup membership and if
subgroup membership remained consistent over time.

Significance

We present a research study that uses early structural brain
growth as a metric for defining subgroups within individuals with
fragile X syndrome (FXS). Topological data analysis, a type of
multivariate pattern classification, identified two large subgroups
based solely on the longitudinal structural brain images. Post hoc
analysis indicated significant, unidirectional differences in cogni-
tion, adaptive functioning, and autism severity scores. Our results
support the use of longitudinal topological data analysis (TDA) as
a putative tool for differentiating individuals with FXS based on
neuroanatomical data. This information may be used to predict
outcomes and guide design of targeted therapies for individuals
with FXS. Longitudinal TDA may be a useful analysis tool to ex-
plore variation in other neuropsychiatric disorders.
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TDA is one of a general class of approaches to analyzing high-
dimensional data known in the literature as multivariate pattern
analysis (MVPA). Multivariate approaches are designed to de-
tect effects that may be discernable within the relationships
(patterns) among variables but which may elude detection when
variables are examined in isolation. TDA is an unsupervised
method of classification and it is used to identify coherent but
potentially heretofore unknown groups within the study pop-
ulation. Other examples of unsupervised approaches using MVPA
include independent component analysis (12) and clustering via
correlation matrices (13).
A distinct advantage of TDA is the resulting visual represen-

tation called a Reeb graph. A Reeb graph is a compressed and
easily readable visual representation of the data, which preserves
its underlying geometric structure and facilitates identification of
salient features (14). These features can encode not only in-
formation about clusters that may exist within the data but also
information about spectra (i.e., variation in the data due to un-
derlying continuous parameters). Thus, TDA is “a methodology
intermediate between modeling by algebraic equations, which is
continuous but not very flexible, and cluster analysis, which is
discrete and therefore misses continuous phenomena” (ref. 15, p.
109). Finally, another advantage of TDA is that it can be applied
directly to very high-dimensional data and so is able to preserve
finer characteristics of the population structure that may be
obscured through the process of dimensionality reduction re-
quired by other approaches to MVPA.
We hypothesized that TDA of longitudinal neuroimaging data

would reveal clinically distinct subgroups similar to our cross-
sectional analysis reported earlier (10). This hypothesis was tested
by examining variables that were not included in the Reeb graph
construction process. Specifically, we examined longitudinal
changes in cognition and behavior within the groups defined by the
TDA. We also examined neuroanatomical differences between the
groups using a univariate analysis. Finally, we compared subgroup
membership based on longitudinal analysis to subgroup member-
ship based on the cross-sectional analysis previously reported (10).
Participants included 52 boys with FXS who were part of an

ongoing longitudinal brain imaging study (10, 11, 16–24). The
mean age at enrollment was 2.89 y, SD = 0.63, and 41 of the
original 52 individuals were followed up an average of 2.01 y later
(SD = 0.28). Demographic information is presented in Table S1.

Results
Multivariate Pattern Analysis. The primary outcome of the TDA is
a Reeb graph (Fig. 1) that displays connected nodes representing
candidate subgroups within the data. Two large and distinct
subgroups were present in the data: group A appearing on the
left (n = 13) and group B on the right (n = 24). There are also
three small, disconnected nodes (two containing a single par-
ticipant each, one green and one purple, and one containing two
participants, in yellow). Due to the limited sample size in these
smaller groups, remaining analyses focus on the two larger
groups, A and B. Cognitive and behavioral scores are presented
for individuals in the smaller groups in Table S2.

Cognitive/Behavioral Results. There were no differences in age
between groups A and B at time 1 or time 2, and the follow-up
duration was not different between groups (all p > 0.10; Fig. 2
and Table S3). Longitudinal analyses of cognitive/behavioral
scores include a main effect of the anatomically defined sub-
group, indicating higher performance of group B on the Vine-
land Adaptive Behavior Scales (25) (P = 0.016) and trends for
the Mullen Scales of Early Learning (26) (P = 0.090) and the
Autism Diagnostic Observation Schedule–Generic (ADOS) (27)
(P = 0.056) composite scores. Note that higher scores on the
ADOS indicate higher severity of autism symptoms, whereas
higher scores on the Vineland and Mullen indicate higher levels

