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Abstract

Data commons collocate data, storage, and computing infrastructure with core services and 

commonly used tools and applications for managing, analyzing, and sharing data to create an 

interoperable resource for the research community. An architecture for data commons is described, 

as well as some lessons learned from operating several large-scale data commons.

With the amount of available scientific data being far larger than the ability of the research 

community to analyze it, there’s a critical need for new algorithms, software applications, 

software services, and cyberinfrastructure to support data throughout its life cycle in data 

science. In this article, we make a case for the role of data commons in meeting this need. 

We describe the design and architecture of several data commons that we’ve developed and 

operated for the research community in conjunction with the Open Science Data Cloud 

(OSDC), a multipetabyte science cloud that the nonprofit Open Commons Consortium 

(OCC) has managed and operated since 2009.1 One of the distinguishing characteristics of 

the OSDC is that it interoperates with a data commons containing over 1 Pbyte of public 

research data through a service-based architecture. This is an example of what is sometimes 

called “data as a service,” which plays an important role in some science-as-a-service 

frameworks.

There are at least two definitions for science as a service. The first is analogous to the 

software-as-a-service2 model, in which instead of managing data and software locally using 

your own storage and computing resources, you use the storage, computing, and software 

services offered by a service provider, such as a cloud service provider (CSP). With this 

approach, instead of setting up his or her own storage and computing infrastructure and 

installing the required software, a scientist uploads data to a CSP and uses preinstalled 

software for data analysis. Note that a trained scientist is still required to run the software 
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and analyze the data. Science as a service can also refer more generally to a service model 

that relaxes the requirement of needing a trained scientist to process and analyze data. With 

this service model, specific software and analysis tools are available for specific types of 

scientific data, which is uploaded to the science-as-a-service provider, processed using the 

appropriate pipelines, and then made available to the researcher for further analysis if 

required. Obviously these two definitions are closely connected in that a scientist can set up 

the required science-as-a-service framework, as in the first definition, so that less-trained 

technicians can use the service to process their research data, as in the second definition. By 

and large, we focus on the first definition in this article.

There are various science-as-a-service frameworks, including variants of the types of clouds 

formalized by the US National Institute of Standards and Technology (infrastructure as a 

service, platform as a service, and software as a service),2 as well as some more specialized 

services that are relevant for data science (data science support services and data commons):

• data science infrastructure and platform services, in which virtual machines 

(VMs), containers, or platform environments containing commonly used 

applications, tools, services, and datasets are made available to researchers (the 

OSDC is an example);

• data science software as a service, in which data is uploaded and processed by 

one or more applications or pipelines and results are stored in the cloud or 

downloaded (general-purpose platforms offering data science as a service include 

Agave,3 as well as more specialized services, such as those designed to process 

genomics data);

• data science support services, including data storage services, data-sharing 

services, data transfer services, and data collaboration services (one example is 

Globus4); and

• data commons, in which data, data science computing infrastructure, data science 

support services, and data science applications are collocated and available to 

researchers.

Data Commons

When we write of a “data commons,” we mean cyberinfrastructure that collocates data, 

storage, and computing infrastructure with commonly used tools for analyzing and sharing 

data to create an interoperable resource for the research community.

In the discussion below, we distinguish among several stakeholders involved in data 

commons: the data commons service provider (DCSP), which is the entity operating the data 

commons; the data contributor (DC), which is the organization or individual providing the 

data to the DCSP; and the data user (DU), which is the organization or individual accessing 

the data. (Note that there’s often a fourth stakeholder: the DCSP associated with the 

researcher accessing the data.) In general, there will be an agreement, often called the data 

contributors agreement (DCA), governing the terms by which the data is managed by the 
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DCSP and the researchers accessing the data, as well as a second agreement, often called the 

data access agreement (DAA), governing the terms of any researcher who accesses the data.

As we describe in more detail later, we’ve built several data commons since 2009. Based on 

this experience, we’ve identified six main requirements that, if followed, would enable data 

commons to interoperate with each other, science clouds,1 and other cyberinfrastructure 

supporting science as a service:

• Requirement 1, permanent digital IDs. The data commons must have a digital ID 

service, and datasets in the data commons must have permanent, persistent 

digital IDs. Associated with digital IDs are access controls specifying who can 

access the data and metadata specifying additional information about the data. 

Part of this requirement is that data can be accessed from the data commons 

through an API by specifying its digital ID.

• Requirement 2, permanent metadata. There must be a metadata service that 

returns the associated metadata for each digital ID. Because the metadata can be 

indexed, this provides a basic mechanism for the data to be discoverable.

• Requirement 3, API-based access. Data must be accessed by an API, not just by 

browsing through a portal. Part of this requirement is that a metadata service can 

be queried to return a list of digital IDs that can then be retrieved via the API. 

For those data commons that contain controlled access data, another component 

of the requirement is that there’s an authentication and authorization service so 

that users can first be authenticated and the data commons can check whether 

they are authorized to have access to the data.

• Requirement 4, data portability. The data must be portable in the sense that a 

dataset in a data commons can be transported to another data commons and be 

hosted there. In general, if data access is through digital IDs (versus referencing 

the data’s physical location), then software that references data shouldn’t have to 

be changed when data is rehosted by a second data commons.

• Requirement 5, data peering. By “data peering,” we mean an agreement between 

two data commons service providers to transfer data at no cost so that a 

researcher at data commons 1 can access data commons 2. In other words, the 

two data commons agree to transport research data between them with no access 

charges, no egress charges, and no ingress charges.

• Requirement 6, pay for compute. Because, in practice, researchers’ demand for 

computing resources is larger than available computing resources, computing 

resources must be rationed, either through allocations or by charging for their 

use. Notice the asymmetry in how a data commons treats storage and computing 

infrastructure. When data is accepted into a data commons, there’s a 

commitment to store and make it available for a certain period of time, often 

indefinitely. In contrast, computing over data in a data commons is rationed in an 

ongoing fashion, as is the working storage and the storage required for derived 

data products, either by providing computing and storage allocations for this 
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purpose or by charging for them. For simplicity, we refer to this requirement as 

“pay for computing,” even though the model is more complicated than that.

Although very important for many applications, we view other services, such as those for 

providing data provenance,5 data replication,6 and data collaboration,7 as optional and not 

core services.

OSDC and OCC Data Commons

The OSDC is a multipetabyte science cloud that serves the research community by 

collocating a multidisciplinary data commons containing approximately 1 Pbyte of scientific 

data with cloud-based computing, high-performance data transport services, and VM images 

and shareable snapshots containing common data analysis pipelines and tools.

The OSDC is designed to provide a long-term persistent home for scientific data, as well as 

a platform for data-intensive science, allowing new types of data-intensive algorithms to be 

developed, tested, and used over large sets of heterogeneous scientific data. Recently, OSDC 

researchers have logged about two million core hours each month, which translates to more 

than US$800,000 worth of cloud computing services (if purchased through Amazon Web 

Services’ public cloud). This equates to more than 12,000 core hours per user, or a 16-core 

machine continuously used by each researcher on average.

OSDC researchers used a total of more than 18 million core hours in 2015. We currently 

target operating OSDC computing resources at approximately 85 percent of capacity, and 

storage resources at 80 percent of capacity. Given these constraints, we can determine how 

many researchers to support and what size allocations to provide them. Because the OSDC 

specializes in supporting data-intensive research projects, we’ve chosen to target researchers 

who need larger-scale resources (relative to our total capacity) for data-intensive science. In 

other words, rather than support more researchers with smaller allocations, we support fewer 

researchers with larger allocations. Table 1 shows the number of times researchers exceeded 

the indicated number of core hours in a single month during 2015.

The OSDC Community

The OSDC is developed and operated by the Open Commons Consortium, a nonprofit that 

supports the scientific community by operating data commons and cloud computing 

infrastructure to support scientific, environmental, medical, and healthcare-related research. 

OCC members and partners include universities (University of Chicago, Northwestern 

University, University of Michigan), companies (Yahoo, Cisco, Infoblox), US government 

agencies and national laboratories (NASA, NOAA), and international partners (Edinburgh 

University, University of Amsterdam, Japan’s National Institute of Advanced Industrial 

Science and Technology). The OSDC is a joint project with the University of Chicago, 

which provides the OSDC’s datacenter. Much of the support for the OSDC came from the 

Moore Foundation and from corporate donations.