of adaptive function and cognitive ability, respectively. Signifi-
cant main effects of time indicate decreasing Vineland (P <
0.001) and increasing ADOS (P = 0.015) scores for all individ-
uals regardless of group and a trend for decreasing Mullen scores
(P = 0.053) over time. Group-by-time interactions were not
significant for any of the cognitive/behavioral measures global
scales (all p >0.10; see Table S4 for subscale results).
Follow-up cross-sectional t tests at each time point indicated

significantly higher scores for group B on the Vineland at both
time points (time 1 P = 0.009 and time 2 P = 0.001) and on the
Mullen at time 1 (P = 0.015) and lower scores for group B on the
ADOS at time 2 (P = 0.033). We also observed a floor effect on
Mullen scores: at time 1, 85% of individuals in group A and 42%
in group B received a standard score of 49 (the lowest possible
standard score). At time 2, 75% of individuals in group A and
67% in group B received a score of 49. Analysis of Mullen raw
scores is presented in Table S5.
Post hoc analyses showed a significant group-by-time interac-

tion for the Vineland daily living subscale (P = 0.004) indicating
a more rapid decline in standard scores for group A (Table S4).
There was no significant group difference in FMRP percentages
(P > 0.10).

Univariate Neuroanatomical Results. Group A demonstrated sig-
nificantly enlarged gray and white matter volumes relative to
group B across widespread regions including caudate, thalamus,
frontal lobe, temporal lobe, and cerebellum (Fig. 3). There were
no regions for which group B demonstrated enlarged gray or
white matter volume relative to group A. No significant group-
by-time interaction was found with and without including age at

Fig. 1. Reeb graph depicting topological organization of the longitudinal
anatomical data. The longitudinal TDA, as visualized with Ayasdi Core
software, divided the data into two large and distinct subgroups based
solely on the anatomical images. Each dot represents a node, the size of
which corresponds to the number of participants that were clustered to form
that node. Lines or edges between nodes indicate they have participants in
common. The subgroups include a node collection that appears on the left
(group A, n = 13) and a node collection on the right (group B, n = 24). There
are also three small, disconnected nodes (two containing single participants,
one green and one purple, and one yellow group containing two partici-
pants, on the bottom left). The Ayasdi Core software allows for coloring the
Reeb graph based on any measure present in the dataset. Each node is
colored based on the value of principle component 1 across participants in
each node to illustrate how the data vary along that component; however,
the subgroupings are based on the separation of the graph structure into
two primary collections of connected nodes.
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time 1 as a covariate (P > 0.10, FDR corrected). Longitudinal
analyses of total brain volume include a main effect of the an-
atomically defined subgroup, indicating larger volumes for group
A relative to group B and a significant main effect of time indi-
cating larger volumes at time 2 (both P < 0.001, FDR corrected)
but no group-by-time interaction (P > 0.10, FDR corrected).
Follow-up t tests indicated that brain volumes were larger for
group A at time 1 and time 2 (both p < 0.001, FDR corrected).

Comparison Between Longitudinal and Cross-Sectional TDA. We also
compared classification of subgroups based on longitudinal data
to classification based on cross-sectional data that had been
previously published (10). The longitudinally defined higher-
functioning group B was consistent with the higher-functioning
group classified at mean age 2.89. Of the 16 individuals from the

original higher-functioning group who were followed longitudi-
nally, all 16 were classified in the higher-functioning group based on
their longitudinal data. The longitudinally based lower-functioning
cross-sectional group was not as stable as the higher-functioning
group. In fact, four of the individuals who were originally in the
lower-functioning group were classified in the higher-functioning
group based on their longitudinal data. In other words, these in-
dividuals initially shared the neuroanatomical characteristics of the
lower-functioning cross-sectional group but at time 2 follow-up
were observed to have neuroanatomical trajectories that led to
their inclusion in the higher-functioning longitudinal group. The
change in Vineland scores for these individuals from time 1 to time
2 (which fall between −3.98 and −4.73) demonstrates a smaller
decline in standard scores compared with the change in means of
group A (−5.49) and group B (−5.05; Fig. S1).