The OSDC has a wide-reaching, multicampus, multi-institutional, interdisciplinary user base 

and has supported more than 760 research projects since its inception. In 2015, 470 research 

groups from 54 universities in 14 countries received OSDC allocations. In a typical month 
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(November 2015), 186 of these research groups were active. The most computational-

intensive group projects in 2015 included projects around biological sciences and genomics 

research, analysis of Earth science satellite imagery data, analysis of text data in historical 

and scientific literature, and a computationally intensive project in sociology.

OCC Data Commons

The OCC operates several data commons for the research community.

OSDC data commons—We introduced our first data commons in 2009. It currently 

holds approximately 800 Tbytes of public open access research data, including Earth science 

data, biological data, social science data, and digital humanities data.

Matsu data commons—The OCC has collaborated with NASA since 2009 on Project 

Matsu, a data commons that contains six years of Earth Observing-1 (EO-1) data, with new 

data added daily, as well as selected datasets from other NASA satellites, including NA-

SA’s Moderate Resolution Imaging Spectrometer (MODIS) and the Landsat Global Land 

Surveys.

The OCC NOAA data commons—In April 2015, NOAA announced five data alliance 

partnerships (with Amazon, Google, IBM, Microsoft, and the OCC) that would have broad 

access to its data and help make it more accessible to the public. Currently, only a small 

fraction of the more than 20 of data that NOAA has available in its archives is available to 

the public, but NOAA data alliance partners have broader access to it. The focus of the OCC 

data alliance is to work with the environmental research community to build an 

environmental data commons. Currently, the OCC NOAA data commons contains Nexrad 

data, with additional datasets expected in 2016.

National Cancer Institute’s (NCI’s) genomic data commons (GDC)—Through a 

contract between the NCI and the University of Chicago and in collaboration with the OCC, 

we’ve developed a data commons for cancer data; the GDC contains genomic data and 

associated clinical data from NCI-funded projects. Currently, the GDC contains about 2 

Pbytes of data, but this is expected to grow rapidly over the next few years.

Bionimbus protected data cloud—We also operate two private cloud computing 

platforms that are designed to hold human genomic and other sensitive biomedical data. 

These two clouds contain a variety of sensitive controlled-access biomedical data that we 

make available to the research community following the requirements of the relevant data 

access committees.

Common software stack—The core software stack for the various data commons and 

clouds described here is open source. Many of the components are developed by third 

parties, but some key services are developed and maintained by the OCC and other working 

groups. Although there are some differences between them, we try to minimize the 

differences between the software stacks used by the various data commons that we operate. 

In practice, as we develop new versions of the basic software stack, it usually takes a year or 

so until the changes can percolate throughout our entire infrastructure.
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OSDC Design and Architecture

Figure 1 shows the OSDC’s architecture. We are currently transitioning from version 2 of 

the OSDC software stack1 to version 3. Both are based on OpenStack8 for infrastructure as a 

service. The primary change made between version 2 and version 3 is that version 2 uses 

GlusterFS9 for storage, while version 3 uses Ceph10 for object storage in addition to 

OpenStack’s ephemeral storage. This is a significant user-facing change that comes with 

some tradeoffs. Version 2 utilized a POSIX-compliant file system for user home directory 

(scratch and persistent) data storage, which provides command-line utilities familiar for 

most OSDC users. Version 3’s object storage, however, provides the advantage of an 

increased level of interoperability, as Ceph’s object storage has an interface compatible with 

a large subset of Amazon’s S3 RESTful API in addition to OpenStack’s API.

In version 3, there’s thus a clearer distinction between the way users interface with scratch 

data and intermediate working results on ephemeral storage, which is simple to use and 

persists only until VMs are terminated. This results in longer-term data on object storage, 

which requires the small extra effort of curating through the API interface. Although there’s 

a learning curve required in adopting object storage, we’ve noticed that it’s small and easily 

overcome with examples in documentation. It also tempers increased storage usage that 

could stem from unnecessary data that isn’t actively removed.

The OSDC has a portal called the Tukey portal, which provides a front-end Web portal 

interface for users to access, launch, and manage VMs and storage. The Tukey portal 

interfaces with the Tukey middleware, which provides a secure authentication layer and 

interface between various software stacks. The OSDC uses federated login for authentication 

so that academic institutions with InCommon, CANARIE, or the UK Federation can use 

those credentials. We’ve worked with 145 academic universities and research institutions to 

release the appropriate attributes for authentication. We also support Gmail and Yahoo 

logins, but only for approved projects when other authentication options aren’t available.

We instrument all the resources that we operate so that we can meter and collect the data 

required for accounting and billing each user. We use Salesforce.com, one of the 

components of the OSDC that isn’t open source, to send out invoices. Even when computing 

resources are allocated and no payment is required, we’ve found that receipt of these 

invoices promotes responsible usage of OSDC community resources. We also operate an 

interactive support ticketing system that tracks user support requests and system team 

responses for technical questions. Collecting this data lets us track usage statistics and build 

a comprehensive assessment of how researchers use our services.

While adding to our resources, we’ve developed an infrastructure automation tool called 

Yates to simplify bringing up new computing, storage, and networking infrastructure. We 

also try to automate as much of the security required to operate the OSDC as is practical.

The core OSDC software stack is open source, enabling interested parties to set up their own 

science cloud or data commons. The core software stack consists of third-party, open source 

software, such as OpenStack and Ceph, as well as open source software developed by the 

OSDC community. The latter is licensed under the open source Apache license. The OSDC 
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does use some proprietary software, such as Salesforce.com to do the accounting and billing, 

as mentioned earlier.

OCC Digital ID and Metadata Services

The digital ID (DID) service is accessible via an API that generates digital IDs, assigns key-

value attributes to digital IDs, and returns key-value attributes associated with digital IDs. 

We also developed a metadata service that’s accessible via an API and can assign and 

retrieve metadata associated with a digital ID. Users can also edit metadata associated with 

digital IDs if they have write access to it. Due to different release schedules, there are some 

differences in the digital ID and metadata services between several of the data commons that 

we operate, but over time, we plan to converge these services.

Persistent Identifier Strategies

Although the necessity of assigning digital IDs to data is well recognized,11,12 there isn’t yet 

a widely accepted service for this purpose, especially for large datasets.13 This is in contrast 

to the generally accepted use of digital object identifiers (DOIs) or handles for referencing 

digital publications. An alternative to a DOI is an archival resource key (ARK), a Uniform 

Resource Locator (URL) that’s also a multipurpose identifier for information objects of any 

type.14,15 In practice, DOIs and ARKs are generally used to assign IDs to datasets, with 

individual communities sometimes developing their own IDs. DataCite is an international 

consortium that manages DOIs for datasets and supports services for finding, accessing, and 

reusing data.16 There are also services such as EZID that support both DOIs and ARKs.17

Given the challenges the community is facing in coming to a consensus about which digital 

IDs to use, our approach has been to build an open source digital ID service that can support 

multiple digital IDs, support “suffix pass-through,”13 and that can scale to large datasets.

Digital IDs

From the researcher viewpoint, the need for digital IDs associated with datasets is well 

appreciated.18,19 Here, we discuss some of the reasons that digital IDs are important for a 

data commons from an operational viewpoint.

First, with digital IDs, data can be moved from one physical location or storage system 

within a data commons to another without the need to change any code that references the 

data. As the amount of data grows, moving data between zones within a data commons or 

between storage systems becomes more and more common, and digital IDs allow this to 

take place without impeding researchers.

Second, digital IDs are an important component of the data portability requirement. More 

specifically, datasets can be moved between data commons, and, again, researchers don’t 

need to change their code. In practice, datasets can be migrated over time, with the digital 

IDs’ references updated as the migration proceeds.
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Signpost is the digital ID service for the OSDC. Instead of using a hard-coded URL, the 

primary way to access managed data via the OSDC is through a digital ID. Signpost is an 

implementation of this concept via JavaScript Object Notation (JSON) documents.

The Signpost digital ID service integrates a mutable ID that’s assigned to the data with an 

immutable hash-based ID that’s computed from the data. Both IDs are accessible through a 

REST API interface. With this approach, data contributors can make updates to the data and 

retain the same ID, while the data commons service provider can use the hash-based ID to 

facilitate data management. To prevent unauthorized editing of digital IDs, an access control 

list (ACL) is kept by each digital ID specifying the read/write permissions for different users 

and groups.