Discussion
In this study, we hypothesized that TDA-based analysis of lon-
gitudinal neuroanatomical data would identify clinically mean-
ingful subgroups within a cohort of males with the FMR1 full
mutation. Indeed, TDA classified the longitudinal anatomical data
into two subgroups that were clinically distinct in terms of cogni-
tive/behavioral performance. Group B demonstrated higher levels
of adaptive function and cognition along with lower levels of au-
tism symptoms and smaller total brain volumes relative to group
A. These results suggest TDA applied to longitudinal neuro-
imaging data can differentiate clinically meaningful subgroups that
are not based on an a priori hypothesis. This information could
have significant utility in characterizing subgroups within the
larger FXS population by advancing understanding of different
neurobiological mechanisms and/or unique brain–environment
interactions within each subgroup. Further, subgroup-specific in-
formation might be used in the future to inform targeted therapies
and aid in predicting response to treatment.
The results demonstrated a higher level of adaptive func-

tioning (Vineland) for group B relative to group A, and this
difference was stable over time (no interaction with time). The
Mullen and ADOS data revealed trends for higher performance
and fewer autism symptoms for group B, but group differences
were only significant at time 1 for Mullen and at time 2 for
ADOS. We observed a floor effect on the Mullen scores, which
may have prevented us from detecting effects of group or time.
Analysis of raw Mullen scores revealed significantly lower scores
on the expressive language subscale for group A at time 2 and a
trend for a group-by-time interaction. Lack of significant dif-
ference in the other raw Mullen scores may be due to generally
low performance in both groups.
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Fig. 2. Cognitive/behavioral results by timepoint. Standard scores are presented for the Mullen Scales of Early Learning (Left) and the Vineland Adaptive
Behavior Scale (Middle). Higher scores for these scales indicate better performance. A floor effect was present in the Mullen scores (see text). Calibrated
severity scores are presented for the ADOS (Right, higher scores indicate more autism symptoms).

Fig. 3. Univariate neuroanatomical results. Group differences are displayed
on average gray matter template created from all participants (P < 0.005,
FWE corrected). (A) Regions of significantly enlarged gray matter for group
A relative to group B at time point 1. (B) Regions of significantly enlarged
gray matter for group A relative to group B at time point 2. (C) Regions of
significantly enlarged white matter for group A relative to group B at time
point 1. (D) Regions of significantly enlarged white matter for group A
relative to group B at time point 2. These differences remain largely con-
sistent over time; no significant group-by-time interaction was found. There
were no regions for which group B demonstrated enlarged volume relative
to group A.
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Group differences for ADOS scores were not seen at time
point 1, perhaps because autism symptoms were not pronounced
enough or the ADOS version we used lacked sensitivity. We used
the original ADOS assessment for this study (27). However,
since completion of our data collection, toddler (28) and infant
(29) versions of the ADOS have been introduced. These age-
appropriate assessments may be more sensitive to quantifying
early autism symptoms. Nevertheless, the significant main ef-
fect of time indicates increasing scores in both subgroups sug-
gesting that autism symptoms increase with age in young boys
with FXS and that early intervention should be considered for
these individuals.
We noted a significant effect of time for Vineland and a trend

for Mullen scores in the overall study sample with the change in
scores indicting worse performance at later ages. Decreases in
Vineland and Mullen standard scores indicate a slowing of the
growth of adaptive and cognitive functioning. In other words,
these individuals are falling farther behind their same-age typi-
cally developing peers, but this does not represent a loss of
function per se. Decreasing trajectories are consistent with lon-
gitudinal analyses of adaptive behavior (30) and cognitive func-
tioning (31) in individuals with FXS.
The lack of significant group-by-time interactions within any of

the three assessment global scales suggests that the cognitive/
behavioral differences were consistent over time. It is possible
that the tests were not sufficiently sensitive to capture differen-
tial trajectories of cognitive/behavioral function within sub-
groups. This lack of sensitivity is most apparent in the range of
scores in the Mullen (for which we noted a floor effect) and
ADOS severity scores, which range from 1 to 10 for this measure.
The Vineland scores demonstrated a greater range, and we ob-
served a group-by-time interaction for the daily living subscale.
This result indicates a steeper slope or more rapid decline in
standard scores for group A. The daily living subscale measures
an individual’s skills in personal, domestic, and community do-
mains. Recent longitudinal research in FXS indicates a weakness
for the daily living domain relative to the socialization domain
across development (30). Our results suggest that for a subset of
individuals with FXS, daily living may be particularly vulnerable
to a more rapid widening of the gap in scores relative to those of
typically developing peers. Identification of individual strengths
and weaknesses and knowledge of time-dependent changes in
adaptive behavior profiles are critical for tailoring medical and
behavioral interventions. Clearly, further longitudinal follow-up
beyond age 5 will be required to bear out strengths and weakness
of individual subgroups.
The longitudinal TDA revealed a complex multivariate pat-

tern of subgroup differences in brain structure, and the results
indicated significant, widespread group differences that were
stable over time (no group-by-time interaction). The univariate
results indicated enlarged volumes in group A for gray matter
and white matter regions including caudate, thalamus, frontal
lobe, temporal lobe, and cerebellum. These univariate results are
consistent with what our group has found when comparing this
entire cohort of individuals with FXS to typically developing
groups and clinical comparison groups (11, 16, 17). Other studies
have confirmed enlarged subcortical and cortical volume and
increased cortical thickness in older individuals with FXS (32,
33). These neuroanatomical differences may result from aber-
rant synaptic activity and altered dendritic pruning, which are
downstream effects of FMR1 gene mutations (3). Our results
demonstrate that the aforementioned subcortical and corti-
cal enlargement is not homogeneous across males with the
FMR1 full mutation. Within our study population, the subgroup
with widespread enlarged brain regions (i.e., generally larger
brain volume) presented with lower adaptive, behavioral, and
cognitive scores.

In the longitudinal analysis, two major groups accounted for
over 90% of the data, whereas in the single-time point analysis
(10), two groups accounted for only 73% of the data (χ2 = 4.522,
df = 1, P = 0.033). This difference suggests that subgroup
identification based on longitudinal histories may lead to a
clearer separation of the data than identification based on cross-
sectional analysis. This finding is consistent with neuroimaging
research demonstrating that longitudinal analysis is more pow-
erful than cross-sectional analysis at detecting gene–brain rela-
tionships (34). The enhanced classification in the present study
cannot be explained by attrition alone: 4 of the 11 individuals lost
to attrition were unclassified in the cross-sectional analysis, and
7 were classified into one of the two cross-sectional subgroups.
Longer longitudinal studies are required to determine the stability
of these groups across development, and replication in indepen-
dent samples will be necessary to establish the generalizability of
these results to other populations. Further, studies with larger
sample sizes will be important for examining outcomes within indi-
viduals who were not classified into one of the larger subgroups.
There was no difference in FMRP levels between the lower-

functioning and higher-functioning groups, a finding that is
consistent with our cross-sectional results (10). Thus, subgroups
were identified among young children with FXS using factors
other than FMRP. This discrimination is important: within males
with FXS, FMRP levels are skewed to the lower end of the
spectrum within a small range (in the present study FMRP levels
range from 1 to 20%). However, FMRP levels may prove more
meaningful for differentiation within more diverse samples of
individuals with FXS. For example, previous studies have reported
associations between FMRP and brain function in females (35, 36)
and between FMRP and anatomy in mixed sex samples (18) where
a larger range in FMRP levels is observed. Although FMRP is
essential for regulating synaptic plasticity and dendritic pruning
(3) it also interacts with several other proteins that have unique
expression profiles during development (37). Follow-up studies
examining other genetic factors, including relevant functional
polymorphisms for other loci may be informative for under-
standing complex gene–brain–behavior relationships in individ-
uals with FXS.
A subset of participants was taking medications that are known

to affect neurological functioning (Table S6). Higher medication
use was present in the lower functioning group, which is in line with
the higher levels of cognitive and behavioral dysfunction and lower
adaptive functioning we observed in children comprising this
group.
It is unlikely that medication use significantly influenced brain

development and the resulting subgroup clustering we obtained
in our analysis of longitudinal data. Specifically, very few chil-
dren were taking medication at time 1 (only three in group A), at
which time the clustering was very similar to that obtained from
the longitudinal data. Of the individuals who switched from the
low- to the high-functioning subgroup, none were taking medications
at the first time point, and only one participant was taking
medication at the second time point. Accordingly, it is un-
likely that medication use affected the differences in cluster-
ing between single- and multi-time point data. Future studies
with larger sample sizes and longer follow-up durations will be
important for examining how medication influences both brain
development and developmentally based subgrouping within FXS.
In summary, our results support longitudinal TDA as a putative