User-defined identities are flexible, can be of any format (including ARKs and DOIs), and 

provide a layer of human readability. They map to hashes of the identified data objects, with 

the bottom layer utilizing hash-based identifiers, which guarantee data immutability, allow 

for identification of duplicated data via hash collisions, and allow for verification upon 

retrieval. These map to known locations of the identified data.

Metadata Service

The OSDC metadata service, Sightseer, lets users create, modify, and access searchable 

JSON documents containing metadata about digital IDs. The primary data can be accessed 

using Signpost and the digital ID. At its core, Sightseer provides no restrictions on the JSON 

documents it can store. However, it has the ability to specify metadata types and associate 

them with JSON schemas. This helps prevent unexpected errors in metadata with defined 

schemas. Sightseer has similar abilities as Signpost to provide ACLs to specify users that 

have write/read access to the specific JSON document.

Case Studies

Two case studies illustrate some of the projects that can be supported with data commons.

Matsu

Project Matsu is a collaboration between NASA and the OCC that’s hosted by the University 

of Chicago, processes the data produced each day by NASA’s EO-1 satellite, and makes a 

variety of data products available to the research community, including flood maps. The raw 

data, processed data, and data products are all available through the OSDC. Project Matsu 

uses a framework called the OSDC Wheel to ingest raw data, process and analyze it, and 

deliver reports with actionable information to the community in near real time.20 Project 

Matsu uses the data commons architecture illustrated in Figure 1.

As part of Project Matsu, we host several focused analytic products with value-added data. 

Figure 2 shows a screenshot from one of these focused analytic products, the Project Matsu 

Namibia Flood Dashboard,20 which was developed as a tool for aggregating and rapidly 

presenting data and sources of information about ground conditions, rainfall, and other 

hydrological information to citizens and decision makers in the flood-prone areas of water 

basins in Namibia and the surrounding areas. The tool features a bulletin system that 
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produces a short daily written report, a geospatial data visualization display using Google 

Maps/Earth and OpenStreetMap, methods for retrieving NASA images for a region of 

interest, and analytics for projecting flood potential using hydrological models. The Namibia 

Flood Dashboard is an important tool for developing better situational awareness and 

enabling fast decision making and is a model for the types of focused analytics products 

made possible by collocating related datasets with each other and with computational and 

analytic capabilities.

Bionimbus

The Bionimbus Protected Data Cloud21 is a petabyte-scale private cloud and data commons 

that has been operational since 13 March 2013. Since going online in 2013, it has supported 

more than 152 allocation recipients from over 35 different projects at 29 different 

institutions. Each month, Bionimbus provides more than 2.5 million core hours to 

researchers, which at standard Amazon AWS pricing would cost over $500,000. One of the 

largest users of Bionimbus is the Cancer Genome Atlas (TCGA)/International Cancer 

Genome Consortium (ICGC) PanCancer Analysis of Whole Genomes working group 

(PCAWG). PCAWG is currently undertaking a large-scale analysis of most of the world’s 

whole genome cancer data available to the cancer community through the TCGA and ICGA 

consortia using several clouds, including Bionimbus.

Bionimbus also uses the data commons architecture illustrated in Figure 1. More 

specifically, the current architecture uses OpenStack to provide virtualized infrastructure, 

containers to provide a platform-as-a-service capability, and object-based storage with an 

AWS compatible interface. Bionimbus is a National Institutes of Health (NIH) Trusted 

Partner22 that interoperates with both the NIH Electronic Research Administration 

Commons to authenticate researchers and with the NIH Database of Genotypes and 

Phenotypes system to authorize users access to specific controlled access datasets, such as 

the TCGA dataset.

Discussion

Three projects that are supporting infrastructures similar to the OCC data commons are 

described in the sidebar. With the appropriate services, data commons support three different 

but related functions. First, data commons can serve as a data repository or digital library for 

data associated with published research. Second, data commons can store data along with 

computational environments in VMs or containers so that computations supporting scientific 

discoveries can be reproducible. Third, data commons can serve as a platform, enabling 

future discoveries as more data, algorithms, and software applications are added to the 

commons.

Data commons fit well with the science-as-a-service model: although data commons allow 

researchers to download data, host it themselves, and analyze it locally, they also allow 

current data to be reanalyzed with new methods, tools, and applications using collocated 

computing infrastructure. New data can be uploaded for an integrated analysis, and hosted 

data can be made available to other resources and applications using a data-as-a-service 

model, in which data in a data commons is accessed through an API. A data-as-a-service 
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model is enhanced when multiple data commons and science clouds peer so that data can be 

moved between them at no cost.

Challenges

Perhaps the biggest challenge for data commons, especially large-scale data commons, is 

developing long-term sustainability models that support operations year after year.

Over the past several years, funding agencies have required data management plans for the 

dissemination and sharing of research results, but, by and large, they haven’t provided 

funding to support this requirement. What this means is that a lot of data is searching for 

data commons and similar infrastructure, but very little funding is available to support this 

type of infrastructure.

Moreover, datacenters are sometimes divided into several “pods” to facilitate their 

management and build out—for lack of better name, we sometimes use the term cyberpod to 

refer to the scale of a pod at a datacenter. Cyberinfrastructure at this scale is also sometimes 

called midscale computing,23 to distinguish it from the large-scale infrastructure available to 

Internet companies such as Google and Amazon and the HPC clusters generally available to 

campus research groups. A pod might contain 50 to several hundred racks of computing 

infrastructure. Large-scale Internet companies have developed specialized software for mid- 

to large-scale (datacenter-scale) computing,24 such as MapReduce (Google)25 and Dynamo 

(Amazon),26 but this proprietary software isn’t available to the research community. 

Although some software applications, such as Hadoop,23 are available to the research 

community and scale across multiple racks, there isn’t a complete open source software 

stack containing all the services required to build a large-scale data commons, including the 

infrastructure automation and management services, security services, and so on24 required 

to operate a data commons at midscale.

We single out three research challenges related to building data commons at the scale of 

cyberpods:

• Software stacks for midscale computing. The first research challenge is to 

develop a scalable open source software stack that provides the infrastructure 

automation and monitoring, computing, storage, security, and related services 

required to operate at the scale of a cyberpod.

• Datapods. The second research challenge is to develop data management services 

that scale out to cyberpods. We sometimes use the term datapods for data 

management infrastructure at this scale—that is, data management infrastructure 

that scales to midscale and larger computing infrastructure.

• AnalyticOps. The third challenge is to develop an integrated development and 

operations methodology to support large-scale analysis and reanalysis of data. 

You might think of this as the analogy of DevOps for large-scale data analysis.

An additional category of challenges is the lack of consensus within the research community 

for a core set of standards that would support data commons. There aren’t yet widely 

Grossman et al. Page 10

Comput Sci Eng. Author manuscript; available in PMC 2017 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accepted standards for indexing data, APIs for accessing data, and authentication and 

authorization protocols for accessing controlled-access data.

Lessons Learned

Data reanalysis is an important capability. For many research projects, large datasets are 

periodically reanalyzed using new algorithms or software applications, and data commons 

are a convenient and cost-effective way to provide this service, especially as the data grows 

in size and becomes more expensive to transfer.

In addition, important discoveries are made at all computing resource levels. As mentioned, 

computing resources are rationed in a data commons (either directly through allocations or 

indirectly through charge backs). Typically, there’s a range of requests for computing 

allocations in a data commons spanning six to seven or more orders of magnitude, ranging 

from hundreds of core hours to tens of millions of core hours. The challenge is that 

important discoveries are usually made across the entire range of resource allocations, from 

the smallest to the largest. This is because when large datasets, especially multiple large 

datasets, are collocated, it’s possible to make interesting discoveries even with relatively 

small amounts of compute.

The tragedy of the commons can be alleviated with smart defaults in implementation. In the 

early stages of the OSDC, the number of users was smaller, and depletion of shared 

computational resources wasn’t an urgent concern. As the popularity of the system grew and 

attracted more users, we noted some user issues (for example, increase in support tickets that 

noted that larger VM instances wouldn’t launch) as compute core utilization surpassed 85 

percent. Accounting and invoicing promotes responsible usage of community resources. We 

also implemented a quarterly resource allocation system with a short survey to users 

requiring optin for continued resource usage extending into the next quarter. This provides a 

more formal reminder every three months to users who are finishing research projects to 

relinquish their quotas and has been successful for tempering unnecessary core usage. 

Similarly, as we moved to object storage functionality, we noted more responsible usage of 

storage, as scratch space is in ephemeral storage and removed by default when the 

computing environment is terminated. The small extra effort in moving data via an API to 

the object storage requires more thoughtful curation and usage of resources.