tool for differentiating individuals with FXS based on neuroana-
tomical data. These results confirm the presence of two longi-
tudinally defined, neuroanatomically distinct subgroups that are
associated with clinically relevant phenotypes among young boys
with fragile X syndrome. The subgroup differences were relatively
stable across time in terms of adaptive function, cognitive function,
and autism symptoms. Furthermore, classification based on longi-
tudinal data may be superior to classification based on single-time
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point data, consistent with improved performance using additional
data. This information may be used to predict outcomes and guide
design of targeted therapies for individuals with FXS. In addition,
longitudinal TDA may represent an informative tool for exploration
of neurodevelopmental variation in other specific and idiopathic
disorders such as sex chromosome aneuploidy conditions, idio-
pathic autism spectrum disorder, and attention deficit hyperactivity
disorder.

Materials and Methods
Participants and Data Collection. Participants were recruited by collaborating
research teams at Stanford University and the University of North Carolina at
Chapel Hill. The study protocols were approved by the human subjects
committees at Stanford University and the University of North Carolina at
Chapel Hill, and informed consent was obtained from all parents. Children
with FXS were recruited through registry databases maintained by both
institutions, through postings to the National Fragile X Foundation website
and quarterly newsletter, and through mailings to other regional FXS or-
ganizations. FMR1 full mutation was confirmed via Southern blot DNA
analysis, and FMRP percentage was estimated based on the percentage of
peripheral lymphocytes containing FMRP (38). Participants using medica-
tions were included in the study (Table S6).

Participants completed the same battery of assessments at each time point,
and all assessments were administered and scored under the supervision of a
doctoral-level clinician. The Mullen Scales of Early Learning (26) assessed
cognitive abilities. The Vineland Adaptive Behavior Scales, Interview Edition,
Survey Form (25), was used to measure age-appropriate skills required for
navigating daily life. The same parent completed the interview at each visit
for all but four participants (one in group A, two in group B, and one in that
was not assigned to either of the subgroups). When these participants were
removed from the repeated measures analysis of Vineland composite scores,
the pattern of results did not change. The main effect of group remained
significant (higher scores for group B, P = 0.024), the main effect of time
remained significant (decreasing scores for all individuals, P < 0.001), and the
group-by-time interaction remained not significant (P > 0.10). The group-by-
time interaction for the daily living subscale also remained significant (P =
0.005). The Autism Diagnostic Observation Schedule–Generic (ADOS) (27)
was administered and scored by a research-certified clinician or by indi-
viduals who were directly trained by a research-certified administrator.
The ADOS was administered by a different clinician at each time point
with the exception of six cases. Reliability among administrators was ver-
ified within and across sites via consensus scoring for 20% of the assess-
ments. ADOS-G scores were converted using the ADOS-2 summary scores
(39) and calibrated severity scores (40). The stability of the calibrated se-
verity scores has been demonstrated over time and when administered by
different clinicians (41). Thus, having a different administrator at time
1 and time 2 likely did not bias our longitudinal results. There were no
significant site differences on any of the cognitive/behavioral variables (all
p > 0.05).

Whole brain T1-weighted MRI data were collected from participants at
each time point (GE 1.5 T Signa, coronal orientation; inversion recovery
preparation pulse = 300 ms; repetition time = 12 ms; echo time = 5 ms; flip
angle = 20°; slice thickness = 1.5 mm; excitations = 1; field of view = 20 cm;
matrix = 256 × 192; voxels = 0.78 mm3). Plastic geometric phantoms
were scanned at regular intervals during the study to ensure calibration of
MRI scanners across sites. Results of calibration procedures have been
reported (17).

Voxel-Based Morphometry Preprocessing. Voxel-based morphometry (VBM)
preprocessing of MRI data was performed using Statistical Parametric Mapping 5
(SPM5) (www.fil.ion.ucl.ac.uk/spm) and VBM5.1 (dbm.neuro.uni-jena.de/vbm).
Images were bias-field corrected and segmented to gray matter, white
matter, and cerebrospinal fluid. A Hidden Markov Random Field (prior
probability weight 0.3) incorporated spatial constraints from neighboring
voxels. Images were normalized with a 12-parameter affine transformation
with a spatial frequency cutoff of 25 in all three (x, y, z) directions and
resampled to 1 × 1 × 1 mm voxels. Linear and nonlinear Jacobian modulation
parameters were applied. For each time point, customized gray matter, white
matter, and cerebrospinal fluid templates created using all participants in our
previous studies (11) were used for VBM preprocessing. Segmentation and
normalization accuracy were manually inspected for each image.