Over the past several years, much of the research focus has been on designing and operating 

data commons and science clouds that are scalable, contain interesting datasets, and offer 

computing infrastructure as a service. We expect that as these types of science-as-a-service 

offerings become more common, there will be a variety of more interesting higher-order 

services, including discovery, correlation, and other analysis services that are offered within 

a commons or cloud and across two or more commons and clouds that interoperate.

Today, Web mashups are quite common, but analysis mashups, in which data is left in place 

but continuously analyzed as a distributed service, are relatively rare. As data commons and 

science clouds become more common, these types of services can be more easily built.
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Finally, hybrid clouds will become the norm. At the scale of a several dozen racks (a 

cyberpod), a highly utilized data commons in a well-run data-center is less expensive than 

using today’s public clouds.22 For this reason, hybrid clouds consisting of privately run 

cyberpods hosting data commons that interoperate with public clouds seem to have certain 

advantages.

Properly designed data commons can serve several roles in science as a service: first, they 

can serve as an active, accessible, citable repository for research data in general and research 

data associated with published research papers in particular. Second, by collocating 

computing resources, they can serve as a platform for reproducing research results. Third, 

they can support future discoveries as more data is added to the commons, as new 

algorithms are developed and implemented in the commons, and as new software 

applications and tools are integrated into the commons. Fourth, they can serve as a core 

component in an interoperable “web of data” as the number of data commons begins to 

grow, as standards for data commons and their interoperability begin to mature, and as data 

commons begin to peer.
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Related Work

Several projects share many of the goals of data commons in general, and the Open 

Commons Consortium (OCC) data commons in particular. Here, we discuss three of the 

most important: the National Institutes of Health (NIH) Big Data to Knowledge (BD2K) 

program, the Research Data Alliance (RDA), and the National Data Service (NDS).

The work described in the main text is most closely connected with the vision for a 

commons outlined by the BD2K program at the US National Institutes for Health.1 The 

commons described in this article can be viewed partly as an implementation of a 

commons that supports the principles of findability, accessibility, interoperability, and 

reusability2 which are key requirements of the data-sharing component of the BD2K 

program.

Of the three projects mentioned, the largest and most mature is the RDA,3 the goals of 

which are to create concrete pieces of infrastructure that accelerate data sharing and 

exchange for a specific but substantive target community; adopt the infrastructure within 

the target community; and use the infrastructure to accelerate data-driven innovation.3

The goals of the NDS are to implement core services for discovering data; storing 

persistent copies of curated data and associated metadata; accessing data; linking data 

with other data, publications, and credit for reuse; and computing and analyzing data 

(www.nationaldataservice.org). Broadly speaking, the goals of the commons described 

here are similar to the NDS and, for this reason, they can be considered as some of the 

possible ways to implement the services proposed for the NDS.

The OCC and Open Science Data Cloud (OSDC) started in 2008, several years before 

BD2K, RDA, and NDS, and have been developing cloud-based computing and data 

commons services for scientific research projects ever since. Roughly speaking, the goals 

of these projects are similar, but the OSDC is strictly a science service provider and data 

commons provider, whereas the RDA is a much more general initiative. The BD2K 

program is focused on biomedical research, especially for NIH-funded researchers, while 

the NDS is a newer effort that involves the National Science Foundation supercomputing 

centers, their partners, and their users.
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Figure 1. 
The Open Science Data Cloud (OSDC) architecture. The various data commons that we 

have developed and operate share an architecture, consisting of object-based storage, virtual 

machines (VMs), and containers for on-demand computing, and core services for digital 

IDs, metadata, data access, and access to computing resources, all of which are available 

through RESTful APIs. The data access and data submission portals are applications built 

using these APIs.
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Figure 2. 
A screenshot of part of the Namibia Flood Dashboard from 14 March 2014. This image 

shows water catchments (outlined and colored regions) and a one-day flood potential 

forecast of the area from hydrological models using data from the Tropical Rainfall 

Measuring Mission (TRMM), a joint space mission between NASA and the Japan 

Aerospace Exploration Agency.
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Table 1

Data-intensive users supported by the Open Science Data Cloud.

No. core hours per month No. users

20,000 120

50,000 34

100,000 23

200,000 5
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