Multivariate Pattern Analysis Using Topological Data Analysis. Fig. S2 sum-
marizes these procedures. The normalized images were smoothed to 4 mm

to reduce noise and enhance further computation. Next, gray and white
matter images for all participants for both time points were combined into a
single matrix, M, with the data for each individual entered as a row and voxel
intensity as the columns,M = (# participants) × (# gray voxels time 1 + # white
voxels time 1 + # gray voxels time 2 + # white voxels time 2).

Ayasdi Core software, a more recent version of Iris (42), was used to
construct a Reeb graph to identify topological (i.e., shape) features. Con-
struction of a Reeb graph includes (i) column selection, (ii) metric selection,
(iii) filter selection, and (iv) selection of gain and resolution values.

Column selection defines the subject space, S, a high-dimensional space in
which each participant’s data represent a point. A subset of columns of M
was selected corresponding to voxels whose variance was at least 0.03 across
participants. (In modulated and segmented images voxel intensities corre-
spond to proportions of volume and thus range in value from 0 to 1.) Each
selected column was mean centered and scaled to have a variance of 1 such
that all voxels were weighted equally. The next step, metric selection, de-
fined the distances within S yielding a measure of similarity between par-
ticipants. The metric chosen for the present study was Euclidean distance
using all of the columns in M, which is a generalization of the usual distance
between points P1 = (x1, y1) and P2 = (x2, y2) in the 2D coordinate plane:

dðP1, P2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 − x1Þ2 + ðy2 − y1Þ2

q
.

Filter selection transforms the similarity information into a visual represen-
tation, a 2D rendering of a 3D graph. The first two principal component scores
(PC1 and PC2) of the variance-normalized data were used as filters, such that
two participants were judged to be similar (i.e., shared the same bin) if both
their PC1 and PC2 scores were sufficiently similar. Next, Euclidian distance was
used to further cluster the participants within each bin, such that two par-
ticipants within the same bin were merged into the same cluster if the dis-
tance between them was sufficiently small; each cluster obtained in this way
was then viewed as a node of the Reeb graph. Any two clusters (i.e., nodes)
that shared a participant were then joined by an edge. Although bin size was
governed by the resolution parameter, bins were allowed to overlap (i.e.,
share participants) to an extent governed by the gain parameter, and this
overlap may lead clusters from different bins to share participants. Thus,
resolution and gain determine the nodes and edges of the Reeb graph, which
was projected onto a 2D plane for visualization.Wemay think of the resulting
graph as a view of the data through a microscope, where the TDA gain and
resolution parameters play roles analogous to level of light and level of
magnification. The parameter values that clearly decomposed the data into
subgroups were a gain of 4 for PC1 and PC2 and a resolution of 20 for
PC1 and PC2.

Analysis of Cognitive/Behavioral Data. Repeated measures ANOVA was used
to assess longitudinal change with longitudinally based TDA group as the
independent variable, Mullen, Vineland, or ADOS score as the dependent
variables and time point as the repeated factor. Standard t tests were used to
compare cross-sectional cognitive/behavioral scores between subgroups at
each time point.

Univariate Analyses of Magnetic Resonance Images. Post hoc descriptive
comparisons of gray and white matter volume, using age at time 1 as a
covariate, were performed to illustrate cross-sectional structural brain dif-
ferences between subgroups at time 1 and at time 2. Longitudinal gray and
white matter images representing change in volume from time 1 to time
2 were also compared between groups statistically to illustrate differential
changes between the groups over time. For both cross-sectional and longi-
tudinal comparisons FSL’s randomize tool (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/Randomise) was implemented with 5,000 permutations and thresh-
old-free cluster enhancement (43). Clusters corresponding to P < 0.005 (FWE
corrected) were retained. We also compared total brain volumes longitu-
dinally with repeated measures ANOVA and examined cross-sectional dif-
ferences using t tests.
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